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Abstract. The validation of long-term cloud data sets re-
trieved from satellites is challenging due to their world-
wide coverage going back as far as the 1980s. A trustwor-
thy reference cannot be found easily at every location and
every time. Mountainous regions present a particular prob-
lem since ground-based measurements are sparse. Moreover,
as retrievals from passive satellite radiometers are difficult in
winter due to the presence of snow on the ground, it is par-
ticularly important to develop new ways to evaluate and to
correct satellite data sets over elevated areas.

In winter for ground levels above 1000m (a.s.l.) in
Switzerland, the cloud occurrence of the newly released
cloud property data sets of the ESA Climate Change Ini-
tiative Cloud_cci Project (Advanced Very High Resolution
Radiometer afternoon series (AVHRR-PM) and Moderate-
Resolution Imaging Spectroradiometer (MODIS) Aqua se-
ries) is 132 to 217 % that of surface synoptic (SYNOP) ob-
servations, corresponding to a rate of false cloud detections
between 24 and 54 %. Furthermore, the overestimations in-
crease with the altitude of the sites and are associated with
particular retrieved cloud properties.

In this study, a novel post-processing approach is proposed
to reduce the amount of false cloud detections in the satel-
lite data sets. A combination of ground-based downwelling
longwave and shortwave radiation and temperature measure-
ments is used to provide independent validation of the cloud
cover over 41 locations in Switzerland. An agreement of
85 % is obtained when the cloud cover is compared to surface
synoptic observations (90 % within & 1 okta difference). The
validation data are then co-located with the satellite obser-
vations, and a decision tree model is trained to automatically

detect the overestimations in the satellite cloud masks. Cross-
validated results show that 62413 % of these overestimations
can be identified by the model, reducing the systematic error
in the satellite data sets from 14.4415.5 % to 4.3+2.8 %. The
amount of errors is lower, and, importantly, their distribution
is more homogeneous as well. These corrections happen at
the cost of a global increase of 742 % of missed clouds.
Using this model, it is possible to significantly improve the
cloud detection reliability in elevated areas in the Cloud_cci
AVHRR-PM and MODIS-Aqua products.

1 Introduction

Clouds have a major importance in climate: they play a key
role in the radiation budget (Trenberth, 2009) and the wa-
ter cycle, which then impact almost every component of
the climatic system. As the climate changes, cloud prop-
erties change as well (Quaas, 2015; Norris et al., 2016;
Davies et al., 2017). Detecting and analysing these changes
is only possible with high-quality data sets spanning several
decades. Satellite instruments are the most suitable tools for
the global observation of clouds, and scientific effort is in-
creasingly focusing on reprocessing historical records to ex-
tract as much information as possible from them. In 2010,
the European Space Agency started the Climate Change Ini-
tiative (CCI) programme (Hollmann et al., 2013) to coor-
dinate scientific work towards the production, homogenisa-
tion, and validation of long-term data sets constructed from
different satellite instruments. The CCI project dedicated to
clouds, the Cloud_cci Project (Stengel et al., 2015), is re-
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leasing its open data sets at the time of writing of this pa-
per. Two of them are of particular interest here: the data set
based on the Advanced Very High Resolution Radiometer
afternoon series (AVHRR-PM) and the data set based on
Moderate-Resolution Imaging Spectroradiometer (MODIS)
Aqua data. AVHRR-PM has a long time coverage, which
gives the opportunity to look for climate change signals. The
MODIS-Aqua data set is processed by the Cloud_cci us-
ing the same algorithm (Community Cloud retrieval for Cli-
mate, or CC4CL; Sus et al., 2018; McGarragh et al., 2018)
as AVHRR-PM, only with a higher spatial resolution.

In mountainous regions, processes such as elevation-
dependent warming (Rangwala and Miller, 2012; Pepin
et al., 2015) are documented, suggesting climate might
change faster with increasing altitude. Thus, signs of climate
change should be easier to observe in elevated areas, due ei-
ther to larger amplitudes or to earlier appearance. However,
mountains are one of the most challenging places for satel-
lite measurements: the accuracy of geolocation is lower over
complex terrain, and radiometers measurements often lack
sufficient information to clearly discriminate between snow
and clouds (Musial et al., 2014). As a consequence, data sets
based only on satellite radiometers have a lower quality in
winter in mountainous areas, and this study proposes a way
of addressing this limitation by combining ground-based in-
formation and machine learning techniques.

Ground-based data have long been used to estimate cloud
cover, for instance synoptic observations (Barbaro et al.,
1981); passive measurements of shortwave (Pages et al.,
2003; Long et al., 2006; Martinez-Chico et al., 2011), long-
wave (Diirr and Philipona, 2004; Herrmann et al., 2015), and
microwave radiation; and active instruments such as cloud
radars and lidars. The latter ones can indisputably provide
accurate measurements of cloud properties like occurrence,
altitude, and lifetime, but due to their cost they are quite rare
and often do not have long historical records. This study
hence combines measurements of downwelling longwave
and shortwave radiation to detect cloud occurrence at 41 lo-
cations in Switzerland. This new ground-based cloud infor-
mation (henceforth referred to as a “cloud mask™) covers the
period from 1995 to the end of 2014, with different lengths
(6.1 &= 4.8 years on average) at different locations, and is val-
idated against synoptic observations for 24 of the 41 stations.

Once the ground-based cloud mask is computed from the
radiation data, it is used as a reference to train an automated
algorithm to detect false cloud measurements in the satellite
pixels at the 41 locations. A brief analysis of the types of sit-
uations inducing the retrieval algorithm errors is conducted.
Time series of cloud properties are also presented, as well as
the impact of the removal of points identified as false clouds
by the model trained in this study. Then, after investigating
the possibilities for spatial extrapolation, the algorithm is ap-
plied to every satellite pixel in a defined area to identify false
clouds when and where no information about the true cloud
cover is available. As the focus of this study is on mountain-
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ous areas, the geographical zone of interest covers the Swiss
Alps. The time frame is 1982—-2012 for the AVHRR-PM data
set and 2002-2014 for MODIS-Aqua.

2 Satellite data in the Alps

In this section, an overview of the problems encountered
when using two data sets of the Cloud_cci in mountainous re-
gions is presented. The characteristics and limitations of the
two data sets are summarised, and cloud occurrences in the
European Alps are shown as an example. A local validation
test is made using 24 ground-based stations in Switzerland
and shows that, when snow is present in the retrieval pixel,
cloud amounts are significantly overestimated.

2.1 CCI data sets

Two open data sets of the Cloud_cci are used: the first one is
derived from the AVHRR instruments (Cracknell, 1997) on
board seven satellites of the US National Oceanic and Atmo-
spheric Administration (NOAA). The second data set is from
the MODIS instrument (Barnes et al., 1998) on board Aqua,
one of the A-Train satellites of the US National Aeronau-
tics and Space Administration (NASA). These instruments
are passive spectroradiometers measuring top-of-atmosphere
radiances at five channels, the so-called AVHRR-heritage
channels, centred approximately at 0.6, 0.8, 3.7, 11, and
12 um. AVHRR on NOAA-16 had a different setup: a 1.6 um
channel was used in daytime instead of the 3.7 um chan-
nel, until this was changed to the same setup as the others
in May 2003. For consistency with AVHRR-based data sets,
the Cloud_cci MODIS data sets are based on MODIS-Aqua
measurements made at these five wavelengths even though
the instrument measures at 36 different channels in total.

The Level 3U (corresponding to Level 2 uncollated data
mapped onto a spatial grid), version 2 of the data sets was
used (DOIs can be found in the references, under Stengel
etal., 2017b; Stengel et al., 2017c). The AVHRR-PM data set
covers the years 1982-2012 and has a resolution of 0.05° lat—
long; MODIS-Aqua spans from 2002 to 2012 and is mapped
onto a 0.02° lat-long grid over Europe. All instruments are
on polar-orbiting, Sun-synchronous satellites and overpass
locally in early afternoon (around 13:00) and early morning
(around 01:00). Since the orbits of the NOAA satellites were
allowed to drift, the local time of each AVHRR observation
also drifts by several hours over the lifetime of each satellite
(Heidinger et al., 2014).

Cloud properties are retrieved from the satellite-measured
radiances using an optimal estimation approach, following
the theoretical basis for inverse retrieval methods described
in Rodgers (2004). The algorithm, called CC4CL, works in
three steps: first, a neural network trained on co-located data
from CALIOP (Cloud—Aerosol Lidar with Orthogonal Po-
larization) on board CALIPSO (Cloud—Aerosol Lidar and
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Infrared Pathfinder Satellite Observations) (Winker et al.,
2009) is run on the measured radiances to determine if a
cloud is present or not. Then, the cloud phase is determined
with a decision tree, as proposed by Pavolonis and Heidinger
(2004) and Pavolonis et al. (2005). Lastly, the retrieval is
done using the measured radiances and some ancillary data
such as atmospheric pressure, temperature and ozone, snow
and ice cover, and land and sea surface temperature, all com-
ing from ECMWF ERA-Interim (Dee et al., 2011), along
with surface reflectance from the MODIS MCD43C1 prod-
uct (Schaaf et al., 2010). The cloud top pressure (CTP), cloud
optical thickness (COT), and cloud effective radius (CER)
are returned directly by the optimal estimation, whereas the
cloud top height, cloud top temperature, cloud albedo, and
liquid and ice water path are then inferred from them. For
more information, the algorithm is described in detail in Sus
et al. (2018) and McGarragh et al. (2018).

As detailed in Stengel et al. (2017a), one of the particu-
larities of these data sets is that they include uncertainty es-
timates at all processing levels. Validation of the Cloud_cci
data sets is described in Stapelberg et al. (2017), but as it was
done for the whole Earth, topographic details are not nec-
essarily taken into account. In that report, false-alarm rates
above 25 % are often seen to occur during daytime above
polar snow- and ice-covered surfaces, which might be ob-
served above high-elevated areas as well. When compared to
CALIPSO-CALIOP (a satellite lidar instrument), more than
50 % of clouds under 0.15 optical thickness in the CALIOP
data set is missing in AVHRR-PM and MODIS-Aqua data
sets. Comparison of cloud occurrences with SYNOP obser-
vations (described in the next section) shows a good agree-
ment of the seasonal cycles but overestimations (5 to 10 %)
during winter in the Northern Hemisphere, particularly mid-
latitudes in Europe and Asia.

2.2 Visual observations

Surface synoptic (SYNOP) observations are done every 3, 6
or 12 h at manned meteorological stations: an observer looks
at the sky, mentally separating it into an eight-slice pie of
which they would be the centre. For each of the eight sky
slices, the observer determines if clouds are present and, if
so, estimates their type and altitude. The cloud coverage is
hence evaluated in numbers from O to 8 called oktas, with an
extra value 9 for totally obscured sky (by fog or other meteo-
rological phenomena; these values were discarded). Twenty-
four stations in Switzerland are used in this study (a detailed
list with operational times can be found in Table Al in the
Appendix). The exact observation time is not available, but it
spans between 11:45 and 12:00 UTC.

To ease the comparison with the satellite’s binary cloud
masks, a limit was set at 0-3 oktas for clear skies and 4—
8 oktas for cloudy skies, which means that only significant
amounts of reported clouds will be categorised as cloudy
conditions. It is consistent with the different viewing geome-
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tries involved, since the human observer might see much fur-
ther than the satellite pixel’s limits when the cloud cover is
relatively sparse. Other thresholds were tested and confirmed
that a 3-okta threshold is an optimal compromise between
classifying too many and not enough situations as cloudy.
This value is further confirmed by Bojanowski et al. (2014),
who use the same threshold.

As the satellites overpass in early afternoon, their obser-
vations can be matched to SYNOP observations done at
12:00 UTC at the 24 stations in Switzerland. At every loca-
tion, the SYNOP observations are compared with the satel-
lite data falling in the corresponding pixel (approximately
1 x 1 km? for MODIS-Aqua and 4 x 4 km? for AVHRR-PM)
between 11:40 and 12:20 UTC. The uncertainty of the com-
parisons are unknown, since SYNOP observations are not
provided with uncertainties. The satellite cloud masks do not
have associated data quality flags either. For SYNOP obser-
vations, known sources of uncertainties are the subjectivity
of human observations and their inevitable variation from
one observer to another (Mittermaier, 2012); the scenery
effect (Malberg, 1973; Karlsson, 2003; Werkmeister et al.,
2015) which increases the difficulty of comparing two differ-
ent observation geometries, as cloud fractional cover tends
to be overestimated by a ground-based observer looking in
a slanted way at clouds spread vertically, especially when
clouds are low on the horizon; and the detection difference
between a human eye limited to the visible spectra and satel-
lite sensors, which have wider spectral ranges, especially in-
frared wavelengths.

2.3 Satellite cloud mask

A geographical area centred in the Alps was defined as the
area of interest for this study: it spans from 40 to 51° N and
from 3 to 20° E (Fig. 1). In this area, the MODIS data set’s
cloud mask was averaged by season, and winter and summer
averages are presented in Fig. 2. As can be observed, moun-
tain reliefs are systematically associated with an increase in
cloud occurrence, especially in winter. The same pattern is
observed when averaging the cloud mask of the AVHRR-PM
data set but cannot be found in ERA-Interim cloud mask data
(not shown).

The increase of cloud cover with altitude is confirmed in-
dependently of the instrument or of the time period consid-
ered (Fig. 3). There is a slightly different relationship be-
tween ground altitude and cloud occurrence in the two data
sets due to their different spatial resolution. In very high
areas, the cloud cover is constantly overestimated (it often
reaches values larger than 80 % of cloud occurrence) regard-
less of the season, whereas in lowlands the values found are
more consistent and lower in summer than in winter, which
is also observed in a satellite and ground-based instruments
intercomparison by Fontana et al. (2013)

In Fig. 3, different clusters of points can be observed in
winter (two clusters) and in summer (three): they are caused
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Figure 1. Geographical area considered in this study, with ground elevation represented by colours and ground-based stations by white dots.
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Figure 2. Winter (December, January, February) (a) and summer (June, July, August) (b) averaged cloud occurrences in the MODIS-Aqua

L3U data set, years 2003-2014.

by natural variations of cloud amounts with latitude. The
low-occurrence group of points in winter (Fig. 3a, c, e) cor-
responds to cloud occurrences of satellite pixels above sea
and above lowlands south of the Alps (approximately be-
low 46° N), whilst the high-occurrence group contains pix-
els north of the Massif Central in France, north of the Alps,
and north of the Dinaric Alps in eastern Europe. In summer
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(Fig. 3b, d, f), cloud amounts get lower, and three groups
can be identified: the lower one, as in winter, corresponds to
pixels above sea or south of the Alps; the middle one con-
tains pixels above lowlands between roughly 46 and 48° N
(between the Massif Central and the Alps, and between the
Alps and the Dinaric Alps); and the upper group is above
lowlands north of the Alps (over 48° N). Winter retrievals of
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AVHRR-PM in 2003-2014 (Fig. 3c) have lower cloud occur-
rences (approx. —3 %) than those of AVHRR-PM 1982-2002
(Fig. 3e). As discussed later, the satellite’s orbital drift might
have had an impact on the values.

When comparing the cloud mask of MODIS-Aqua to
SYNOP observations (Fig. 4), extreme values are seen at
the Jungfraujoch station (3580 m a.s.l.), where clouds are re-
ported 98 % of the time in the satellites data sets, correspond-
ing to a 53 % rate of false positives. This rate (Fig. 4a) in-
deed increases with altitude, more drastically in winter and
consistently with the spatial pattern observed before. Night
satellite measurements are not exempt from these overesti-
mations, although fewer SYNOP data are available as a ref-
erence (elevated stations are not manned at night). The de-
crease of the miss rate with altitude (Fig. 4b), especially in
winter, is directly related to the high overestimation rate at
these locations. Except for that, the miss rate observed is rel-
atively steady with altitude. It shows a systematic bias of 5—
10 %, most likely caused by the different geometries involved
in the comparison. For instance, ground observers might see
much further than the boundary of the satellite pixel in which
they stand, especially in locations without surrounding relief
blocking the view. Considering also the limitations detailed
in Sect. 2.2, the cloud masks are overall considered as agree-
ing under 1000 m.

These results suggest that the presence of snow on the
ground, in winter and in summer at high-altitude locations,
tricks the satellite retrieval algorithm into detecting more
clouds than it should. This is consistent with the appendix of
Stengel et al. (2017a), which mentions that the known lim-
itations of these satellite data sets include ‘“shortcomings in
cloud detection and optical property retrievals in regions with
high surface reflection of solar radiation”. Snow reflectance
leads to top-of-atmosphere radiances very similar to water
and/or ice clouds in different channels. Some methods can
be used to help distinguish between them (see for instance
Musial et al., 2014). A widely used solution is to comple-
ment spectral data with ancillary data: CC4CL, the retrieval
producing the satellite data sets shown here, is indeed based
on the snow mask of ERA-Interim. However, given the is-
sues observed here, the spatial resolution (0.7° lat-long in
ERA-Interim, much lower than that of the satellite products:
MODIS-Aqua is 0.02° lat-long and AVHRR 0.05° lat-long),
the quality or the use of the ancillary data might be insuffi-
cient.

2.4 Satellite cloud properties

As the cloud property retrieval from satellite-measured ra-
diances is run after the cloud mask computation by the ar-
tificial neural networks, any mistake at this first stage car-
ries on to the next. Attempting to retrieve cloud properties
in the absence of cloud would lead to unreasonable values.
For instance, false clouds are more often of liquid phase than
ice (Fig. 5a), are significantly closer to the ground (higher
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top pressure, Fig. 5b), have lower cloud optical thickness but
higher cloud effective radius (Fig. 5c and d), and have higher
surface temperatures (Fig. 5e). A surprisingly high mode
can also be seen in the effective radius distribution (Fig. 5d)
of false clouds in summer, corresponding supposedly to ice
particles. These observations are consistent with a retrieval
influenced by the presence of snow: these false clouds are
lower, warmer, and with larger particles than actual clouds.
In summary, cloud mask errors have an important impact on
the retrieved cloud properties as well, and identifying such
cases before any in-depth analysis is very important.

3 Radiation cloud mask

The previous section presented briefly how the CC4CL satel-
lite retrieval overestimates cloud amounts above elevated ar-
eas. The next two sections propose a solution to handle this
issue: first, a new binary cloud mask is defined. The com-
bination of several ground-based observations provides in-
sight about the cloud cover at 41 locations in Switzerland.
This allows the use of a higher number of locations than the
SYNOP stations, especially with more data in elevated ar-
eas and without potential issues regarding the subjectivity of
SYNOP observations. Subsequently, this cloud mask is used
as a reference to train a model for the automated detection of
false clouds in the satellite data sets.

3.1 Ground-based data

Downwelling longwave and shortwave radiation as well as
ground-based 2 m air temperatures are used in this study to
get an estimation of the local cloud cover. Longwave and
shortwave downwelling radiation is measured by pyrgeome-
ters and pyranometers, respectively, which consist of a ther-
mopile sensor and a temperature sensor under a small dome.
The pyrgeometer’s spectral band is 4.5-42 um, whereas the
pyranometer’s is 0.3—3 um. Both instruments have a field of
view close to an ideal 180° (the exact values depend on the
instrument’s quality), and each measurement is weighted by
the cosine of the incidence angle, giving more importance to
radiation at angles close to the zenith.

All measurements were converted to 10 min averages. In-
formation about the measurement setup and data preprocess-
ing can be found in the work by Diirr and Philipona (2004).
Of the 41 stations used in this study, 37 are part of the Swiss-
MetNet network (Suter et al., 2006) operated by the Swiss
weather office MeteoSwiss, and 4 are part of the Alpine Sur-
face Radiation Budget (ASRB) network (Marty et al., 2002).
The pyrgeometers used in the SwissMetNet network are of
type CG4 and CGR4 from Kipp & Zonen, with a declared
uncertainty of 3 %. Older measurements from the ASRB net-
work have been taken by modified Eppley PIR pyrgeome-
ters, which have an observed uncertainty of 3 W m~2 (Marty
et al., 2002). The pyranometers are mostly CM21 from Kipp
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2003-2014 (a, b), AVHRR-PM in 2003-2014 (c, d) and the first part of the AVHRR-PM record (1982-2002; e, f). Colours indicate the
density of points (the darker it is, the more points there are). A linear regression is drawn and written on each subfigure to illustrate the
overall observed relationship between ground altitude and cloud occurrence.

(a) (b)
50 e RPN

g
g =
e =3
@ o
2 g
= (%]
0 []
o 9]
Q Kol
ﬁ =
[
iy

T T T T T T T T T T T T T T

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

Altitude [m] Altitude [m]
— Allyear —— Winter —— Summer

Figure 4. MODIS-Aqua cloud mask compared to 24 SYNOP stations in Switzerland. The SYNOP-MODIS overlap varies from one station
to another, from 3.3 years to the whole MODIS record (12 years). The satellite mask false positives (a) correspond to when the satellite data
set contains a cloud, but the ground observer reports a value of less than 4 oktas of clouds. The misses (b) are the opposite disagreement
between the two.

Atmos. Meas. Tech., 11, 4153-4170, 2018 www.atmos-meas-tech.net/11/4153/2018/



F. Jeanneret et al.: Correction of CCI cloud data over the Swiss Alps

4159

(a) CPH (b) CTP (© coT (d) CER (e) Stemp
50 P I P R Y O .JH--. 1 310 — .
800_ 80_ 44444
B0 e 40 {111 T 300
S
£ _ —_ 30
g — g — — <
o 40 < 1 g_ =
= 400 = =40 280
=1 20
S
[}
® 270 —
220 200 -{-¥--- 10 - 20 —HHHH- R
U 260 <
0 —_ O O — . | | R
0
Winter Summer

[ Real clouds [J False clouds [ Real clouds [J False clouds

Figure 5. Distributions of values of five cloud properties (phase (CPH), top pressure (CTP), optical thickness (COT), effective radius (CER),
surface temperature (stemp)) retrieved from MODIS-Aqua in winter and summer at nine stations located above 1000 m of altitude, for actual
clouds and falsely detected ones (using SYNOP observations as a reference).

& Zonen (2 % uncertainty) and a few SPN1 from Delta-T
(5% or I0Wm™2). A detailed list of stations including op-
eration times can be found in Table A1 in the Appendix.

3.2 Topographic data

Topographic information comes from the freely avail-
able global digital elevation model (GDEM) Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) version 2 (Tachikawa et al., 2011; ASTER GDEM
is a product of METI and NASA). This GDEM has a spatial
resolution of 1 arcsec (approximately 30 m at the Equator).

3.3 Method for the ground-based cloud mask

The method described here combines two different types of
radiation to estimate the state of the sky at 41 locations, with
a 10 min temporal resolution.

Ground-based longwave measurements have been used
in various ways to estimate cloud cover (e.g. Diirr and
Philipona, 2004; Dupont et al., 2008; Viddez-Mora et al.,
2009). The method used here is inspired by the work of Her-
rmann et al. (2015) and consists in converting downwelling
longwave measurements (L, W m~2) into estimated sky tem-
peratures (Tsky, K) and then comparing them to ground-based
(2m) temperatures. As the radiation emitted by a cloud is
comparable to that of a black body at the same temperature,
the Stefan—Boltzmann law is used for the conversion:

Ly
Ty = (6—0) ; (M

where o is the Stefan—Boltzmann constant (5.67 x
108 Wm~2K~*) and the atmospheric emissivity € is ap-
proximated to unity.

www.atmos-meas-tech.net/11/4153/2018/

Figure 6 shows cluster plots of the estimated sky tempera-
ture versus the measured ground temperature. Clear-sky esti-
mates always cluster at low temperatures (being a mixture of
atmospheric and cosmic background temperatures), whereas
cloud base temperatures are significantly higher (representa-
tive of tropospheric temperatures at the cloud height). Scat-
tered cloud conditions are characterised by values falling be-
tween the two main clusters.

The detection of the lower cluster border is done in five
steps. First, the differences between ground and sky temper-
atures are calculated. Then, the density distribution of these
values is computed (black curve in Fig. 7) and smoothed (red
curve). One way to find the cluster border is to look for a
strong density increase in this distribution, so in the third step
the derivative (blue curve in Fig. 7) is computed. As the upper
cluster is spread over several degrees kelvin, only tempera-
ture differences larger than 5K can correspond to the lower
cluster. The fourth step consists in looking for the maximum
of the derivative for differences over 5 K. Lastly, the cluster
border is set at the minimal temperature difference so that
half this maximum is reached (yellow vertical line in Fig. 7).
The sensitivity of this value was analysed and showed that a
change of +20 % had a very limited impact on the size of the
lower cluster. It did not have a significant effect on the corre-
lation of the resulting cloud mask with SYNOP observations
either.

Due to the daily temperature cycle, days and nights are
clustered separately to ensure that accurate lower cluster lim-
its are obtained. Local sunrise and sunset times are used as
time limits.

Different applications of this method are shown in Fig. 7,
for daytime conditions in winter and summer. One station
with a long data record (Weissfluhjoch, 16 years) is com-
pared to another one with a very short record (Segl-Maria,
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Figure 6. Comparison of daytime sky and ground temperatures at Weissfluhjoch station (2690 m) in Switzerland, per season, using data from
1994 to 2010. The upper cluster corresponds to in-cloud and overcast conditions, whilst the lower one corresponds to clear-sky times. The
points in between are partially cloudy conditions. The dashed line corresponds to the automatically detected threshold under which values

are considered as being part of the lower cluster.

1 year). As can be seen, the main advantage of detecting the
cluster’s border as a strong density increase is the excellent
adaptability to different amounts of data as well as to differ-
ent cluster shapes.

After this clustering step, two other criteria are combined
to discriminate partially cloudy conditions from clear-sky
ones (Fig. 8). The stability of the longwave measurements
over the preceding hour is used as a sign of partial cloud
cover, as in Diirr and Philipona (2004). However, a cloud is
detected only if this criterion reaches a given threshold at the
same time as the difference between estimated and measured
shortwave radiation exceeds another threshold. Exploration
of the parameter space in 2-D has shown that this second cri-
terion improves the classification and that the threshold val-
ues are not particularly sensitive. The stability of the long-
wave measurements over the preceding hour is computed as
the root-mean-square deviation between the values and a lin-
ear fit applied to them (the threshold in the algorithm is set to
1.75Wm™?).

The shortwave criterion C is defined as a weighted sum
of relative differences between the measured and estimated
global radiation over the preceding hour (the threshold is set
to 0.15 and is dimensionless). The weights are larger close to

Atmos. Meas. Tech., 11, 4153-4170, 2018

the time of interest ¢:

1 & (70 =) |Se.r—i — Sm,i—i
C=— . : . s 2
28; 10 Se.s—i @

where i is a time index varying between 0 and 60 min by
steps of 10 min, and Sy, ; and S, ; are respectively the mea-
sured and estimated global radiation (in W m~2) at time 7.

The incoming global radiation S, ; is estimated using a
simple model described in Sun et al. (2013), the model SW1
in their paper:

So
Se.r = rd—2 -cos(6;), 3)

t

where 7 is the atmospheric transmittance (dimensionless), So
the solar constant (1367 W m™2), d, the Earth-Sun distance
(in astronomical units, AU), and 6; the solar zenith angle (in
radians) at time 7. The particularity of this model is that the
atmospheric transmittance 7 is approximated as a linear func-
tion of the altitude, following Tasumi et al. (2000).

The shading effect of topography is taken into account due
to its significant effect on radiation in mountainous areas (Lai
et al., 2010). The shading angle H is defined as the minimal
elevation above horizon required to see the sky above the
surroundings. When the Sun is at a given azimuth ¢, if its
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Figure 7. Detection of the longwave lower cluster on daytime data, at two different stations (a, b: Weissfluhjoch; b, d: Segl-Maria; 1 year of

measurements), for winter (a, b) and summer (c, d) seasons.

elevation is below H (¢), then the estimated radiation is set
to zero. The shading angles were computed at each station
using the ASTER GDEM, taking into account surroundings
up to a distance of 0.5° lat-long (55 by 38 km at 46° N), with
a resolution of approximately 1 arcsec (15 by 10 m at 46° N).

3.4 Results

The obtained cloud mask was validated against SYNOP ob-
servations, with a time difference of at most 10 min. The per-
centages of misclassified clouds per okta are shown in Fig. 9.
The largest source of error comes from the transformation
of the SYNOP observation into a binary threshold: it is dif-
ficult for the radiation cloud mask algorithm to follow this
strict threshold when the distinction between 3 and 4 oktas
is quite subjective. The cloud mask is hence accurate 85.4 %
of the time, and this value reaches 90.3 % if both clear and
cloudy classifications are allowed for 3- and 4-okta obser-
vations. With this 1-okta difference allowed, the probability
of correctly detecting clouds is 87.6 %, and the probability
of false detections is 5.6 %. This is consistent with Fig. 9,
because more clear (0-1 okta) and cloudy (7-8 oktas) con-
ditions are recorded than partial ones. A bias of 0.913 okta
is present, confirming a tendency to miss some clouds. Thin
and high clouds cause only minor perturbations in the ra-
diation measurements compared to the clear-sky conditions
and for this reason are more likely to be missed. A higher
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number of clouds are missed at night due to the lack of
shortwave information. However, the negligible difference
between false positives between day and night shows that
a sparse cloud cover missed by the radiation instruments at
night is most likely missed also by the human observer. The
results’ consistency is good among the different stations (the
averaged accuracy is 91 £2 %), the lowest accuracy being at
the Jungfraujoch (86 %), which is on a mountain pass where
clouds can be observed below the observatory.

Even though the accuracy of the cloud mask presented
here is limited for partially cloudy cases, these results are
of great value for validation when a stable long-term refer-
ence is needed, such as in the validation of long-term satellite
products. The results further suggest that this method could
potentially be used outside the geographical area evaluated
here, as the clustering method should adapt automatically to
different climatic conditions.

4 Automated detection of false clouds

In this last section, a model is trained to automatically detect
false positives in the satellite data sets. Using the radiation
cloud mask as a reference, this model combines several vari-
ables retrieved from satellite-measured radiances with infor-
mation about the topography and time of the retrieval. The
possibility of using the model at other times than those used
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for training is considered, and the model is applied to long
satellite time series. Similarly, its ability to extrapolate to
other locations than where it was trained is evaluated, and
maps of its effects are discussed.

4.1 Methods

A decision tree was trained to automate the identification of
false clouds in the satellite data sets. The model’s inputs are
the five variables retrieved from the satellite radiances by
the CC4CL algorithm (cloud phase, cloud optical thickness,
cloud top pressure, cloud effective radius, and surface tem-
perature), as well as the ground altitude, the standard devia-
tion of the surrounding ground altitudes, and a time variable.
Time is represented as a sinusoidal function with a period of
1 year, peaking on 15 January (41) and on 15 July (—1). The
standard deviation of the surroundings is computed within a
radius of 3 km on the 30 m GDEM. Using these variables, the
model predicts if the sky actually contains a cloud or not. The
radiation cloud mask defined in Sect. 3 is used as a reference
for training. The training is done by 10-fold cross-validation
with random sampling, using recursive partitioning as pre-
sented in Breiman (1984). Testing metrics are computed over
the 10 models obtained, and only the best one is then vali-
dated against SYNOP observations. After this validation, the
structure of the model is discussed and some groups of points
are defined. Focusing on these groups allows analysing the
whole dimension space without considering each cloud prop-
erty or each point one by one. The performance of the model
is tested on each of these groups, and this permits the identi-
fication of some potential weaknesses.

Once validated, the decision tree is applied to the two
satellite data sets presented at the beginning of this study.
First, the effect of the model on time series of cloud prop-
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Figure 9. Distribution of the ground-based cloud mask errors as a
function of SYNOP observations at 21 stations. The vertical dashed
line represents the binary threshold applied to the SYNOP observa-
tions.
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erties is discussed. Then, leave-one-out validation is done
to assess if the model can be applied at locations where it
was not trained and what kind of results can be expected
in these circumstances. Leave-one-out validation consists in
training several models, each with a training set composed
of all but one station. Testing is done on this last station, and
all the testing results are regrouped. Important information
about the model weaknesses can be deduced from where the
model had difficulties to adapt without training. It provides
an overall idea about how the model will perform at locations
where no reference data are available. Once this is done, the
model is applied to a larger geographical area and the results
are discussed as another insight on the model’s strengths and
weaknesses.

4.2 Analysis and validation of the model

The model obtained at the end of the training process is a
large decision tree drawn in Fig. 10. After the overall results
are reviewed, the groups of points circled in this figure are
analysed more in detail.

Overall, the test metrics give a 82.6 % probability of de-
tecting false positives and a 10.9 % probability of false de-
tections. They are computed using the radiation cloud mask
as a reference and averaged over the 10 tests of the cross-
validation. When validated against SYNOP observations, re-
sults show that in winter above elevated areas, where most
of the satellite false cloud detections happen, 73 £ 12 % of
errors are identified (Table 1). The amount of missing clouds
in these conditions is increased by 10 +4 %, whereas lower
values are found in all other conditions. In summer, around
45 % of the overestimations are detected, with quite large dif-
ferences between the stations but with no significant link to
the station’s altitude. Globally, 62 4= 13 % of the cloud mask
overestimations are detected, reducing the systematic false-
positive error from 14.4 + 15.5 to 4.3 + 2.8 % but increasing
the missed clouds from 8.7 +3.5 to 15.6 &= 2.1 %. Although
it might seem like this proposed correction only shifts the
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Figure 10. Structure of the model. Small circles correspond to the tree final nodes (also called leaves): light ones are classified as clear sky,
and dark ones as cloudy. The parts circled and labelled with letters correspond to the groups of points defined in Table 2.
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Figure 11. Time series of monthly means (thin lines) and annual moving averages (thick lines) of cloud properties, before and after removing
points flagged by the model as potential false positives. Nine SYNOP stations located above 1000 m are averaged together. CFC stands for
cloud fractional cover, CPH for cloud phase (0: no cloud; 1: liquid phase; 2: ice phase), CTP for cloud top pressure, COT for cloud optical
thickness, and CER for cloud effective radius.
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Figure 13. Effect of the model on cloud occurrences, in percent relative to the initial cloud occurrences. The results are averaged over
MODIS-Aqua data set (2003-2014) by season: winter (a), spring (b), summer (c), and autumn (d). The seasons are defined as December,
January, and February; March, April, and May; June, July, and August; September, October, and November.

problem (from false clouds to missing clouds), this is not the
case: the reduction of false positives is associated with a re-
duction of their uncertainty (+15.5 to £2.8). This means that
the distribution of false positives is more homogeneous than
before and, thus, that the difference between high areas and
lower ones has been reduced. Moreover, the increase (+7 %)
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of missed clouds is global and does not correspond to a sim-
ple shift of the problem in elevated areas.

As proposed in Fig. 10, groups of points can be delineated
in the tree and are characterised by the criteria detailed in
Table 2. All of these groups are separated in subgroups that
are not described here. As can be seen in the table, COT is
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Table 1. Evaluation of the model’s effects on MODIS data set us-
ing SYNOP data as a reference at 20 SYNOP locations (7 above
1000 m, 13 below; 4 stations with limited overlap between SYNOP
and the ground-based radiation measurements were excluded). The
two left columns contain the percentage of false positives in the
satellite data that were correctly identified by the model. The two
right ones contain the percentage of clouds identified in the satel-
lite data which are considered false by the model, even though they
are actual clouds according to SYNOP observations with the binary
threshold applied.

False positives correctly
identified by the model [%]

Clouds wrongly identified
by the model [%]

Winter Summer  Winter Summer
Above 1000m  73+12 43+24 10+4 5+3
Below 1000m 33 +24 47+17 3+3 545

one of the most important variables in this model. Groups A
and B, characterised by a small COT and which contain a
large amount of well-classified points, most likely also con-
tain a non-negligible amount of cirrus clouds, too thin to
be seen by the reference cloud mask produced in this study.
Group D is the only one containing only clouds located above
mountains, and its high detection percentage confirms the ef-
ficiency of the model. Groups C, G, H, and I are all charac-
terised by low model performance. Group C can be under-
stood as a small group of points scattered in the dimension
space and which did not trigger a particular response of the
model. The others are mainly composed of large COT, and
group G probably corresponds to liquid phase clouds (CTP
under 627 hPa and CER under 22 um).

As can be observed, groups of points that seem related (for
instance, F and G) can be understood very differently by the
model, which suggests that a more complex model could be
necessary to catch subtle differences between false and real
clouds, and to improve the results.

4.3 Result of filtering the satellite data set using the
decision tree model

Having looked at the limitations of the model and at the
expected results, the decision tree was then applied to the
satellite-derived cloud property time series. The pixels corre-
sponding to nine stations above 1000 m were extracted from
the satellite data set, and false clouds were detected and re-
moved using the decision tree. The main cloud properties
were observed before and after removal of these false pos-
itives and are averaged per year and per month in Fig. 11.
Although the model is trained on the MODIS-Aqua data set
only (2003-2014), a temporal extrapolation is attempted to
the whole NOAA AVHRR-PM time series (1982-2014).
After removal of the points identified by the model as
likely not to be clouds, the cloud fractional cover (CFC)
is lower. As expected, the points removed were greater in
number in winter than in summer, were at higher altitudes,
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and had larger optical thickness and smaller effective radius.
This is highly consistent with the changes observed when
removing from MODIS-Aqua data set the clouds not ob-
served by a human observer (Fig. 5). The difference between
MODIS-Aqua and the MODIS-Aqua corrected time series
seems constant over time and suggests that the effects of the
model are temporally consistent. Over the years 2003-2014
the two satellite data sets agree very well, except for a small
offset caused by the difference of spatial resolutions. Since
the AVHRR series used here is not homogenised regarding
e.g. drifts in overpass time between different NOAA satel-
lites (Stengel et al., 2017a), its behaviour is not stable over
time. This can be seen over the years 1982-2002, near the
end of each NOAA satellite, where values diverge progres-
sively from their average. Some of these values are not ex-
pected by the model and tend to be removed, causing very
low CFC values for several winters (at the end of 1983, 1984,
1987, etc.). As the satellites were drifting in time (up to 3h
and 30 min for NOAA 11), this suggests the need to first cor-
rect the cloud properties for the cloud diurnal cycle before
applying the decision tree correction.

When compared to the latitude-weighted 60° S—60° N
time series in Stengel et al. (2017a), the time series in Fig. 11
have wider seasonal amplitudes. The satellite’s drifting in
time also has a larger impact on the values. Both are re-
lated to the size of the areas over which the data are aver-
aged. The proportion of cloud ice particles is significantly
higher in the time series in Switzerland than in Stengel et al.
(2017a), even in low areas (results not shown), and after ap-
plying the model. Similarly, the cloud optical thickness is ap-
proximately twice as large in the time series presented here as
in Stengel et al. (2017a). The cloud effective radius decrease
from mid-2001 to mid-2003 is due to the change of channel
on NOAA-16 (Heidinger et al., 2014) and can be observed in
Stengel et al. (2017a) as an increase of effective radius. The
channel 3.7 um was switched to 1.6 ym, which seems to trig-
ger the model. For this same property, a bias can be observed
on values retrieved from NOAA-19, which seem to have an
increasing difference with MODIS-Aqua. This can also be
seen in Stengel et al. (2017a) and might be an instrumental
bias.

4.4 Leave-one-out validation

The leave-one-out validation results in Fig. 12 suggest that
the model can reliably be generalised in space, especially for
elevated areas in winter. The highest station of the data set
(Jungfraujoch) is an extreme case in this data set and cannot
be well understood by the model if it is not part of the training
set. Although good, the performance above elevated areas is
lower in this validation than the values obtained previously
on a slightly larger data set (Table 1, errors correctly identi-
fied above 1000 m). This suggests that increasing the amount
of stations would be beneficial. However, even without in-
creasing the number of stations, significant results (more than
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Table 2. Main branches of the tree. The letters in the first column correspond to the groups circled in Fig. 10. The second column states the
amount of false positives (FPs) in the satellite data falling into each branch; the third one states how many of them were correctly identified
by the model (IFPs: identified false positives). The remaining columns describe the parameters and thresholds leading to each branch. COT:
cloud optical thickness; CTP: cloud top pressure; CER: cloud effective radius.

Group FPs[%] [IFPs[%] Criteria

A 10.5 87 COT < 1.47  Time: not in winter (between mid-March and mid-November)

B 13.0 73 COT < 1.47 Time: in winter (between mid-November and mid-March)

C 6.5 37 147<COT<2.36

D 15.1 80 2.36 <COT Ground altitude > 2988 m

E 3.9 92 236 <COT Ground altitude < 2988 m CTP < 215hPa

F 9.2 82 2.36 <COT Ground altitude <2988 m 627 <CTP CER > 22 ym
G 17.8 12 236 <COT Ground altitude < 2988 m 627 <CTP CER < 22 um
H 4.5 18 2.36 <COT <4.03 Ground altitude <2988 m 215 <CTP < 627 hPa

I 19.4 10 4.03 <COT Ground altitude <2988 m 215 <CTP < 627 hPa

50 % of the satellite cloud mask overestimations identified)
can still be expected.

In this Fig. 12, one can also observe that the detection
of false positives in the satellite data is less efficient above
elevated areas in summer, whereas in lower areas there is
no significant seasonal difference. This might be a sign that
seasonal differences in mountains are not fully understood
by the model, probably due to the lower number of stations
above 1000 m than below. As winters contain a much higher
number of false positives than summers, false positives in
summer at high altitudes end up being poorly represented in
the data set. Using a probabilistic approach taking into ac-
count the different amount of points in each condition might
help reduce the model’s skewness in favour of the detection
of the most recurring problems.

No link seems to exist between the ability of the model
to generalise to a station and the complexity of the station’s
surrounding, suggesting that the model already gets the most
out of this variable. For stations below 1000 m, a moderate
negative correlation (—0.46) was found between the average
relative increase of missing clouds caused by the model and
the distance between a station and the centre of its corre-
sponding satellite pixel. A similar correlation (—0.43) was
observed between this distance and the ability of the model
to detect false positives in winter. This suggests that lower
performance is partially caused by a spatial offset between
the satellite viewing scene and the ground-based one. A so-
lution out of the scope of this study would be to look more
in detail into the satellite viewing geometry of the compari-
son scenes, and maybe to combine several satellite pixels in a
weighted mean for comparison with a ground-based station.

4.5 Larger-scale model application

Lastly, the model was applied in a large area, and maps of the
effect on the cloud coverage were produced (Fig. 13). They
confirm that, even at locations outside the training data, the
model reduces cloud occurrences to more reasonable values
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above elevated areas, especially in winter (Fig. 13a). The sys-
tematic removal of 7 % of the clouds (identified as false pos-
itives even though they were most likely real clouds) is not
restricted to a specific area.

With a training set made of stations located only in
Switzerland, the results appear very consistent above land
also outside this area. Considering the model output over a
wider area however illustrates its limitations, mainly over
sea and lakes in every season apart from winter. Especially
in summer, clouds are detected as false positives over water
bodies, as their surface temperature is lower than that of the
surrounding land. For instance, a blue spot can be seen in the
Po Valley of northern Italy (approx. 45.2° N, 8.5° E), where
rice cultures are flooded during summer months, which sig-
nificantly lowers the surface temperature. This confirms the
importance that the model gives to the surface temperature
and suggests that either the model should be applied only
over land or it should be aware of the land—sea difference (for
instance, adding a land—sea mask would be an easy step, but
finding radiation measurements above sea for training might
be difficult).

As applying a decision tree on data is a very quick pro-
cess, this model is a simple solution to remove a signifi-
cant amount of issues over elevated areas, at the reasonable
cost of slightly and homogeneously decreasing the amount
of clouds.

5 Conclusions

Two satellite data sets of ESA’s CCI on clouds were seen to
overestimate the cloud cover above elevated areas. MODIS-
Aqua and AVHRR-PM can contain false cloud detection
rates up to 54 % in winter in mountainous areas (above
ground with an elevation higher than 1000 m). These cloud
mask errors also have an important impact on the cloud prop-
erties, as retrievals on missing clouds often have unexpected
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values. Identifying them prior to any detailed analysis is a
necessary step.

Using longwave and shortwave radiation measurements
at 41 stations in Switzerland, a binary cloud mask was de-
fined. It is tailored to each station and each season thanks to
a simple automated clustering of the longwave data. Short-
wave data and a second longwave criterion are then used
to provide more insight in partially cloudy cases. Validation
against SYNOP shows that the model has an 87.6 % prob-
ability of detecting cloudy skies using this combination of
ground-based information and a 5.6 % probability of false
detections.

This ground-based cloud mask was then used as a refer-
ence to train a model for the detection of false clouds in the
satellite data sets. The model’s input contains variables such
as the satellite-retrieved cloud properties, as well as ground
and time information. In the Swiss Alpine region, the use of
the decision tree model as a quality filter permitted the re-
jection of 62 % of the false cloud detections in the satellite
cloud property data set, with the limitation of causing the
removal of 7% of real clouds in the process. This made a
significant improvement to the quality of the satellite cloud
property data set over this area. These results are interest-
ing for any application where one can afford to reduce the
amount of data in order to increase its quality. Improved re-
sults might be obtained by using a probabilistic approach,
likely to allow under-represented categories to be better un-
derstood. A higher number of elevated stations could also be
beneficial. Expanding the study area to other latitudes using
either already-computed cloud masks or data from the world-
wide Baseline Surface Radiation Network (BSRN; Ohmura
et al., 1998), for instance, would be an expected follow-up.

Considering how time- and resources-consuming the com-
putation of large satellite data sets is, fast post-processing al-
gorithms such as the one proposed in this study are likely to
be interesting solutions as more and more data become avail-
able. Moreover, as demonstrated here, having several data
sets produced by the same retrieval algorithm is a great asset
as it allows them to be post-processed in the same manner.

Data availability. The satellite data used in this study were ob-
tained from the Cloud_cci project group and can be accessed via
the data download portal linked to the data set DOI (Stengel et al.,
2017b, c). The ground-based data were obtained from MeteoSwiss
via the IDAWEB portal (https://gate.meteoswiss.ch/idaweb, last ac-
cess: July 2017), which grants “a direct cost-free access to archive
data of MeteoSwiss ground-level monitoring networks [...] to users
in the field of teaching and research”.
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Appendix A: List of ground-based stations

Table A1. Location and data coverage of the 41 ground-based stations used in this study. The length of overlap with MODIS is not specified
when the whole record overlaps temporally with the MODIS time range (1 August 2002 to 31 December 2014).

Radiation SYNOP

Location Altitude Latitude  Longitude Start End Length [years] Start End Length [years]

[m] [°N] [°E] (MODIS overlap) (MODIS overlap)
Aadorf 539  47.47987 8.90487  2006-10 v 8.2 1980-01 2007-02 27.2 (4.6)
Aigle 381  46.32664 6.92442  2005-09 v 9.3  1981-02 v 33.9(12.4)
Altdorf 438  46.88702 8.62180  2008-12 v 6.1 1980-01 v 35.0 (12.4)
Bad Ragaz 496  47.01662 9.50257  2012-02 v 29 - - -
Basel 316  47.54103 7.58356  2009-12 v 5.1  1980-01 v 35.0(12.4)
Bern 552 46.99074 7.46400  2009-09 v 53 - - -
Chasseral 1599 47.13176 7.05439  2010-10 v 4.2 - - -
Chateau-d’Oex 1029  46.47981 7.13964  2012-02 v 29 1980-01 2011-08 31.7.(9.1)
Cimetta™ 1670  46.20042 8.79164  1995-12 2010-12 15.1 (8.4) - - -
Davos 1610  46.81297 9.84349  1999-01 v 17.0 (13.4)  1980-01 2005-11 25.9 (3.3)
Einsiedeln 910 47.13304 8.75655 2012-03 v 2.8 1980-01 2012-04 323(9.7)
Elm 958  46.92375 9.17534  2011-04 v 3.7  1980-01 v 35.0 (12.4)
Engelberg 1035 46.82189 8.41044  2012-08 v 2.4 - - -
Fahy 596 47.42382 6.94110  2009-11 v 52 - - -
Geneve-Cointrin 412 46.24751 6.12774  2012-05 v 2.6 1980-01 v 35.0 (12.4)
Glarus 516 47.03458 9.06690 2013-08 v 1.4 - - -
Grichen 1605 46.19531 7.83682  2013-06 v 1.6 1980-01 v 35.0 (12.4)
Grimsel Hospiz 1980 46.57169 8.33325  2012-09 v 23 - - -
Giitsch ob And. 2283  46.65244 8.61505  2005-09 v 9.3 - - -
Jungfraujoch 3580 46.54745 7.98533  1999-01 v 17.0 (13.4)  1980-01 v 35.0(12.4)
Koppigen 484  47.11884 7.60549  2012-01 v 3.0 1980-01 v 35.0(12.4)
La Dole 1669  46.42470 6.09948  2009-10 v 52 - - -
Locarno* 370 46.17223 8.78750  1995-12 2010-12 15.1(8.4) 1980-01 v 35.0 (12.4)
Lugano 273 46.00423 8.96031 2012-12 v 2.1 1980-01 v 35.0 (12.4)
Luzern 454 47.03643 8.30096  2013-05 v 1.7 - - -
Magadino 203 46.16003 8.93366  2006-02 v 8.9 1980-01 2010-11 30.8 (12.4)
Napf 1403 47.00466 7.94004  2007-07 v 7.5 - - -
Neuchétel 485 47.00006 6.95329  2010-10 v 4.2 - - -
Nyon 455  46.40105 6.22775  2005-10 2009-07 3.7 - - -
Payerne™ 490 46.81158 6.94242  1995-01 2010-12 16.0 (8.4) 1980-01 v 35.0 (12.4)
Plaffeien 1042 46.74766 7.26600  2005-08 2009-06 39 - - -
Poschiavo 1078 4634664  10.06113  2008-01 v 6.9 1980-01 v 35.0(12.4)
Ruenenberg 611  47.43456 7.87932  2013-12 v 1.1 - - -
Samedan 1708  46.52640 9.87894  2012-12 v 2.1 1980-01 v 35.0 (12.4)
Schaffausen 438  47.68977 8.62006  2008-08 v 6.4 2004-02 2013-05 9.2
Segl-Maria 1804 46.43233 9.76230  2014-03 v 0.8 1980-01 2014-06 34.5(11.9)
Stabio 353 45.84339 8.93238  2009-10 v 52 - - -
Ulrichen 1345  46.50482 8.30814  2008-06 v 6.6 1999-09 v 15.3 (12.4)
Weissfluhjoch* 2690 46.83334 9.80638  1994-09 2010-12 16.3(8.4) 1980-01 2008-06 28.5(5.9)
Ziirich Fluntern 555 47.37792 8.56572  2012-10 v 2.2 1980-01 v 35.0 (12.4)
Ziirich Kloten 426 47.47961 8.53595 2010-03 v 4.8 1980-01 v 35.0 (12.4)

* Radiation data from the ASRB network. If not specified, radiation data are from MeteoSwiss. All SYNOP observations are from MeteoSwiss.
v End date of the ground-based record is after the end of the satellite records (31 December 2014).
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