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Abstract. Low-cost sensors have the potential to facilitate
the exploration of air quality issues on new temporal and
spatial scales. Here we evaluate a low-cost sensor quantifi-
cation system for methane through its use in two different
deployments. The first was a 1-month deployment along the
Colorado Front Range and included sites near active oil and
gas operations in the Denver-Julesburg basin. The second de-
ployment was in an urban Los Angeles neighborhood, sub-
ject to complex mixtures of air pollution sources including
oil operations. Given its role as a potent greenhouse gas, new
low-cost methods for detecting and monitoring methane may
aid in protecting human and environmental health. In this pa-
per, we assess a number of linear calibration models used to
convert raw sensor signals into ppm concentration values. We
also examine different choices that can be made during cal-
ibration and data processing and explore cross sensitivities
that impact this sensor type. The results illustrate the accu-
racy of the Figaro TGS 2600 sensor when methane is quanti-
fied from raw signals using the techniques described. The re-
sults also demonstrate the value of these tools for examining
air quality trends and events on small spatial and temporal
scales as well as their ability to characterize an area – high-
lighting their potential to provide preliminary data that can
inform more targeted measurements or supplement existing
monitoring networks.

1 Introduction

1.1 Background and motivation

Given both the direct impacts on climate change and indi-
rect impacts on human health, it is important to study in-
creased atmospheric methane on varied temporal and spa-
tial scales. Methane is an important greenhouse gas with
28× the global warming potential of CO2 over a 100-year
lifetime (IPCC, 2015); moreover, the majority of methane
emissions result from human activity (US EPA, 2017). Re-
searchers using ice core samples to measure historic methane
levels found relatively stable atmospheric concentrations of
approximately 0.695 ppm from 1000 AD until the Industrial
Revolution (Etheridge et al., 1988), after which methane
concentrations have grown to a present-day global average
of 1.851 ppm (NOAA, 2017). This increased atmospheric
methane not only intensifies climate change but also con-
tributes to higher ground-level ozone – a public health risk
(Fiore, 2008). Multiple modeling studies have revealed the
benefits of reducing methane emissions, which include de-
creased premature mortality from respiratory illness caused
by ozone (West et al., 2006; Fang et al., 2013). A better un-
derstanding of emissions and sources could help in the effort
to reduce atmospheric methane.

In 2015, production, storage, processing, and distribution
of natural gas and petroleum were responsible for approxi-
mately one-third of methane emissions in the US (US EPA,
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2017). While all of the leaks along this chain, from pro-
duction to distribution, contribute to climate change, vented
and fugitive emissions of methane that occur at oil and gas
production sites may raise concerns for nearby communities
due to potential co-emission of hazardous BTEX (benzene,
toluene, ethylbenzene, and xylene) compounds (Adgate et
al., 2014; Helmig et al., 2014; Moore et al., 2014). Recent
studies also suggest that methane emissions from the oil and
gas sector are underestimated in current inventories (Miller
et al., 2013; Wilcox et al., 2014; Zavala-araiza et al., 2015;
Petron et al., 2014; Subramanian et al., 2015). Miller and col-
leagues found that methane emissions in US EPA inventories
may be underestimated by a factor of 1.5 (Miller et al., 2013).
It has been suggested that these discrepancies between mea-
sured methane and source-based inventory estimates may be
explained by “super-emitters” – a small percentage of sites
or equipment that contribute a large portion of the emissions
(Wilcox et al., 2014; Petron et al., 2014). For example, a
study in the Barnett Shale region found that at any given time,
2 % of facilities accounted for half of methane emissions and
that these sites vary spatiotemporally (Zavala-araiza et al.,
2015). As described in a recent review, smart-sensing sys-
tems designed to detect leaks and alert operators at the well
pad level may aid in identifying these events as they occur
(Allen, 2014), speaking to the need for tools that can feasibly
achieve useful spatial and temporal resolution for monitoring
at the local or facility level.

1.2 Low-cost sensors for air quality monitoring

1.2.1 A place for sensors

Typically monitoring methods and technologies are driven by
the research question of interest and available resources. For
example, the National Oceanic and Atmospheric Adminis-
tration (NOAA) has maintained a global monitoring network
for methane for upwards of 30 years to study long-term at-
mospheric trends, seasonal cycles, and its global distribution
(NOAA, 2017). Monitoring networks can also be built on
smaller scales to study methane fluxes at the regional or city
level; the Megacities Carbon Project is currently undertaking
this work in Southern California, as is the INFLUX project
in Indianapolis (Wong et al., 2015; Davis et al., 2017). Re-
mote sensing provides a global picture and, given the spatial
coverage, these data can highlight hotspots at the regional
scale (Kort et al., 2014). However, interferences and satel-
lite trajectories prevent truly continuous data collection for
any single location. Aircraft campaigns and mobile monitor-
ing using vehicles equipped with gas analyzers both allow
for horizontally and vertically resolved spatial coverage at
the neighborhood or facility level. Additionally, these meth-
ods facilitate the collection of high-quality data with pre-
cise instrumentation (Yacovitch et al., 2015; Karion et al.,
2013). However, aircraft data typically represent a “moment
in time” and changing meteorological conditions often limit

the ability to repeat data collection. Ground-based mobile
monitoring may be repeated more easily, but the data col-
lected are often periodic in nature and intended for targeted
studies. Currently the scientific and regulatory communities
are limited in their capability to collect data continuously at
the neighborhood or facility level. While it would be possible
to site the same high-quality instruments utilized in global
and regional monitoring networks at a local scale, this ap-
proach would be costly given the expense of the equipment,
the siting requirements, and the expertise needed for opera-
tion.

Low-cost air quality sensing systems are well suited to
fill this role by providing continuous measurements in high-
density networks at a local scale. Given their versatility and
capacity to provide data of high spatial and temporal reso-
lution, these systems could augment regulatory monitoring
systems, aid in compliance monitoring (e.g., leak detection),
or enable the public to formulate local strategies to reduce
their exposure (Snyder et al., 2013). These systems are rel-
atively easy to deploy and operate in nearly any type of lo-
cation due to their size, low power requirements, and auto-
mated electronic data collection. These characteristics also
make them more accessible for community-engaged research
applications than conventional methods (Shamasunder et al.,
2017). For example, these systems could support a com-
munity collecting preliminary data, in partnership with re-
searchers or local regulatory agencies, that could be evalu-
ated for “hotspots” or correlated with community members’
experiences (e.g., odors or health symptoms) – providing
more information to support better understandings of com-
plex air quality issues.

1.2.2 Previous sensor research

Several studies have demonstrated the ability of low-cost
sensors to measure pollutants of interest at ambient levels.
For example, CO, NO, and NO2 have been measured in an
urban sensor network with additional analysis demonstrat-
ing the ability to differentiate local emissions from regional
trends (Mead et al., 2013; Heimann et al., 2015). In another
example, researchers demonstrated the feasibility of collect-
ing personal CO, NO2, O3, and CO2 exposure data with
uncertainty estimations using a portable, wearable system
(Piedrahita et al., 2014). Several studies have also made use
of sensors to study the spatial variability of O3 on various
scales (Sadighi et al., 2018; Cheadle et al., 2017; Moltchanov
et al., 2015). Connected to this effort on sensor applications,
there has been much work evaluating the performance of
individual sensors (Masson et al., 2015a, b; Spinelle et al.,
2015, 2017; Lewis at al., 2016) and demonstrating the per-
formance of different calibration approaches (Zimmerman et
al., 2018; Kim et al., 2018; Cross et al., 2017).

While many projects utilize sensors capable of detecting
criteria pollutants, advances in the development of metal-
oxide semiconductor (MOx) sensors have led to sensors ca-
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pable of detecting methane in settings closer to ambient envi-
ronmental conditions (Quaranta et al., 1999; Biaggi-Labiosa,
2012). Eugster and Kling (2012) demonstrated the ability of
the Figaro TGS 2600 sensor to resolve diurnal methane fluc-
tuations in a remote area of Alaska. A similar sensor, the
Figaro TGS 2611-E00, was found to have an accuracy of
±1.7 ppm in a laboratory setting for minute-averaged data,
suggesting its suitability for detecting substantial methane
leaks (Van den Bossche et al., 2017). These and similar
metal-oxide volatile organic compound (VOC) sensors have
also been utilized in other applications such as odor detection
at landfills and electronic noses (Penza et al., 2015; Zhang et
al., 2008).

This paper describes a methodology for collecting and
quantifying data using Figaro TGS 2600 MOx sensors to ex-
amine ambient trends and methane enhancements on small
spatial and temporal scales. Data from two field deployments
are used to discuss the different considerations for calibrating
and deploying these sensors. The first dataset was collected
in Colorado during the FRAPPE/DISCOVER-AQ monitor-
ing campaigns in the summer of 2014 (Pfister et al., 2017).
This deployment primarily measured rural and semirural ar-
eas along the Front Range north of Denver; important sources
of methane in the area include oil and gas development and
agriculture/ranching. The second dataset was collected in
California near downtown Los Angeles in the late summer–
early fall of 2016 as part of a community-based research
project. This deployment was in a mainly urban area with
high-density housing near two major roadways and urban oil
extraction. With this work, we build on the previous study by
Eugster and Kling (2012) by demonstrating the use of these
sensors in more complex environments where they are likely
subject to a greater number and variety of local and regional
influences. We (1) demonstrate methods for sensor calibra-
tion and validation of the Figaro TGS 2600 MOx sensors
using field co-locations, (2) examine different options and is-
sues that arise in the calibration process, and (3) explore the
potential for the data from these sensors to offer unique in-
formation. This paper is intended to explore ways of adapting
this system to fit the needs and logistical constraints of dif-
ferent investigations in order to provide useful and relevant
methane estimations.

2 Methods

2.1 Instrumentation – low-cost sensor systems

In both deployments, embedded sensor systems termed U-
Pods and Y-Pods (subsequent iterations of an open-source
platform) were used for data acquisition (Mobile Sensing
Technology, 2017). The main differences between the two
versions were in the circuit board design and the program-
ming, which was altered to improve reliability. Each U-Pod
and Y-Pod (pod) was outfitted with multiple gas-phase and

environmental sensors, listed in Table 1. The two Figaro
VOC sensors were originally developed for monitoring in in-
dustrial applications where much higher pollutant concentra-
tions are expected compared to ambient environmental mon-
itoring. The following analysis will primarily utilize signals
from one of these VOC sensors – the Figaro TGS 2600 MOx
sensor. This is the same sensor used by Eugster and Kling
in Alaska (2012), deployed here in environments character-
ized by complex mixtures including methane emissions and
associated confounding gas species.

These embedded sensor systems are housed in
small weather-proof plastic cases (approximately
20 cm× 25 cm× 10 cm) with fans to pull ambient air
through the enclosure and across the sensor surfaces result-
ing in multiple air exchanges occurring each minute. The
systems in these weatherproof cases can be placed outdoors
for long periods of time. They are powered using 12 V
AC/DC adapters plugged into wall power, but can use car
batteries and/or solar power in remote locations. All data are
logged to an onboard micro-SD card. As configured, these
pods draw roughly 11 W. These systems have been used in
several other indoor and outdoor air quality studies (Casey et
al., 2018; Sadighi et al., 2018; Cheadle et al., 2017). Figure 1
includes a labeled photo of a Y-Pod interior and a photo of
two Y-Pods deployed.

2.2 Deployment overview

Regulatory monitors have strict siting guidelines; however,
no such constraints exist for low-cost sensor systems. Once
a site is selected, pod placement is chosen based on feasi-
bility, access to air flow, and avoiding potential obstructions
as much as possible to obtain samples that are representative
of the area. As selecting sampling locations and setting up
pods is typically a joint effort with community partners, dif-
ferent sites often require different approaches. For example,
pods are typically placed on the roof of multi-story buildings,
while we may place the pod on the edge of a first story roof
or a fence of a single-family home. Additional considerations
include access to power, whether the instrument is obstruct-
ing a walkway or driveway, and safety of the residents. In
both deployments discussed in this paper, site selection was
guided by the research goals and access to general air flow
while also considering the preferences of the owner, tenants,
or site manager.

In Colorado, the pods were used during the 2014
FRAPPE/DISCOVER-AQ campaign with the aim of char-
acterizing small-scale spatial variability of pollutants.
This deployment lasted roughly 1 month. The deploy-
ment of the pods was centered on a main site for the
FRAPPE/DISCOVER-AQ campaign, the Boulder Atmo-
spheric Observatory (BAO) Tower in Erie, Colorado. Four-
teen pods were placed in an approximately 10× 10 km grid.
The remaining four pods were placed to the southwest and
northeast of the grid to provide regional comparisons, with
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Table 1. U-Pod and Y-Pod sensor lists.

Sensor type U-Pod Y-Pod

Temperature and RH RHT03 (also known as DHT22) Sensirion SHT2
Temperature and pressure 47 Bosh BMP085 Bosh BMP180
Carbon dioxide ELT S-100 NDIR ELT S-300 NDIR
Ozone SGX Corporation MiCS-2611 SGX Corporation MiCS-2611
VOC sensor 1 Figaro TGS 2600 MOx Figaro TGS 2600 MOx
VOC sensor 2 Figaro TGS 2602 MOx Figaro TGS 2602 MOx
Additional optional Alphasense B4 series Alphasense B4 series
Sensors (CO, NO, NO2, O3, SO2), (CO, NO, NO2, O3, SO2),

Baseline Mocon PID Baseline Mocon PID

Figure 1. A labeled photo of a Y-Pod interior (a) and a photo of two Y-Pods deployed at a field site (b).

measurements taken at the Golden National Renewable En-
ergy Laboratory (NREL), Frederick, and Platteville. All Col-
orado sites are shown in Fig. 2.

Shown in Fig. 2 are the boundaries of the Wattenberg Gas
Field and all active and inactive wells. In general, oil and
gas activity increases in density moving from the southwest-
ern side of the deployment region to the northeastern side,
with the Erie sites on the edge of the gas field. Note that
the Golden site has no nearby oil and gas activity, while
the Platteville site is surrounded by a high density of wells.
The pods were sited in rural and suburban areas primarily at
homes, schools, or in open spaces with two monitors sited at
a water reclamation facility. Of the 18 monitors, data from
15 were included in the following analysis. Three monitors
were excluded because of extended power failure, temperate
or humidity sensor failure, or MOx VOC sensor malfunction.
Some of the remaining 15 monitors experienced occasional
power loss, but all necessary sensors operated continuously.

In Los Angeles, we partnered with two community-based
organizations, Redeemer Community Partnership and Esper-
anza Community Housing, and deployed Y-Pods through-
out a neighborhood south of downtown Los Angeles. This
deployment lasted approximately 8 weeks. The community
was specifically interested in deploying a monitoring net-
work around an active oil extraction site. In this case, sites
were selected at varying distances away from the drilling op-
eration as well as varying distances from freeways, another

potential source of pollutants (Fig. 3). Thirteen of the sites
were within an approximately 5× 5 km grid, and two addi-
tional sites were located further to the northwest and north-
east. These two additional sites were utilized because they al-
lowed for continuous co-location with reference instruments
for validation purposes. The deployment area in Los Ange-
les was primarily urban and suburban with high-density res-
idential areas, some commercial and industrial land use, and
much higher-density traffic than the Colorado deployment
area.

Evaluating the performance of the Figaro TGS 2600 MOx
sensor in the context of these two deployments provides the
opportunity to better understand its strengths and limitations.
In Colorado, the sensor network covered a larger area and
we examined methane trends with respect to regional differ-
ences in potential sources. In Los Angeles, the sensor net-
work covered a smaller area to examine local methane trends
and to attempt to distinguish emissions from point sources.
Another important distinction between the two locations is
the nature of the oil and gas activity. In Colorado, the de-
ployment was in the SW portion of the Denver-Julesburg
Basin, which produces a mix of natural gas, condensate liq-
uids, and crude oil (US EIA, 2016a). This area also includes
the Wattenberg Field, which ranked in the top 10 for both
oil- and gas-producing fields in 2013 (US EIA, 2015). In
Los Angeles, oil and gas activity refers primarily to crude oil
production. California is the fourth top-producing state for
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Figure 2. Maps of Colorado deployment area with every site displayed in panel (b) and the Erie sites displayed in panel (a). Panel (c) indicates
active and inactive wells in the Wattenberg Gas Field along with major urban areas and counties; data are courtesy of the Colorado Oil and
Gas Conservation Commissions (COGCC, 2017).

Figure 3. Map of Los Angeles deployment sites, showing (a) the deployment area and all sites where co-locations with reference monitors
occurred and (b) the distribution of monitoring sites in relation to major roadways and the drill site of interest (note the monitor locations
have been approximated to the center of their respective blocks to protect participant identities).

crude oil (US EIA 2016b), and Los Angeles County is home
to more than 5000 active oil wells (Sadd and Shamasunder,
2015). In both cases we expect methane to be emitted or co-
emitted with other VOCs; we attempt to better understand
local sources, methane may serve as a valuable indicator of
emissions from these types of sites. The ratio of methane rel-
ative to other combustion products such as CO and CO2 will
likely be higher from sites related to oil and gas activity than
from other local sources such as traffic (Nam et al., 2004;
Popa et al., 2014; Peischl et al., 2013). While the two de-
ployment locations offer contrasting sampling environments,

both locations offer complexity in terms of number and types
of sources, geography, and typical atmospheric trends.

2.3 Sensor signal processing

The operating principle of MOx semiconductor sensors is
based on a reducing gas changing the resistance of a semi-
conductor material in a simple resistance circuit (Sun et al.,
2012). In clean air, the flow of current across the sensor sur-
face is limited by donor electrons in the tin dioxide that are
attracted to oxygen adsorbed to the sensor’s surface. The flow
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of current increases when the target gas (e.g., methane) is
present, thus reducing the amount of oxygen adsorbed to the
sensor’s surface (Figaro USA, Inc.). In other words, the resis-
tance across the sensor decreases with increasing methane. In
both the Y-Pods and U-Pods, the sensor voltage is continu-
ously recorded to the SD card. Using Eq. (1), provided by the
sensor manufacturer, we calculate the sensor resistance (Rs)

at various concentrations (Figaro, 2005). In this equation Vc
is the circuit voltage, RL is the load resistance, and Vout is the
logged voltage. R0 represents the resistance in clean air and
the ratio of Rs/R0 is typically used in the analysis of MOx
sensor data (Eugster and Kling, 2012; Piedrahita et al., 2014).
Gas sensor signals, temperature, humidity, and pressure are
recorded to the SD card approximately every 6–25 s (depend-
ing on a pod’s programming). This frequent data acquisition
allows for the use of minute-median data in calibration and
analysis. Unless otherwise stated, this is the time resolution
used in our analysis and shown in this paper.

Rs =
Vc×RL

Vout
− RL (1)

2.4 Sensor calibration, validation, and analysis

Field normalizations were used to generate calibration mod-
els for the sensors. Field normalization provides one ap-
proach to correcting for the cross sensitivities that low-
cost sensors tend to exhibit with respect to temperature, hu-
midity, and other trace gases (Spinelle et al., 2015, 2017;
Sadighi et al., 2018; Masson 2015a, b; Wang et al., 2010).
This method is implemented by co-locating low-cost sensor
systems with high-quality reference instruments (typically
regulatory-grade monitors) for a given period and then gen-
erating a calibration model using an approach such as lin-
ear regression. These calibration models predict the methane
concentration (in ppm) based on the sensor signal (Rs/R0)

and other predictors. An advantage of calibrating sensors in
the field as opposed to in a laboratory setting is that the mod-
els will be trained for the pollutant levels of interest and
across the same dynamic temperature and humidity values
that a sensor will likely experience during field deployment.
In a study involving personal air quality monitors, Piedrahita
et al. (2014) successfully calibrated sensors and provided
sensor-specific uncertainty estimates using this method.

In Colorado, we co-located U-Pods with a Los Gatos cav-
ity ring-down spectrometer operated by the Penn State Na-
tive Trailer team at the Platteville Atmospheric Observatory
in Platteville, CO. In Los Angeles, we co-located Y-Pods
with reference instruments at two different sites. The pre-
deployment co-location was with a Baseline Mocon Series
900 Methane/Non-methane Hydrocarbon Analyzer located
in a primarily residential suburban area of Los Angeles. The
post-deployment calibration was with a Picarro cavity ring-
down spectrometer located in a suburban/urban area with a
mix of residential, retail, and industrial land use. Reference
instruments at both Los Angeles sites were operated by the

South Coast Air Quality Management District. The timelines
in Figs. 4 and 5 illustrate when pods were co-located vs. de-
ployed in the field and which data were used for the genera-
tion of calibration models (i.e., training data) versus the val-
idation of those models (i.e., testing data). Note that for the
Colorado deployment, both before and after the field deploy-
ment, the monitors were co-located in batches due to logis-
tical constraints. Arrows indicate the movement of batches
of monitors, and the “not in use” row clarifies whether pods
were deployed. In addition, during the Colorado deployment,
a single calibration model (a universal model) was devel-
oped based on the data from the “main” U-Pod, described in
greater detail below. For the Los Angeles deployment, cali-
bration models specific to each Y-Pod (sensor-specific mod-
els) were used.

The setup of Y-Pods for these co-locations was governed
by limitations at the site. In Colorado, Y-Pods were mounted
to the railing of the Native Trailer (approximately 1.5 m
above the trailer roof), which housed the reference instru-
ments. The inlets to the reference instruments were approx-
imately 2.5 m above the roof of the trailer and roughly 2 m
away from the Y-Pods. For the first co-location in Los An-
geles, the reference instrument was housed in a trailer in an
open field. As we were not able to place the Y-Pods on the
roof of the trailer, they were placed 0.75–1.5 m off the ground
on the side of the trailer where the inlet was mounted. In this
case, the Y-Pods were roughly 6 m below and 3 m to the side
of the inlet. For the second co-location in Los Angeles, the
reference instruments were housed inside of a building. In
this case the Y-Pods were mounted to a railing roughly 1–2 m
off the roof. However, the Y-Pods were also approximately
10 m away from and 1–2 m below the inlet, as this location
was secure and out of the way of ongoing operations at the
reference site. We would expect the variability between co-
location setups to be most important for short-term spikes
in CH4 that do not pass over the Y-Pod and inlet evenly. As
discussed in Sect. 3.1, our co-location site in Colorado expe-
rienced the most short-term CH4 spikes, whereas the changes
in CH4 concentration at the two LA sites were more gradual
in nature.

For both deployments, 4 days of data at the beginning and
4 days at the end of the co-location with reference instru-
ments were used to generate the calibration models. Specif-
ically, for Colorado, 4 days at the beginning and end of the
field deployment were used for generating the quantification
model. In Los Angeles, 4 days from both the pre- and post-
co-location were used for model generation. The remaining
data from co-locations were then used for model validation
(approximately 18 days for Colorado and 4 days for LA).
Table 1 lists the calibration models that were compared. Sev-
eral models (the simpler ones) selected are commonly used in
sensor calibration, while the more complicated models were
selected based on predictors that aided in correcting for cross
sensitivity and resulted in more normal residuals. The mod-
els are listed in order of their complexity, beginning with the
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Figure 4. Timeline for Colorado, indicating when monitors were co-located together in batches before and after the field deployment and il-
lustrating how two U-Pods were sited with a reference instrument during the field deployment (these data were used for calibration generation
or training data versus model validation or testing data).

Figure 5. Timeline for LA indicating when Y-Pods were co-located together with reference instruments before and after the field deployment,
as well as which data were used for calibration generation (training data) versus model validation (testing data).

addition of environmental parameters, then interactions, and
then transformations. Regression analysis provides sensor-
specific coefficients for predictor variables. The models are
then inverted so that gas concentration is expressed as a func-
tion of sensor signals and can then be used to predict pol-
lutant concentrations using new data collected in the field.
This inverted model approach is typical for field normal-
ization (Piedrahita et al., 2014; Spinelle et al., 2015, 2017).
Evaluation of model performance was based on the coeffi-
cient of determination (R2) and the root mean squared error
(RMSE), as well as an analysis of the residuals in relation
to relevant environmental and air quality parameters. Valida-
tion data provide the opportunity to evaluate the consistency
of each model’s performance based on the same metrics and
the addition of mean bias.

Given the structure of each deployment and availability of
co-located data, two different approaches to developing and
applying calibration models were used: a universal calibra-
tion model vs. sensor-specific models. For the Colorado de-
ployment, a universal calibration model was developed us-
ing the data from one sensor and this model were applied
to all the sensors. As shown in Fig. 4, two U-Pods were co-
located with the reference instrument throughout the field de-
ployment. The data from one of these pods was used along
with the following process: (1) generate a universal calibra-
tion model using data from the main U-Pod co-located with
the reference instrument; (2) normalize all of the other U-

Pods’ raw sensor signals to the main U-Pod using data from
when they were co-located together before and after the field
deployment; and (3) apply the universal calibration model to
the normalized sensor data from each pod. The second U-
Pod co-located with the reference instrument allows for val-
idation of this method.

For the Los Angeles deployment, sensor-specific calibra-
tion models unique to each Y-Pod were used. As shown in
Fig. 5, the Y-Pods were all co-located together with reference
instruments before and after the field deployment providing
the opportunity to generate and use sensor-specific models.
Additionally, one Y-Pod in Los Angeles was deployed with
a reference instrument throughout the field deployment pro-
viding an additional set of validation data (referred to as Val-
idation 2). These data offer the opportunity to calibrate the
Los Angeles data using both sensor-specific calibration mod-
els and a universal calibration model – a direct comparison
demonstrating the relative performance of these two meth-
ods. This offers an informative comparison as there may be
instances where only one method is possible given logistics,
such as access to reference instruments. Another advantage
to this universal calibration model approach would be that the
calibration model is not extrapolating in time as the training
data would cover the complete field deployment period.
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Table 2. Calibration models.

Model no. Description Model equation

1 Mdl1 Rs/R0 = p1+p2 (C)

2 Mdl3 Rs/R0 = p1+p2 (C)+p3 (T )+p4 (H)

3 Mdl4 Rs/R0 = p1+p2 (C)+p3 (T )+p4 (H)+p5(Ti)

4 Mdl4_1Int Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4 (H)+p5(Ti)

5 Mdl4_2Int Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4 (H)+p5(Ti)+p7(T ×H)

6 Mdl4_1Int_Tr Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4(ln(H))+p5(Ti)

7 Mdl4_2Int_Tr Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4

(
H−1

)
+p5(Ti)+p7(T ×H−1)

8 Mdl5_1Int Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4 (H)+p5(Ti)+p7(Td )

9 Mdl5_2Int Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4 (H)+p5 (Ti)+p7 (T ×H)+p8(Td )

10 Mdl5_1Int_Tr Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4 (ln(H))+p5(Ti)+p7(Td )

11 Mdl5_2Int_Tr Rs/R0 = p1+p2 (C)+ T (p3+p6(C))+p4

(
H−1

)
+p5 (Ti)+p7

(
T ×H−1

)
+p8(Td )

Predictors (lower case p with subscripts): C is pollutant concentration (ppm methane), T is temperature, H is absolute humidity, Ti is continuous time, and Td is
categorical time of day; Mdl indicates the number of predictors; Int indicates the number of interactions; Tr indicates use of transformations. The predictor p1
indicates an empirical constant.

3 Results and discussion

3.1 Differences in reference data and environmental
conditions that impact calibration

Different sampling environments necessitate the use of dif-
ferent strategies to produce the strongest calibration for each
dataset. Reasons for this may be differences in local sources
or metrological trends. Figure 6a and b illustrate the differ-
ence in temperature and humidity values observed during
calibration versus validation periods for both locations. In
Colorado, the temperature and absolute humidity observed
during the validation period are generally well represented
by the data collected during the calibration period, although
there are some high and low humidity values at certain tem-
peratures that fall outside of the calibration parameter space.
Conversely, in Los Angeles, the full range of temperature and
humidity values observed during the validation period are
captured in the calibration period. However, the Los Ange-
les data have many temperature–humidity combinations that
are unique to the validation period.

Other sensor limitations must be considered as well, for
example relatively slow sensor response. A low-cost sen-
sor with an operating principle relying on chemical reactions
may not have time to fully detect a passing plume (Arfire et
al., 2016), whereas this is not an issue for high-quality refer-
ence instruments that rely instead on optical properties. The
manufacturer of the Picarro cavity ring-down spectrometer,
for example, cites a gas response time under 3 s (Picarro,
Inc., 2015), while Baseline Mocon cites a response time of
less than 5 s for the Series 900 Methane/Non-methane Hy-
drocarbon Analyzer (Mocon, Inc., 2017). Given these quick
response times and the high flow rates used for sampling by
the reference instruments we would not expect a lag on the
part of the reference instrument. The sensor failing to reach
steady state when exposed to a short and high concentration

plume, as a result of slow sensor response, would be more
of a concern for calibration. This limitation may result in
sensor data that are fundamentally different from reference
data, further complicating calibration model generation. One
option for addressing this issue, explored below, is filtering
short-duration reference data features prior to model genera-
tion. Demonstrating the need for this step, Fig. 6d and e each
show 3 days of data from the reference monitors in which
the diurnal patterns are similar, but the Colorado data also in-
clude short-term enhancements or “spikes” in methane pos-
sibly from the oil and natural gas extraction activity in the
study region. The histogram in Fig. 6c depicts the changes
in methane values for each dataset from minute to minute,
further highlighting instances in the Colorado data where
methane levels change by 0.5 or even 1 ppm over the course
of a minute. These differences in the environmental param-
eter spaces emphasize the need to customize quantification
methods to each dataset.

3.2 Comparing calibration models

Table 3 contains the resulting statistics for each of the models
described in Table 2 for one Colorado U-Pod and three Los
Angeles Y-Pods. Three Y-Pods were selected randomly to
facilitate analysis of the universal model method and provide
an initial indication of calibration model consistency across
different sensors. This table lists the R2 and the RMSE as
well as the mean bias for the validation data. In all cases,
these are the statistics for the fitted sensor data (converted
into ppm CH4) versus the reference methane data. Note that
the second value in the Colorado data is the result when a
filter is used to remove short-term spikes from the reference
and sensor data. Filtering the Los Angles reference data did
not change any of the statistics for that dataset and therefore
was not performed. This filter removes spikes that are greater
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Figure 6. Panels (a) and (b) are the temperature and humidity values observed during calibration and validation periods in Colorado and Los
Angeles, respectively. Panel (c) is a histogram of the changes in methane from minute to minute (for the reference data) and panels (d) and
(e) are 3 days of minute-resolution data from the reference instruments in Colorado and Los Angeles, respectively.

than twice the past hour’s standard deviation and last less
than 5 min in duration.

Figure 7a and b provide a graphical representation of the
same statistics from Table 3 and emphasize the differences
in results between the two datasets. For the Colorado data,
the greatest improvement in fit was observed when time was
added as a predictor, but then the results level off with no
major improvements as the models increase in complexity.
However, the results consistently returned a higher R2 and
lower RMSE when short-term methane spikes were filtered
prior to model generation. In the Los Angeles dataset, there
was continual improvement as models increased in complex-
ity, with the most complex model producing a high R2 and
low RMSE as well as the most consistency across both the
calibration and validations datasets.

Figures 8 and 9 provide plots of the “best-fitting” calibra-
tion models for each dataset based on regression statistics,
consistency across calibration and validation data, and an
analysis of the residuals. For the Colorado data, the selected
model was the simplest well-fitting model, the fourth model,
while for the Los Angeles data the selected model was the
most complex model tested, the 11th model. With regards to
both datasets, the selected model produced the most normal
residuals, which also did not exhibit major trends in relation
to the predictors, and they resulted in the closest one-to-one
relationship between the fitted sensor data and the reference
data. The time series plots also display the performance of
the calibration model on the validation dataset.

As demonstrated by these two datasets, calibration mod-
els are not “one size fits all”. While the deployments in Los
Angles and Colorado occurred at roughly the same time of
year, the best-fitting calibration models and regression re-
sults proved to be quite different. This speaks to the need
to consider the environmental and pollutant parameter space
both when planning a deployment and when processing data.
For example, more complex temperature and humidity be-
havior may require more complex corrections. Additionally,
if there is little overlap between conditions observed during
calibration, validation, and field deployment then the result-
ing calibrations will be less dependable. Likely, there are

factors beyond environmental parameter space driving dif-
ferences between sensor and reference data. In that vein, it
is important to explore the operational differences between
the reference instrument and the sensors, including distance
apart and proximity to significant sources. Here, we compen-
sated for those operational differences by filtering “spikes”
from the reference data; another modification could be to use
a different averaging time such as hourly instead of minute
data. This analysis demonstrates the importance of explor-
ing different models, transformations of variables, and treat-
ments of the data to find the model that provides the strongest
methane estimates.

One feature of the models that applied to both datasets was
a correction for sensor drift over time, emphasizing the im-
portance of collecting data that either bookend or span the
duration of the field deployment. Even though the final mod-
els selected here differed, both included a correction for sen-
sor drift over time and a pre-only or post-only calibration
would not have allowed for this correction. To examine the
consistency of this drift between sensors, we compared the
linear drift from the three LA Y-Pods by examining data con-
verted to concentrations using Mdl3, which does not include
time as a predictor. The results were drift values of 0.009,
0.015, and 0.011 ppm week−1 for LA1, LA2, and LA3, re-
spectively. While these numbers are similar to those reported
by Eugster and Kling (2012), the total drift implied is less
than or equal to our expected uncertainty for each Y-Pod
making the estimates unreliable. Given the differences in the
deployments and their lengths, we have a starting idea of drift
and its consistency sensor to sensor, but a better understand-
ing of drift as well as the effective lifetime of sensors will be
important for future use of this and other MOx sensors.

3.3 Sensor-specific vs. universal calibration models

The additional validation data (Validation 2) collected dur-
ing the field deployment in Los Angeles facilitates a com-
parison of the sensor-specific versus the universal calibration
model approach. Several calibration models were generated
using this additional co-located data (Fig. 5), including the
two models selected in the previous section as “best-fitting”.
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Table 3. Calibration model generation and validation results.

Calibration data Validation data

No. Model POD R2 RMSE (ppm) R2 RMSE (ppm) Mean bias

1 Mdl1 CO; Filt. 0.463; 0.469 0.391; 0.369 0.456; 0.459 0.398; 0.378 0.014; 0.007
LA 1 0.244 0.561 0.550 0.438 −0.381
LA 2 0.257 0.541 0.556 0.444 −0.388
LA 3 0.229 0.582 0.552 0.434 −0.379

2 Mdl3 CO; Filt. 0.498; 0.507 0.367; 0.346 0.329; 0.331 0.576; 0.550 −0.035; −0.040
LA 1 0.514 0.310 0.402 0.240 0.024
LA 2 0.522 0.304 0.434 0.248 −0.079
LA 3 0.552 0.286 0.481 0.225 0.003

3 Mdl4 CO; Filt. 0.574; 0.590 0.314; 0.292 0.392; 0.401 0.483; 0.453 −0.038; −0.035
LA 1 0.500 0.319 0.380 0.252 0.070
LA 2 0.479 0.331 0.368 0.249 0.045
LA 3 0.526 0.301 0.438 0.250 0.096

4 Mdl4_1Int CO; Filt. 0.596; 0.625 0.300; 0.271 0.423; 0.449 0.437; 0.383 −0.024; −0.011
LA 1 0.747 0.184 0.518 0.224 0.047
LA 2 0.765 0.176 0.558 0.212 0.026
LA 3 0.752 0.181 0.527 0.225 0.069

5 Mdl4_2Int CO; Filt. 0.588; 0.618 0.305; 0.275 0.432; 0.462 0.441; 0.384 −0.019; −0.011
LA 1 0.753 0.181 0.496 0.229 0.053
LA 2 0.776 0.171 0.536 0.218 0.035
LA 3 0.752 0.181 0.527 0.226 0.067

6 Mdl4_1Int_Tr CO; Filt. 0.593; 0.622 0.302; 0.273 0.425; 0.451 0.440; 0.385 −0.034; −0.019
LA 1 0.737 0.189 0.512 0.341 0.264
LA 2 0.761 0.177 0.457 0.389 0.316
LA 3 0.745 0.184 0.525 0.380 0.316

7 Mdl4_2Int_Tr CO; Filt. 0.588; 0.616 0.305; 0.275 0.440; 0.465 0.430; 0.379 −0.041; −0.027
LA1 0.784 0.167 0.627 0.198 0.061
LA2 0.813 0.151 0.667 0.202 0.096
LA3 0.776 0.169 0.655 0.217 0.120

8 Mdl5_1Int CO; Filt. 0.597; 0.625 0.300; 0.271 0.426; 0.451 0.435; 0.382 −0.021; −0.009
LA 1 0.809 0.154 0.630 0.206 0.076
LA 2 0.812 0.153 0.635 0.202 0.070
LA 3 0.805 0.156 0.626 0.213 0.095

9 Mdl5_2Int CO; Filt. 0.588; 0.618 0.305; 0.274 0.438; 0.466 0.437; 0.382 −0.014; −0.008
LA1 0.827 0.146 0.571 0.225 0.092
LA2 0.833 0.142 0.580 0.222 0.091
LA3 0.819 0.149 0.579 0.229 0.108

10 Md5_1Int_Tr CO; Filt. 0.594; 0.622 0.302; 0.272 0.428; 0.453 0.437; 0.384 −0.032; −0.018
LA1 0.800 0.158 0.709 0.282 0.225
LA2 0.807 0.154 0.630 0.341 0.285
LA3 0.795 0.160 0.678 0.332 0.281

11 Mdl5_2Int_Tr CO; Filt. 0.588; 0.617 0.305; 0.275 0.445; 0.467 0.426; 0.377 −0.038; −0.026
LA1 0.820 0.149 0.756 0.160 0.040
LA2 0.831 0.143 0.734 0.180 0.083
LA3 0.804 0.156 0.731 0.190 0.104

These models were then applied to normalized data from the
other two Los Angeles Y-Pods included in the previous sec-
tion. The raw sensor data from the Figaro TGS 2600 sensors
were normalized using a simple linear regression (the R2 val-
ues for these regressions were 0.989 and 0.999, respectively).

Similar to the results from Sect. 3.2, the same model
(MDL5_2INT_TR, model 11) emerges as the strongest for

this particular dataset given that the validation statistics in-
clude the highest R2 and lowest RMSE. An important note is
that overall the results using this method are not as strong as
the results seen using the sensor-specific models in the previ-
ous section. One reason for this may be that we are attempt-
ing to fit roughly 6 weeks, rather than 4 days, for the calibra-
tion model generation, meaning that the model is attempting
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Figure 7. Plotted R2 (a) and RMSE (b) for all models; circle markers indicate results from calibration generation (using the training data)
and asterisk markers indicate results from the application of the models to the validation data (or testing data).

Figure 8. “Best-fitting” model (MDL4_1INT) for the Colorado data with residual analysis (for validation data, RMSE is 0.383 ppm and
mean absolute percent error is 12.13 %). Panels (a–c) are time series of the reference data and converted sensor data. Panel (d) is a scatter
plot of the same data. Panels (e–i) are the residuals from the calibration generation.

to cover a larger environmental parameter space. This might
also explain why the results for the “best-fitting” model are
better for the validation period, which is much shorter. In any
case, this calibration model approach provides useful infor-
mation regarding methane levels (e.g., diurnal trends), as is
demonstrated by Fig. 10, and this method can be used to con-
vert the normalized signals from other sensors to a ppm value
when logistics limit the potential for co-locating all sensors,
whether due to time constraints or the limited availability of
power and/or space at a co-location site. As the logistics of
the Colorado deployment did not allow for sensor-specific
calibrations, the universal calibration model approach is used
below in Sect. 3.5 to convert the Colorado field data from all
the U-Pods.

3.4 Further sensor quantification considerations

Comprehensive best practices to guide the use of low-cost air
quality sensors have not been established. A recent workshop

for low-cost sensors outlined some of the concerns shared
throughout the research community including deployment
logistics, data formatting and sharing, and communication of
uncertainty (Clements et al., 2017). With our datasets, we
investigated three issues related to the development of best
practices: the length of a co-location for a field normaliza-
tion, additional dataset-specific filtering based on environ-
mental parameters, and cross sensitivities to non-methane
pollutants.

3.4.1 Length of co-location

Bootstrapping methods were applied to determine the vari-
ability and effectiveness of different co-location lengths for
the Colorado data. A starting point in the complete dataset
was randomly selected and consecutive data of varying
lengths (0.5, 3, 7, or 14 days) were used to generate a cal-
ibration model. This model was then applied to the entire
dataset for validation. For comparison purposes three differ-
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Figure 9. “Best-fitting” model (Mdl5_2Int_Tr) for the Los Angeles data with residual analysis (LA1 shown) (for validation data, RMSE is
0.160 ppm and mean absolute percent error is 5.75 %). Panels (a–c) are time series of the reference data and converted sensor data. Panel
(d) is a scatter plot of the same data. Panels (e–i) are the residuals from the calibration generation.

Table 4. Calibration and validation results for the universal calibration method (∗ – normalized Y-Pod data).

Calibration data Validation data

R2 RMSE R2 RMSE Mean bias

MDL1 (1) LA1 0.154 0.493 0.209 0.856 −0.396
LA2∗ 0.223 0.835 −0.382
LA3∗ 0.201 0.836 −0.377

MDL3 (2) LA1 0.500 0.214 0.404 0.565 −0.249
LA2∗ 0.438 0.581 −0.292
LA3∗ 0.419 0.548 −0.256

MDL4 (3) LA1 0.496 0.215 0.397 0.577 −0.261
LA2∗ 0.434 0.589 −0.304
LA3∗ 0.412 0.560 −0.268

MDL4_1INT (4) LA1 0.463 0.230 0.372 0.622 −0.283
LA2∗ 0.411 0.624 −0.324
LA3∗ 0.387 0.606 −0.288

MDL5_2INT_TR (11) LA1 0.477 0.223 0.486 0.334 −0.098
LA2∗ 0.532 0.348 −0.139
LA3∗ 0.529 0.336 −0.129

ent models were tested with 20 iterations for each model. The
resulting statistics are plotted in Fig. 11 along with error bars
for ± 1 standard deviation.

The simplest model (Mdl1), using only sensor signal and
no environmental predictors, seems to perform consistently
well for all lengths of time; however, the residuals reveal
strong trends with temperature and humidity, indicating that
these variables are not being corrected for. Given the analy-
sis of the residuals, this model may provide useful informa-
tion, but its implementation is also likely to be misleading.
For example, this model may be useful in applications that
do not require detailed analysis or decision making based on
the data, such as education and outreach in a K-12 classroom

where sensors are used for labs or student projects (Collier
et al., 2015). Taking into account residuals, Mdl3 provides
some correction for temperature and humidity effects with-
out overfitting on shorter co-location lengths. Mdl4_1Int,
which includes time as a predictor, is the best performing
model for co-location periods of 2 weeks. Given that time
was a useful predictor in Sect. 3.2, the fact that the data are
spanning 2 weeks is probably more important than having 2
full weeks of co-located data. This means that the co-location
data must be long enough or span a long enough duration
relative to the complete dataset in order to provide a time
correction that does not lead to overfitting and poor perfor-
mance on validation data. While greater complexity can pro-
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Figure 10. Time series of the universal calibration model (for MDL5_2INT_TR) generated using the Validation 2 period (b) and the ap-
plication of the model to the pre- and post-deployment co-location data (a and c) for Y-Pods LA1 and the normalized data from LA2 and
LA3.

Figure 11. R2 (a) and RMSE (b) for the calibration model generation (based on a given length of time) and the application of those models
to the complete Colorado data. Note that calibration data, or training data, are selected using a random stating point in the complete Colorado
dataset and the appropriate amount of consecutive data. The colors indicate the model, and solid lines indicate calibration results while
dashed lines indicating validation results.

vide a better calibration model, a sufficient amount of data
must be used to avoid overfitting. Simply stated, the model
selection should be appropriate to the data’s characteristics
and intended purpose.

3.4.2 The impact of model extrapolation

The additional co-located data from Los Angeles (Validation
2) facilitate a more in-depth exploration of the outlier resid-
uals and approaches that could improve the predictive power
of the calibration model. For example, dataset-specific filters
were applied to remove values where extrapolation is likely
occurring in field data. Extrapolation in this case would be in-
stances where one or more predictors are outside of the range
of values used to train the calibration model. Table 5 provides
the statistics that result from applying the calibration model
with and without this added filtering. The unfiltered dataset
statistics are the same results explored in Sect. 3.2. All other

statistics in the table were calculated after values not ob-
served during calibration were removed. In the first filtered
grouping in Table 5, instances where individual temperature
or humidity values (primarily extreme values) not observed
were removed. In the second grouping, all data combinations
not observed during calibration were removed, meaning all
instances where exact combinations of temperature, humid-
ity, etc. were not observed. The final filtering option, shown
in the fourth section, applies knowledge of atmospheric com-
position to assist with filtering. In this instance, the atmo-
spheric baseline of methane was used to filter out low con-
centration values; the baseline was determined by the mini-
mum value observed in the CH4 reference data.

The final filtering approach should only be applied to sen-
sor data selectively. Removing improbable values from sen-
sor data that fall below zero or a known baseline may be
a useful or even necessary strategy in certain situations. In
dealing with air quality data, there are examples of additional
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processing being used to reduce negative values (Hagler et
al., 2011) and examples of guidelines to remove negative
values below a given threshold (US EPA, 2016). For work
with sensor data, if the focus of the analysis is to under-
stand enhancements over background captured by sensors,
then removing improbably low values can elucidate these re-
sults. If preliminary data are being shared with the public,
then flagging and removing improbable values can reduce
confusion. Given the challenges in sensor quantification, this
second example in particular warrants consideration by those
using sensors in partnership with communities. However, it is
also likely that these underestimations contain valuable infor-
mation about sensor behavior and sensitivity; removing these
values will also introduce a negative bias to the data. Accord-
ingly, when using this type of processing, researchers will
need to be clear about why this approach is useful and valid.
For this dataset, every instance where underestimations are
removed by the filter coincides with days having a dynamic
range of methane less than the expected uncertainty for the
sensor, which indicates that these underestimations may be
connected to a limit of detection issue. Figure B1 (Appendix
B) demonstrates this association.

Additional filtering at nearly each stage yields some im-
provement in statistics, with the removal of the complete
data combinations not seen during calibration resulting in the
largest improvements, but this method also removes a large
portion of the data. The combination of applied knowledge
of atmospheric composition and the removal of extreme indi-
vidual values not observed during calibration yields improve-
ments while maintaining a substantial amount of the data.
This result, labeled “selected filtering”, suggests that this
more conservative version of filtering may be sufficient. Not
only did this filtering result in a RMSE that is lower than the
RMSE for first validation dataset (0.1525 and 0.1601 ppm,
respectively), but also these improvements are visible in a
plot of the data. Figure 12a provides an overview of the
complete dataset and highlights where some of the under-
predictions are corrected for before 7 and 17 September,
likely driven by the filter utilizing atmospheric principles.
Figure 12b shows a close-up of a couple of days illustrating
a reduction in overprediction, driven by the filter for either
temperature, humidity, or resistance values.

As was demonstrated with the Validation 2 dataset, we ex-
pect that applying the same filtering to each deployed sen-
sor’s data should result in more reliable field data from all
of the sites. Thus in addition to filtering data prior to cali-
bration by removing short-duration enhancements in the ref-
erence data, filtering converted sensor data can improve the
reliability of calibrated data. While the bounds for this type
of filtering should be dataset-specific, this step could easily
be an automated addition to low-cost sensor quantification
procedures.

3.4.3 Sensor cross sensitivities

Another common concern for low-cost sensors is cross sen-
sitivities to other gases, in addition to known cross sensitiv-
ities to environmental factors. As discussed by Eugster and
Kling (2012), the Figaro TGS 2600 sensor is reported to be
sensitive to carbon monoxide as well as a few other hydrocar-
bons (Figaro, 2005). This is not surprising, as each of these
species can act as a reducing gas at the sensor surface and
therefore also reduce the resistance to electron flow. While
Eugster and Kling (2012) did not examine CO specifically
given the absence of potential sources in their deployment
area, they did perform an analysis of variance examining the
effects of CO2 and found no significant impacts. We applied
the same analysis techniques to minute-resolution data to ex-
amine the impacts of other gases, specifically CO, O3, and
a few VOCs. Given the information provided by the sensor
manufacturer, we expected a cross sensitivity to CO, but not
to O3; this analysis provided an opportunity to check these
assumptions. Table 6 includes the resulting explained vari-
ance from each ANOVA, all of which included environmen-
tal parameters and time along with the following differences:
set 1 is CH4 only, set 2 is CH4 and CO, set 3 is CH4 and
O3, set 4 is CO only, and set 5 is the combined (CH4+CO)
predictor.

The overall results varied between the deployments. For
example, absolute humidity explained a high percentage of
the variance in Los Angeles, while the temperature and hu-
midity both played a role in the Colorado data. A common-
ality was that the sensor exhibits a cross sensitivity to CO,
but not to O3. In both cases, the inclusion of O3 resulted in a
higher percentage of variance being attributed to the residu-
als, and the variance explained by the O3 concentrations was
0.3 and 2.7 % for Los Angeles and Colorado, respectively. In
contrast, the inclusion of CO in the ANOVA for the Colorado
data resulted in a decrease of the variance explained by CH4
from 29.2 % to a still significant 21.8 %, while 15.0 % was
explained by the new CO predictor. Notably, this set of pa-
rameters also resulted in the lowest portion of the variance
being left to the residuals, suggesting that it provided the
strongest set of among these five parameter sets. The inclu-
sion of CO in the ANOVA for the Los Angeles data yielded
somewhat different results with the explained variance drop-
ping drastically for CH4 and being quite low for CO as well,
at 2.6 and 4.2 %, respectively. This result is likely explained
by the temporal correlation between the two gases obscur-
ing the importance of each individually. The CO concentra-
tions in Los Angeles were higher than those observed in Col-
orado and well correlated with the CH4 data as demonstrated
in Fig. 13. Further supporting this conclusion, parameter set
5 included a combined “CH4+CO” term and resulted in a
higher portion of the variance explained through this term
at 19.8 % versus CH4 alone (16.8 %) or CO alone (18.1 %).
This set also resulted in the lowest portion of variance left to
the residuals. The lack of correlation between the Colorado
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Table 5. Additional filtering to improve calibration model performance on field data. AH is absolute humidity, WS is wind speed, WD is
wind direction, and AP is atmospheric principles.

Data R2 RMSE Mean bias n

Unfiltered datasets Calibration 0.820 0.149 −0.002 9822
Validation 1 0.756 0.160 0.040 5461
Validation 2 0.527 0.166 −0.032 71 411

Using only values Temperature 0.529 0.167 0.031 70 340
represented in the AH 0.529 0.166 0.031 71 551
calibration data Resistance 0.548 0.160 0.028 70 851

WS, WD 0.526 0.167 0.031 69 578

Using only paired Temperature, AH, resistance 0.552 0.160 0.026 69 473
values seen in the Temperature, AH 0.564 0.157 0.030 51 233
calibration data Temperature, AH, resistance 0.574 0.160 0.063 20 059

Temperature, resistance, WS, WD 0.715 0.188 0.091 7645

Adding AP CH4 baseline applied 0.552 0.160 0.047 71 736

Selected filtering Temperature, AH, resistance, AP 0.581 0.153 0.041 69 473

Figure 12. Panel (a) includes the complete Validation 2 dataset from the Los Angeles deployment. The statistics for each are RMSE is
0.17 ppm and absolute percent relative error is 6.77 % for the unfiltered data (blue); RMSE is 0.15 ppm and absolute percent relative error is
6.19 % for the filtered data (green), with the reference data plotted in black. Panel (b) is a close-up of approximately 2 days illustrating an
instance where the filtering helped to reduce an overprediction of methane concentrations.

CO and CH4 allows us to examine the impacts of the CO
cross sensitivity more closely. Figure 14 shows a portion of
the Colorado data with both reference and U-Pod methane
plotted along with carbon monoxide data from a reference
monitor. In Fig. 14a spikes in CO correspond with overpre-
dictions of methane (most notably on 8 August) and the scat-
ter plot in Fig. 14b highlights how overpredictions seem to
coincide with elevated CO concentrations.

In addition to this observed cross sensitivity to CO, we ex-
pect that other hydrocarbons may affect the sensor response
as well. This would be an important consideration for mea-
surements made in areas with oil and gas activity where the
pollutant mixtures may be complex. At the PAO site there
was also a proton-transfer-reaction quadrupole mass spec-
trometry (PTR-QMS) providing speciated VOC measure-
ments (Halliday et al, 2016). Future work will provide a more

in-depth analysis of VOC sensitivity and selectivity for the
two MOx sensors we are using; however, we have included
here a preliminary look at this cross sensitivity to other hy-
drocarbons. Table 7 provides the results of another sensitivity
analysis in which the explanatory power of a few speciated
VOCs is examined. For simplicity, one VOC from different
well-correlated groups was selected (e.g., benzene was se-
lected out of the aromatic species). This analysis illustrates
that VOCs (particularly acetaldehyde and benzene) do help
to more fully explain the variance in the sensor signal, but
they do not displace methane. This is most apparent for pa-
rameter sets 5 and 6, in which we see the variance explained
by residuals increase slightly and the variance explained by
temperature increase quite a bit as this factor compensates for
the missing methane. When methane is added back in for pa-
rameter set 7, along with all three VOCs and CO, the variance
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Table 6. Explained variance from ANOVA analyses on Figaro TGS 2600 resistance values (R/R0) for different parameter sets.

Los Angeles Colorado

Source of variation Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4

Temperature 0.3 % 0.1 % 0.0 % 0.2 % 0.08 % 12.2 % 9.6 % 1.5 % 27.9 %
Absolute humidity 61.5 % 72.5 % 63.7 % 61.5 % 62.4 % 6.8 % 10.2 % 10.6 % 6.4 %
Time 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 8.3 % 8.9 % 10.8 % 3.7 %
CH4 16.8 % 2.6 % 14.2 % – – 29.2 % 21.8 % 20.5 % –
CO – 4.2 % – 18.1 % – – 15.0 % – 19.2 %
O3 – – 0.3 % – – – – 2.7 % –
CH4+CO – – – – 19.8 % – – – –
Residuals 21.4 % 20.7 % 21.8 % 20.3 % 17.8 % 43.5 % 34.5 % 53.9 % 42.8 %

Total 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

Figure 13. Histogram of carbon monoxide data from the two de-
ployments and scatter plot of carbon monoxide data vs. methane
data also from the two deployments. Note that all data in these two
plots are from reference instruments.

explained by the residuals is at its lowest and the variance ex-
plained by methane is at 10.1 %, higher than the percentages
for the individual hydrocarbons. Thus, the Figaro TGS 2600
sensor seems to be cross sensitive to carbon monoxide and
some hydrocarbons, effects that should be considered or mit-
igated in future uses of this sensor to estimate methane.

Despite sampling in more complex environments than pre-
vious deployments of this sensor (Eugster and Kling, 2012),
we are still seeing a sizable proportion of the sensor data’s
variance explained by ambient methane concentrations. Al-
though these cross sensitivities need to be addressed to dis-
cern which signals are driven by methane versus other pol-
lutants, the Figaro TGS 2600 sensors are reacting in part to
changes in ambient methane again providing useful methane
estimates for applications where methane concentrations are
needed with resolutions on the order of 0.2–0.4 ppm. Given
the variety of low-cost sensors available, using the Figaro
TGS 2600 sensors in a sensor array could provide addi-
tional signals at each deployment site facilitating more re-

liable data. Including multiple sensor signals in a neural net-
work calibration approach may also improve the accuracy of
the calibrated data (Zimmerman et al., 2018; De Vito et al.,
2008; Huyberechts et al., 1997). Future analysis of the data
collected in Los Angeles and continued use of this sensor in
areas with complex mixtures will require carbon monoxide
and non-methane hydrocarbon impacts be considered.

3.5 Ability to assess spatial variability in the northern
front range of Colorado

The universal calibration approach along with the “best-
fitting” calibration model (Fig. 8) was used to convert the
field data from the sensors deployed in Colorado. Follow-
ing the same procedure outlined in Sect. 2.4 and examined
in Sect. 3.3, the raw voltage values from each Figaro TGS
2600 sensor, from the post-calibration period, were normal-
ized to the sensor signals in U-Pod P1 (the main U-Pod) us-
ing sensor-specific simple linear fits. The calibration model
was then applied to these normalized sensor data along with
the temperature and humidity data from each U-Pod. An ad-
ditional step was taken to detrend each set of converted sen-
sor data by removing the best-fit linear trend from the whole
dataset. It was necessary in this instance because the time
correction incorporated in the calibration model appeared to
be over- or under-correcting for different sensors. The choice
to continue using this model was based on both the perfor-
mance of the model observed in Sect. 3.2 and the fact that
time appears to be a useful predictor for the Colorado data
given the cross sensitivity analysis in Sect. 3.4.3. Data from
the pre-calibration period when six sensors were co-located
with U-Pod P1 were used to verify that the application of this
detrend function was appropriately correcting for the under-
or over- correction of the model. One possible explanation
for this difference in drift between the sensors is that 5 sen-
sors were new and while the other 10 (including the one in
U-Pod P1) had been previously deployed. This difference in
drifts was not observed in the Los Angeles data (Sect. 3.3),
which utilized all new sensors at the start of the deployment
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Figure 14. (a) Time series of methane and carbon monoxide data from the reference monitors and converted U-Pod sensor data. (b) Scatter
plot of reference methane data (x axis) vs. U-Pod methane data (y axis) with the points colored by carbon monoxide vales. Together they
further show the Figaro TGS 2600’s cross sensitivity to carbon monoxide, illustrating how many over predictions correspond to instances
when CO is at or above 0.5 ppm.

Table 7. Explained variance of the Figaro TGS 2600 resistance values (R/R0) for parameter sets including different VOCs.

Source of variation Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

Temperature 9.6 % 17.4 % 10.1 % 10.9 % 33.7 % 28.9 % 16.3 %
Absolute humidity 10.2 % 11.7 % 14.2 % 7.5 % 6.2 % 9.0 % 12.6 %
Time 8.9 % 4.5 % 9.2 % 4.4 % 3.0 % 2.8 % 5.8 %
CH4 21.8 % 12.3 % 14.2 % 18.5 % – – 10.1 %
CO 15.0 % 13.6 % 14.4 % 19.7 % – 9.8 % 11.4 %
Acetaldehyde – 7.5 % – – 13.4 % 8.9 % 6.5 %
Benzene – – 4.6 % – 8.4 % 6.4 % 4.0 %
Methanol – – – 0.9 % 0.4 % 0.1 % 0.3 %
Residuals 34.5 % 33.0 % 33.4 % 38.2 % 34.9 % 34.1 % 33.2 %

Total 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %

and were operated for the same amount of time throughout
the deployment. The final step in preparing these data was
to filter out data where the temperature and humidity val-
ues were outside of those ranges observed during calibration
and to remove data where concentration values were lower
than an expected minimum (atmospheric background) was
observed, similar to the analysis in Sect. 3.4.2. In this case
a conservative 1.6 ppm was used, roughly half of our RMSE
below background methane levels. For this analysis, filter-
ing out implausibly low values highlights the differences in
methane enhancements between the field sites. The largest
amount of data removed from any U-Pod dataset as a result
of this filtering was approximately 6 %.

Table 8 presents statistics illustrating the correlation co-
efficients and RMSE for converted sensor data during co-
location versus field deployment for both the 2 U-Pods con-
tinuously paired and the mean of all 15 U-Pods. The result
is high correlation when pods are co-located and low corre-
lation when U-Pods are deployed to their field sites, high-
lighting that (1) there is consistency in the data provided
through the universal calibration model and (2) we are see-
ing quite a bit of variability across the field sites. Addition-

ally, the RMSE for co-located U-Pods is less than the error
we expect given the RMSE of 0.3832 ppm for the validation
dataset. The details of each individual sensor versus P1 are
available in Fig. A1 and Table A1, in Appendix A. These de-
tails demonstrate the extent of inter-sensor variability for co-
located sensors and the increase in variability for deployed
sensors. While there is some variability among correlation
coefficients, for nearly all sensors the periods of enhanced
methane fall along the 1 : 1 line and most offsets occur at
lower methane concentrations. Additionally, all RMSEs for
co-located sensor fall below our expected uncertainty, while
the RMSEs for deployed sensors is larger than this uncer-
tainty (with the exception of the P1–P2 pair, which was co-
located during the deployment).

This process provided minute-resolution methane esti-
mates from 15 field sites, allowing for analysis of spatial data
over different temporal scales. For example, Fig. 15 includes
roughly 2 days of data from four different deployment sites:
P1 was our primary U-Pod located at the Platteville site, U-
Pod E2 was located at the Boulder Atmospheric Observatory,
U-Pod E3 was located at a water reclamation facility, and the
U-Pod G1 was located at the Golden site. Even from this
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Table 8. Statistics for Colorado data converted using the universal model method.

Post-co-location Deployed to field sites

R RMSE (ppm) R RMSE (ppm)

Co-located pair; P2 to P1 0.961 0.210 0.904 0.241
Mean of all U-Pods to P1 0.866 0.180 0.025 0.556

Figure 15. Time series of minute-resolution data from four Colorado sites and a map showing the location of the four U-Pod with respect to
all active and inactive wells (COGCC, 2017).

Figure 16. Box plots of all data for each U-Pod, grouped into day-
time and nighttime values. Note that whiskers are the 5th and 95th
percentile values. These U-Pods are then further grouped by region.

small time frame of data, we can see major differences be-
tween the sites. For example, there was a clear diurnal trend
with elevated methane each night at the Platteville site. The
high time resolution also allows us to observe short-term day-
time increases at different sites, which were more sporadic
and likely due to local emissions as there is typically more
atmospheric mixing in the daytime (Bamberger et al., 2014).
In contrast, the Golden site (U-Pod G1) exhibited relatively
little variability in methane with differences between this site
and the others well above our RMSE, suggesting significant
differences in methane concentrations between these sites.
Figure 15b provides a reminder of where the oil and gas wells
of the Wattenberg Field are in relation to these U-Pods. These

high-resolution data (minute-median) allow for the study of
individual emission events and possibly their correlation to
nearby activity or regional trends.

Figure 16 shows the day and night methane concentra-
tions for each site throughout the deployment, grouped by re-
gion. This figure also highlights the ambient background for
methane ± the U-Pod RMSE (0.3832 ppm) for this dataset
on either side to illustrate that the enhancements above back-
ground were well beyond our expected error. The sensor in
Golden (U-Pod G1) exhibited little variability across both
daytime and nighttime values, whereas all the sites in Erie,
Frederick, and Platteville exhibited larger ranges and larger
nighttime increases in methane likely contributed to by lo-
cal or regional sources. At the majority of sites, over 50 % of
the data fell within the RMSE of typical background levels
of methane. Though the middle 50 % of the nighttime data
appears slightly shifted upward for U-Pods E11 and E3 in
Erie (the two pods located near the water reclamation facil-
ity). This trend was even more pronounced at the sites in
Frederick and Platteville. Recall the well density show in
Figs. 2 and 15, illustrating no oil and gas activity around
Golden, whereas we see higher-density activity in Erie and
Frederick, with the highest density of activity around Plat-
teville suggesting that one possible source driving this ele-
vated methane is emissions from oil and gas activity. We ob-
serve this trend at night when atmospheric mixing is more
limited and the planetary boundary layer is lower.

Figure 17 further illustrates this point by showing the dif-
ference in 90th percentile values between the main U-Pod
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Figure 17. Well sites (COGCC, 2015) are plotted along with the differences between the 90th percentile value for the main Platteville U-Pod
(P1) and every other U-Pod during the day (a) and night (b). The color bar indicates the magnitude of the difference in units of ppm CH4,
and the same color bar scale is applied to both plots.

Figure 18. Mean methane value for each hour of the day, for each
U-Pod, grouped and color-coded by region.

(P1) and all other U-Pods during the day (left) versus at night
(right). The daytime differences are small, within ±0.2 ppm
for all sites, possibly indicating effective daytime mixing.
However, at night there is a clear gradient across the sites
with little difference between the pods in Platteville and in-
creasing differences as we move to the edge of the gas field
and outside of it, with an approximately 1 ppm difference for
the Golden site and the site furthest west in Erie. Throughout
the Erie field sites, the two U-Pods furthest north show the
smallest difference with the Platteville pods after the Freder-
ick pod, which was located much further into the gas field.
These two pods were also the ones located at the water recla-
mation facility and therefore subject to an additional local
methane source. Interestingly, however, the U-Pod furthest
west in the Erie area was the only U-Pod in that grid lo-
cated on the west side of the county line. This placed the
pod in Boulder County during a time when a moratorium be-
ginning in 2012 was in effect (Boulder County, 2017). This
moratorium severely limited new oil and gas development
in the county. Although we cannot conclusively say the ob-
served difference in 90th percentile nighttime values is the
result of differing methane trends on either side of the county

line, it is an indication of a question possibly worth revisiting
using other data collected during the FRAPPE/DISCOVER-
AQ campaigns. More importantly, this example demonstrates
how low-cost sensors can offer preliminary or supplementary
data to help inform and guide future work.

Figure 18 provides another overview of the field data. In
this plot, each hour of the day is averaged for each pod us-
ing all available data – providing an indication of the diur-
nal patterns at each site. Again, we are seeing the nighttime
increase in methane occurring at the Platteville site and to
a lesser extent an increase at the Frederick site. These in-
creases continue to be well above background and the es-
timated measurement error, which supports the conclusion
that nighttime methane pooling was occurring in this loca-
tion – a conclusion which is further supported by the obser-
vations of other researchers. Another study also conducted
during the FRAPPE/DISCOVER-AQ campaign found ele-
vated levels of benzene at the Platteville Atmospheric Obser-
vatory, occurring primarily at night. These elevated benzene
concentrations were attributed to local oil and gas activity,
as opposed to another source such as traffic, and the move-
ment of the planetary boundary layer (Halliday et al., 2016).
Figure 18 indicates that something similar may have been oc-
curring with methane at the same site, likely driven by one or
more sources and the fluctuations of the planetary boundary
layer fluctuations. Another study using data from 2013 found
the mean level of light alkanes in Platteville to be elevated 5–
6× above levels in Erie and 9–15× above levels in downtown
Denver (Thompson et al., 2014). This trend of elevated alka-
nes in Platteville and lower levels in Erie also agrees with
the gradients apparent in Figs. 17 and 18 as we see the high-
est elevations in Platteville, moderate elevations in Frederick,
and lower levels across our Erie sites. Overall, this confirms
the ability of these low-cost sensors to provide unique infor-
mation, in this case information regarding regional methane
trends that is supported by studies that used more conven-
tional monitoring instruments and sampling methods.
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4 Conclusions

A common response to the question, “How good is low-cost
sensor data?” is “it depends”. It depends on what question
you are trying to answer, what data you intend to collect,
how you would like to use the data, and what supporting
measurements are available. As demonstrated by the quan-
tification system applied to the two deployments examined in
this paper, the use of low-cost sensors, certainly in the short-
term, is likely to be heavily application-dependent and sen-
sors should be calibrated and quantified to meet the needs of
a given research question and in response to the conditions of
a particular deployment. As low-cost sensor systems become
easier to deploy and data processing becomes more auto-
mated, these systems have tremendous potential. Their low-
cost and portable nature allows for quick deployment across
varied spatial scales, especially small, localized scales. Sen-
sor data can already highlight potential “hotspots”, which
could lead to better allocation of resources or the detection
of potential air quality issues sooner. When used in this con-
text, the sensor system described herein can provide a useful
estimate of methane concentrations that may serve as pre-
liminary or supplementary data. In Los Angeles, we were
able to provide a methane prediction despite the complex-
ity of sources and this methane signal has the potential to
provide some insight into what is happening at the neighbor-
hood level, although special attention will need to be paid to
likely confounders and cross sensitivities. In Colorado, we
were able to generate a dataset that can be examined on var-
ious temporal and spatial scales as well as data able to char-
acterize regional trends that concur with the observations of
other researchers. While more research into cross sensitivi-
ties and other deployment issues is certainly necessary, this
sensor system currently provides a powerful tool for under-
standing methane in communities near sources. Furthermore,
this is a tool that is complementary to conventional monitor-
ing methods.

Code and data availability. All sensor data (including final
datasets and raw sensor data) and MATLAB code used to
process the data are available through the corresponding au-
thor; please contact for access. All reference data used for
analysis of the Colorado deployment were provided cour-
tesy of the NATIVE Trailer team (Penn State University) and
are available in the official DISCOVER-AQ database: https:
//www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
(DISCOVER-AQ, 2015). Additional data for Los Angles analysis
provided courtesy of the South Coast Air Quality Management
District (note these data have not passed through the normal review
process and are therefore not quality-assured, and they are thus
unofficial data).
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Appendix A: Inter-sensor variability

Figure A1. Scatter plots of P1 versus every other Y-Pod including both co-located data (in green) and deployed data (in blue).

Table A1. Statistics for Colorado data converted using the universal
model method, including data for each individual Y-Pod and statis-
tics for each Y-Pod versus Y-Pod P1.

Co-located Deployed

R RMSE R RMSE

E1 0.914 0.117 −0.159 0.581
E2 0.940 0.084 −0.095 0.594
E3 0.909 0.284 0.168 0.619
E4 0.863 0.201 0.050 0.591
G1 0.737 0.200 −0.179 0.565
E5 0.849 0.132 0.054 0.529
P2 0.961 0.210 0.904 0.241
E6 0.847 0.166 −0.061 0.535
E7 0.864 0.124 −0.067 0.572
E8 0.931 0.336 −0.186 0.599
F1 0.819 0.182 0.221 0.550
E9 0.931 0.095 −0.454 0.655
E10 0.929 0.107 0.053 0.585
E11 0.624 0.208 0.104 0.571

Average 0.866 0.175 0.025 0.556
SD 0.092 0.073 0.306 0.096
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Appendix B: Sensor data underestimates and methane
variability

Figure B1. Panel (a) includes time series of methane reference data and fitted sensor data. Panel (b) includes the methane data for the
Validation 2 dataset binned by days. The yellow segments highlight periods when underestimations below atmospheric background were
removed, which coincide with days where the dynamic range is less than the expected uncertainty (RMSE is 0.18 ppm).
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