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Abstract. An experimental retrieval of oceanic warm rain
is presented, extending a previous variational algorithm to
provide a suite of retrieved variables spanning non-raining
through predominantly warm raining conditions. The warm
rain retrieval is underpinned by hydrometeor covariances and
drizzle onset data derived from CloudSat. Radiative transfer
modelling and analysis of drop size variability from disdrom-
eter observations permit state-dependent observation error
covariances that scale with columnar rainwater during iter-
ation. The state-dependent errors and nuanced treatment of
drop distributions in precipitating regions are novel and may
be applicable for future retrievals and all-sky data assimila-
tion methods. This retrieval method can effectively increase
passive microwave sensors’ sensitivity to light rainfall that
might otherwise be missed.

Comparisons with space-borne and ground radar estimates
are provided as a proof of concept, demonstrating that a
passive-only variational retrieval can be sufficiently con-
strained from non-raining through warm rain conditions. Sig-
nificant deviations from forward model assumptions cause
non-convergence, usually a result of scattering hydromete-
ors above the freezing level. However, for cases with liquid-
only precipitation, this retrieval displays greater sensitivity
than a benchmark operational retrieval. Analysis against pas-
sive and active products from the Global Precipitation Mea-
surement (GPM) satellite shows substantial discrepancies in
precipitation frequency, with the experimental retrieval ob-
serving more frequent light rain. This approach may be com-
plementary to other precipitation retrievals, and its potential
synergy with the operational passive GPM retrieval is briefly
explored. There are also implications for data assimilation,
as all 13 channels on the GPM Microwave Imager (GMI)

are simulated over ocean with fidelity in warm raining con-
ditions.

1 Introduction

Global observation of precipitation depends heavily on pas-
sive measurements of hydrometeors at microwave wave-
lengths. Active sensors possess certain advantages relative
to passive sensors, but a full global picture of precipitation is
currently impossible from active sensors alone as they yield
limited spatial coverage and may miss near-surface precipi-
tation due to ground clutter effects. While ground radar net-
works cover some landmasses, a satellite platform is neces-
sary for global observation of rainfall. Accurate observation
of the hydrologic cycle at a high spatiotemporal resolution is
a worthy goal (Hou et al., 2014), and a task that realistically
requires passive microwave rainfall retrievals.

Retrieval of precipitation from passive microwave ob-
servations is an under-constrained problem (Stephens and
Kummerow, 2007). This is due to many factors, including
unknown distributions of ice, mixed phase, and liquid hy-
drometeors, as well as their horizontal distribution within the
sensor field of view (FOV), coupled with limited channels
which possess non-independent information content. In
effect, there are more unknowns than pieces of independent
information, and thus many assumptions are necessary to
make the problem tractable. This has historically been done
via algorithms built on empirical relationships (Hilburn and
Wentz, 2008; Wilheit and Chang, 1980) or algorithms based
on Bayesian principles with Gaussian-distributed parameters
(Bauer and Schlüssel, 1993; Iturbide-Sanchez et al., 2011;
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Kummerow et al., 2015), of which variational (VAR)
methods form a subset (Rodgers, 2000).

The patterns and magnitude of precipitation over much of
the tropical oceans are largely agreed upon, a result of the
coordinated study of tropical precipitation from the Tropi-
cal Rainfall Measuring Mission (TRMM), which launched
in 1997 (Kummerow et al., 2000). In contrast, the stratocu-
mulus regions and high latitude oceans remain areas of dis-
agreement between different observing platforms and among
global models (Behrangi et al., 2012, 2016; Rapp et al., 2013;
Stephens et al., 2010). The launch of the Global Precipi-
tation Measurement (GPM) core observatory in 2014 (Hou
et al., 2014) increased the observational capability of sens-
ing global precipitation, but as the Dual-frequency Precipi-
tation Radar (DPR) has limited sensitivity to the light pre-
cipitation so prevalent at high latitudes, uncertainty remains
(Skofronick-Jackson et al., 2017). In theory, a passive re-
trieval is sensitive to rainfall below the detectability threshold
of DPR, and is also not susceptible to ground clutter that may
obscure shallow clouds and precipitation (Liu et al., 2016).
Thus a passive-only algorithm may be better suited to re-
trieval of the light rain rates that are characteristic of high
latitude oceans and stratocumulus regions.

GPM’s operational passive algorithm, the Goddard Profil-
ing (GPROF) algorithm (Kummerow et al., 2015), leverages
the synergy of co-located radar and radiometer observations
from GPM to calculate the precipitation rate expectation
value for all GPM constellation radiometers. The Bayesian
scheme uses the brightness temperature (TB) vector to find an
average set of atmospheric profiles that match what the radar
would have seen, based on the a priori database (e.g. Evans
et al., 1995). While highly versatile, one weakness of this
approach is that it misses hydrometeors below the detectabil-
ity threshold of the radar, even if the TBs exhibit signal where
the radar does not (GPM Science Team, 2017). Further, while
this type of approach gives a satisfactory average answer, it
does not explicitly model radiation coming from the surface
and atmosphere, blunting the measurements’ effective sig-
nal to noise ratio by including many surface states and cloud
types in the Bayesian average (Duncan et al., 2017).

Warm rain, precipitation driven primarily by collision–
coalescence below the freezing level, is particularly challeng-
ing to sense from satellite platforms. Passive microwave al-
gorithms are built to exploit the differential signals of emis-
sion from liquid drops and scattering from large drops and
mixed phase or frozen hydrometeors, but in the absence of
significant emission or scattering, the signal may be from
cloud alone or a combination of factors (Stephens and Kum-
merow, 2007). In spite of these challenges, warm rain is not
an insignificant player in the global hydrologic cycle. Warm
rain constitutes a majority of precipitating clouds in stra-
tocumulus regions (Lebsock and L’Ecuyer, 2011; Mülmen-
städt et al., 2015) and 20 % of total rainfall over the tropical
oceans is from warm clouds (Liu and Zipser, 2009). While
not missed entirely by current passive retrievals, some of this

emission signal may be missed or misattributed due to its rel-
ative subtlety.

The operational data assimilation (DA) community is also
invested in passive microwave radiances in precipitating con-
ditions. Successful assimilation of “all-sky” radiances from
microwave radiometers can yield a more accurate analysis
state from which numerical weather prediction (NWP) mod-
els can run (Geer et al., 2017). However, the same factors
that cause the retrieval problem to be under-constrained are
also relevant for DA schemes (Wang et al., 2012). Thus, mi-
crowave radiances from raining or cloudy pixels are often not
included in the data assimilation. If radiances are included,
they are accompanied by large observation errors (Lean et al.,
2017), diminishing the information content added to the anal-
ysis state. NWP models often contain crude microphysics
that limits their ability to accurately simulate clouds’ radia-
tive properties. Assimilation of satellite radiances is typi-
cally done with prescribed and uncorrelated errors, a poor
assumption for nearby frequencies especially, although there
has been movement towards including correlated observation
errors (Bormann et al., 2011, 2016; Weston et al., 2014).

Variational methods for retrievals and DA schemes alike
should include realistic estimates of the errors for both the
a priori state and observation vector. Whereas prior knowl-
edge from model data or observations can inform a priori er-
ror covariances, error covariances applied to the observation
vector are more complex, as they should include instrument
noise, forward modelling error, and also forward model pa-
rameter error as explored by Duncan and Kummerow (2016).
For a rain retrieval, the assumption of a drop size distribution
(DSD) is a large source of error for the forward model but
difficult to quantify because the true DSD is almost never
known. This is effectively a forward model parameter error,
assuming that the DSD is not retrieved. As shown by Leb-
sock and L’Ecuyer (2011), choosing an inappropriate DSD
can greatly impact the results of a retrieval, as variations in
drizzle rates over ocean are largely explained by variations
in drop number concentrations (Comstock et al., 2004). Un-
fortunately, the distribution of drops in the forward model
significantly affects the resultant rain rate and has an effect
on the TB vector, but is not readily retrievable from a single
sensor (Mace et al., 2016).

To be clear, variational precipitation retrieval is a very dif-
ficult problem to solve for all conditions. This is implicit
in the empirical estimate of rain rate in Iturbide-Sanchez
et al. (2011) or how CloudSat has no variational retrieval that
spans all precipitation types. To make the problem tractable,
here we limit the problem to the most straightforward exten-
sion to a non-raining retrieval over ocean, that of warm rain.
To combat the underconstrained nature of these retrievals, the
experimental retrieval described herein is applied to the GMI
sensor. GMI possesses lower frequency imager channels and
four higher frequency channels more sensitive to scatter-
ing from smaller particles, providing information content for
sensing liquid hydrometeors and some frozen hydrometeors
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(Birman et al., 2017). Additionally, GMI is a good testbed
sensor in that it is well calibrated (Draper et al., 2015) and
co-locations with DPR are readily available for analysis.

This study builds upon the ocean algorithm developed for
the GMI described by Duncan and Kummerow (2016), the
Colorado State University 1-D variational algorithm (CSU
1DVAR), with several augmentations to extend its applica-
bility into warm raining conditions. The satellite instruments
and datasets used in this study are detailed next. Section 3 ad-
dresses three key impediments to a variational precipitation
retrieval and offers solutions. Section 4 describes the experi-
mental algorithm’s innovations that permit retrieval of warm
rain. Section 5 presents a few case studies of GMI over-
passes compared against independent rainfall estimates from
space-borne and ground radars; statistical analysis compar-
ing 1DVAR rainfall frequency with DPR is also given. Sec-
tion 6 provides a discussion of limitations, sensitivities, and
implications of the retrieval, and the paper closes with a brief
summary and conclusions.

2 Data

The GPM core observatory holds two instruments: the GPM
Microwave Imager (GMI) and the Dual-frequency Precipi-
tation Radar (DPR). GPM is in a non-Sun-synchronous or-
bit at an inclination of 65◦ and was launched in Febru-
ary 2014. Compared to its predecessor, TRMM, the higher
inclination orbit allows for observation of latitudes well out-
side the Tropics. GMI is a 13 channel passive microwave ra-
diometer containing channels from 10 to 183 GHz at horizon-
tal (H) and vertical (V) polarizations (Draper et al., 2015).
All 13 channels are used in the algorithm described, with
TBs coming from the co-registered L1CR product. DPR is a
dual-frequency precipitation profiling radar observing at Ku
(13.6 GHz) and Ka (35 GHz) bands with a 12 dBZ sensitivity
threshold. This study uses GPM V05 brightness temperatures
and level 2 products. Both the normal scan (NS) Ku-band
only and matched scan (MS) Ku- and Ka-bands combined
products are used in this study.

The CloudSat mission’s payload is a 94 GHz cloud pro-
filing radar (Stephens et al., 2002). CloudSat was launched
in 2007 and flies in the A-Train constellation (L’Ecuyer and
Jiang, 2010). At a higher frequency than DPR and with
greater radar sensitivity, CloudSat is sensitive to clouds and
light rain not seen by DPR, though its signal can attenuate
in moderate to heavy precipitation. CloudSat’s small foot-
print permits highly limited spatial sampling. For light pre-
cipitation, CloudSat provides the best observational record
currently available from satellite, and is thus complemen-
tary to GPM observations. CloudSat’s overpasses coincident
with GPM were determined using the CloudSat-GPM Coin-
cidence Dataset version 1C (Turk, 2016).

The warm rain retrieval from CloudSat (Lebsock and
L’Ecuyer, 2011) is leveraged to construct a priori states us-

able by a variational retrieval. This algorithm and the asso-
ciated data product, 2C-Rain-Profile, yields profiles of rain
water content, cloud water content, and precipitating ice wa-
ter content as well as surface rain rate. 2C-Rain-Profile uses
a variational approach to match observed radar reflectivities
with a two-stream forward model that includes multiple scat-
tering. It employs a variable DSD chosen specifically for
its applicability to warm rain scenes that are dominated by
small drops. The rain rate is calculated via a Z−R relation-
ship that is dependent on cloud type, with lower rain rates
primarily a function of near-surface reflectivity while higher
rain rates are more a function of path integrated attenuation
(Lebsock and L’Ecuyer, 2011, Fig. 6). CloudSat’s single fre-
quency radar is supplemented by visible optical depth infor-
mation from another A-Train sensor to constrain the retrieval
of cloud water path.

The GPM ground validation team collects data from cer-
tain NEXRAD (Next Generation Radar) sites matched with
GPM overpasses (GPM Science Team, 2015). The National
Weather Service operates a dual-pol radar site on the island
of Middleton, Alaska at 59◦ N. This radar site is ideal for
comparisons due to its essentially oceanic location at a lati-
tude frequently sampled by GPM. This ground radar will be
referred to as PAIH, its station identifier, hereafter. Ground
radar rain rates used in the analysis are from the polarimetric
Z−R algorithm (Bringi et al., 2004).

3 Impediments

The main impediments to variational retrieval of precipita-
tion over ocean from passive microwave observations can be
distilled down to three factors. In this section, the key imped-
iments to a successful retrieval are enumerated, described,
and given solutions. Each is directly tied to an element of the
retrieval as described in the following section.

First, it is difficult to differentiate between cloud and driz-
zle drops from radiances alone, necessitating an assumed
partition between cloud water and rainwater in the absence
of significant scattering. Second, passive radiances at typi-
cal imager frequencies contain little information on the verti-
cal structure of hydrometeors. Third, the TBs do not contain
enough information to solve for the DSD parameters, but the
scattering properties, fall speed, and resultant rain rate of hy-
drometeors are dependent upon their size distribution. Impor-
tantly, the impact on radiances caused by the hydrometeors’
distribution depends on the mass of hydrometeors in the at-
mospheric column.

3.1 Partitioning non-scattering liquid

At typical imager wavelengths, cloud droplets lie well within
the Rayleigh scattering regime, instead being good emitters
of radiation due to their dielectric properties. Mie theory
dictates that scattering is proportional to the size parame-
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Figure 1. Drizzle onset value of LWP, separated by SST and
TPW. Regimes with little data are assigned the maximum value,
300 g m−2, in line with Wang et al. (2017), while regimes with no
data are given in black.

ter (x = 2πr/λ) to the fourth power for a given radius r and
wavelength λ. Even for an effective radius of 100 µm, thought
to exist in typical drizzle clouds, the size parameter x is equal
to 0.19 at 89 GHz, just on the verge between the Rayleigh and
Mie scattering regimes. Thus for many drizzle cases, the ac-
tual radiometric observations at GMI frequencies will not di-
verge significantly from simulated observations that neglect
scattering.

A simple absorbing and emitting forward model can be run
due to the lack of scattering from cloud and drizzle drops. In
fact, the predominant lack of scattering from drizzle holds for
pristine and polluted regimes, as cloud top effective radii are
usually less than 30 µm even for precipitating clouds (Leb-
sock et al., 2008). However, because non-raining and rain-
ing clouds exhibit similar signals, this requires an assumption
of partitioning between cloud and rain water emission from
passive microwave algorithms. In contrast, a radar algorithm
such as that used by CloudSat is more skilful at differentiat-
ing between cloud and rain drops because radar backscatter
is very sensitive to drop size.

A constant precipitation onset value can lead to perva-
sive systematic biases in cloud and rain retrievals (Green-
wald et al., 2018). Therefore, to calculate regime-dependent
values for the onset of drizzle from liquid clouds, CloudSat
data are used. Precipitation frequency observed by CloudSat
was analysed and compared to the distribution of total LWP
as retrieved by the CSU 1DVAR non-raining retrieval for
GMI. CloudSat data were averaged to approximate the GMI
field of view (FOV). The non-raining 1DVAR retrievals that
exhibited very poor fits to GMI observations were assumed
precipitating, and the retrievals with high LWP were desig-
nated precipitating until the precipitation frequency matched

the CloudSat-derived results in each total precipitable wa-
ter (TPW) and sea surface temperature (SST) regime, effec-
tively ensuring that precipitation frequency mirrors that of
CloudSat. This approach implicitly assumes that clouds with
higher LWP are more likely to be precipitating, an assump-
tion broadly true in studies of A-Train data (Chen et al., 2011;
L’Ecuyer et al., 2009; Stephens and Haynes, 2007). Figure 1
shows the drizzle onset values of liquid water path (LWP)
used in this study, subset by TPW and SST. These drizzle on-
set values are in general agreement with some in the literature
(Chen et al., 2011; Lebsock et al., 2008; Mülmenstädt et al.,
2015; Wentz and Spencer, 1998; Wang et al., 2017) and lower
than some others (Iturbide-Sanchez et al., 2011; Kida et al.,
2010), though direct comparison is difficult due to the sub-
division by environmental regime done here. The GPM V05
passive algorithm (i.e. GPROF) employs the above method
to improve detection of light rain below the sensitivity limits
of DPR (GPM Science Team, 2017).

3.2 Profiles of hydrometeors

Profiles of hydrometeor species are required to run a real-
istic radiative transfer (RT) scheme as part of the forward
model. Further, the surface rain rate depends on the rainwa-
ter content in the lowest atmospheric level, not a column to-
tal. However, vertical information is effectively nonexistent
in the TB vector, as the emissivity of drops is not strongly
tied to temperature or pressure. Global model data are insuf-
ficient to aid in vertical constraints due to the spatiotemporal
heterogeneity of clouds and precipitation. Instead, principal
component (PC) analysis can reduce the dimensionality of
the problem, simplifying treatment of hydrometeor profiles
in the retrieval.

Two years of data from the CloudSat 2C-Rain-Profile
product (Lebsock and L’Ecuyer, 2011) were analysed to de-
termine the principal components that best describe hydrom-
eteor profile variability for warm rain, 2014 and 2015. These
are separated by SST and lightly smoothed, with the first
PC of rain water content (RWC) and precipitating ice water
content (PIWC) shown in Fig. 2. The first PCs of RWC and
PIWC describe 63 % and 51 % of the total variability, respec-
tively. Covariances between the PCs of RWC and PIWC are
also calculated and included in the a priori covariance matrix
for raining scenes.

Attempting to retrieve more than one PC of each species is
unproductive and can lead to non-convergent retrievals. The
second PC of each species is effectively a vertical redistribu-
tion of the first PC in altitude, i.e. more RWC near the surface
and less RWC higher up or vice versa. As the TB vector is,
to first order, sensitive to total columnar liquid, inclusion of
more PCs is not useful for a passive retrieval, a topic explored
further in Sect. 6.
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Figure 2. The first principal components of RWC and PIWC from CloudSat for warm rain scenes, shown as path quantities per layer, RWP
and PIWP, respectively, to match the units expected by CRTM.

3.3 Drop size distributions

For this study, the normalized gamma distribution is used
to characterize raindrop distributions (Testud et al., 2001).
This functional form, given below as the number concen-
tration of drops as a function of drop diameter, N(D), ap-
proximates DSDs found in nature with fidelity (Bringi et al.,
2003) though not perfectly (Thurai et al., 2017). The normal-
ized gamma distribution allows comparison of DSDs with
different rain rates and water contents due to the normalized
intercept parameter (Nw). The median volume diameter (D0)
is related to the mass-weighted mean diameter (Dm) via the
shape parameter (µ), and 0 is the gamma function.

N(D)=Nwf (µ)

(
D

Dm

)µ
e−(µ+4)D/Dm

where f (µ)=
6
44
(µ+ 4)µ+4

0(µ+ 4)
,
D0

Dm
=
µ+ 3.67
µ+ 4

,

Nw =
3.674RWC
πρwD0

4 (1)

In situ disdrometer measurements from GPM ground valida-
tion field campaigns are used to quantify the error in forward
modelled TBs given a range of DSDs. These observations are
split into extratropical and tropical locations. The extratropi-
cal sites are near Seattle and Helsinki, from the OLYMPEX
(Houze Jr. et al., 2017) and Light Precipitation Validation Ex-
periment campaigns, respectively. The tropical observations

are from Gan Island, Manus Island, and Darwin, Australia.
All these sites are an oceanic subset of those used by Dolan
et al. (2018), providing the parameters that describe a modi-
fied gamma distribution along with liquid water content. Fol-
lowing Dolan et al. (2018), PC analysis of the disdrometer
data reveals leading modes of variability in the DSD param-
eters that suggest convective and stratiform regimes of rain-
fall, coloured in Fig. 3. Representative values of these pa-
rameters will be used in the retrieval and are separated into
these regimes and by location, i.e. tropical or extratropical.
For the extratropics, the assumed DSD parameters are µ= 9
and D0 = 0.75 mm for the stratiform case, and µ=−1 and
D0 = 1.8 mm for the convective case; they are µ= 7 and
D0 = 0.83 mm, µ= 0.5 and D0 = 1.6 mm for tropical strat-
iform and convective cases, respectively.

To test the DSD variability’s effect on radiances, the dis-
drometer data were used in a simple model with Eddington
absorption (Kummerow, 1993) and Mie scattering modules.
The RT model was run with a prescribed atmosphere and sur-
face state, with a 150 g m−2 liquid cloud from 925 to 850 hPa.
GMI frequencies and viewing geometry are assumed. Rain-
water exists below the cloud base, with the RWC values com-
ing from the disdrometer data and distributed evenly. As seen
next, the RT model diagnoses different radiometric charac-
teristics of the stratiform and convective DSDs, leading the
analysis here and the retrieval described later to delineate be-
tween the two.
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Figure 3. Disdrometer data from extratropical (a) and tropical (b) ocean sites. Blue and orange points were determined, via PC analysis, to
be analogous to stratiform and convective DSDs, respectively, whereas black points did not fall into those categories.

Figure 4 shows the correlation between TBs at GMI fre-
quencies and three of the DSD parameters (µ, D0, Nw) as
well as RWC and rain rate, broken up into the stratiform and
convective regimes from the high latitude data from Fig. 3,
using the simple model described above. The strong posi-
tive correlations between low frequency TBs and RWC re-
veal why it makes more sense to retrieve RWC than any
of the DSD parameters, which exhibit weaker correlations
that are more channel dependent. As radiances correlate most
strongly with rainwater content and weakly with parameters
representing the rain’s microphysical properties, the spec-
trum of DSD variability requires simplification to reduce the
inverse problem’s dimensionality. This binary classification
is a way to simplify the problem without treating all DSDs
as the same, in line with there being limited signal to solve
for the DSD but some information related to the DSD exist-
ing in the TBs.

To view the competing radiance signals more quantita-
tively, the two DSD regimes’ impacts on TB are enumerated
via a simple model in Table 1. Nearly identical to the model
setup used above, here we first run the clear sky case, then
with 100 g m−2 liquid cloud, then simulate a 100 g m−2 rain
cloud. The rain cloud has a fixed RWC but the DSD varies as
per the regimes defined above for the extratropical case. To
pull apart the signals, no cloud water was included, and the
model was run once with rainwater emission artificially set to
zero and scattering turned off in another run. Notable are the

similar signals between cloud alone and stratiform rain, and
the strong channel dependence of the signals from rainwater.

In an attempt to circumvent the issue of DSD variability
while accounting for the inherent forward model uncertainty
of assuming a DSD, these errors are quantified in a way in-
tended to reduce the dimensionality of the problem without
ignoring it. This stems from the TB vector containing infor-
mation on the DSD, but not enough to be solved for explic-
itly. The forward model parameter error, given below as the
variance (σ 2) per frequency (ν) stemming from an assumed
drop distribution (e.g. convective, DSDconv) is defined as fol-
lows:

σ 2
conv(ν)= var(TB(ν,DSDconv)− TB(ν,DSDactual)). (2)

Figure 5 translates the simple model containing in situ
DSD data into error covariance matrices usable by the re-
trieval, via Eq. (2) and the attendant correlation coefficients
between channels’ errors. Shown are error covariance matri-
ces calculated for both stratiform and convective DSD ob-
servations at the extratropical sites for two nominal rain wa-
ter path (RWP) values. These values are in line with DSDs
connected to collision–coalescence processes (Dolan et al.,
2018) and thus appropriate for warm rain. To apply these
analyses of in situ data as realistically as possible, the errors
and DSD assumptions derived from extratropical and tropi-
cal sites are treated separately. The errors and assumptions
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Figure 4. Correlations of TB at GMI frequencies with the DSD parameters (Eq. 1) as well as rain rate (RR) and RWC, as derived from
disdrometer measurements run through a RT model. Convective DSDs (a) and stratiform DSDs (b) are shown for extratropical ocean cases.

Table 1. Effects on TB at top of atmosphere from cloud water and rainwater alone. Surface conditions are SST= 281 K and wind= 5 m s−1,
with water vapour and temperature profiles representative of such an ocean scene. Liquid water path is 100 g m−2 for both rain and cloud
water. In both cases the hydrometeors reside between 925 and 975 hPa. GMI’s 183 GHz channels are not included due to the invariance of
water vapour here. Radiometric signals from rainwater are separated into emission (emis.) and scattering (scat.) as described in the text, with
the net effect also given. All units are 1K except for the top row, which is in K.

10V 10H 19V 19H 23V 37V 37H 89V 89H 166V 166H

Clear sky [K] 160.16 82.80 178.53 104.79 199.25 204.04 133.86 243.35 192.73 269.36 261.03
Cloud +0.40 +0.65 +1.02 +1.77 +1.29 +2.73 +5.29 +5.28 +13.1 +1.40 +3.64
Strat. rain (net) +0.58 +0.96 +1.73 +3.02 +2.27 +5.02 +10.37 +5.58 +26.11 +0.12 +4.72
Conv. rain (net) +2.10 +3.61 +4.10 +8.30 +4.17 +5.33 +16.4 +2.18 +16.9 +0.29 +2.83
Strat. rain (emis.) +0.59 +0.97 +1.80 +3.11 +2.42 +5.90 +11.5 +15.2 +37.6 +3.10 +8.16
Conv. rain (emis.) +2.44 +4.02 +6.34 +10.9 +7.70 +13.7 +26.5 +11.7 +29.0 +1.83 +4.79
Strat. rain (scat.) −0.01 −0.01 −0.07 −0.09 −0.15 −0.88 −1.08 −9.59 −11.54 −2.98 −3.44
Conv. rain (scat.) −0.34 −0.41 −2.24 −2.68 −3.53 −8.34 −10.2 −9.51 −12.1 −1.54 −1.96

applied depend on the observed latitude, with 30◦ latitude
acting as the separator. Figure 5 displays errors using the ex-
tratropical sites’ data.

The result of this analysis is an estimate of forward model
error at GMI frequencies caused by the assumption of a DSD
for rain in each regime. As this analysis used the observed
variability of the DSD parameters for given RWC values, the
resultant error covariance matrices can be scaled as a func-
tion of RWC in the retrieval without further assumptions.
The inclusion of covariances between channels’ errors (i.e.
off-diagonal matrix elements) is key, as many of the errors
caused by assuming a DSD are highly correlated between
nearby channels.

4 Retrieval description

The following subsections detail how the retrieval algo-
rithm treats non-raining, drizzling, and warm raining pix-
els. Its progression through these outcomes is described via
flowchart in Fig. 6. The non-raining retrieval is always run
first, with either non-convergence or high retrieved LWP sig-
nalling the need for the warm rain retrieval to be run. Non-
convergence for each stage is defined by either failure to con-
verge within 10 iterations or very poor fit (χ2 > 4.0). Driz-
zle is effectively an in-between case, where the non-raining
forward model is sufficient to match the observed TB vec-
tor but the retrieved LWP exceeds the drizzle onset threshold
(Fig. 1). All 13 GMI channels are used in every case.
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Figure 5. Error covariances due to DSD variability observed at extratropical ocean sites. The RWP values of 50 and 150 g m−2 are nom-
inal. Covariances are in units of K, with negative covariances given as −

√
|Sy |, to aid interpretation. These error covariances make up

Sy,rain(RWP), a constituent of the total Sy from Eq. (3), described later in Sect. 4.3.

4.1 Non-raining algorithm

The CSU 1DVAR (Duncan and Kummerow, 2016) was origi-
nally developed as a non-scattering retrieval for the so-called
“ocean suite” parameters over water: total precipitable wa-
ter, 10 m wind speed, cloud LWP, and SST. It is a variational
(optimal estimation) algorithm that iterates to find an optimal
geophysical state that best matches the observed TB vector
within the bounds of a priori knowledge of the geophysical
state (Rodgers, 2000). This is done via a physical forward
model tailored to the radiometric sensitivities of the variables
being retrieved, using Gauss-Newton iteration. Mathemati-
cally, the iterative process endeavours to find a state vector
(x) that minimizes a cost function (8) and yields a metric of
fit (χ2) to the observed radiances:

8= (y− f (x,b))T S−1
y (y− f (x,b))+ (x− xa)

T S−1
a (x− xa),

χ2
= (y− f (x,b))T S−1

y (y− f (x,b))/Nchan. (3)

Here y is the observation vector, f is the forward model,
b contains all non-retrieved elements of the forward model,
xa is the a priori state vector, and Sa and Sy represent the
error covariance matrices of the a priori and observation vec-
tors, respectively. Sy for the non-raining retrieval is the same
as that given by Duncan and Kummerow (2016). The non-
raining observation error covariances account for misplace-
ment of cloud and water vapour in the atmospheric column,
as well as surface pressure, wind direction, salinity, and emis-
sivity model errors; the channel variances for non-raining
cases are given in Table 2. The cost function balances knowl-
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Figure 6. Algorithm flowchart for the 1DVAR for warm rain.

edge of the prior state with confidence in the observations to
find an optimal retrieved state. The fit metric (χ2) is nor-
malized by the number of channels used, and indicates the
quality of fit between the retrieved state’s simulated TBs and
those observed. Note that this is not a true χ2 test (Rodgers,
2000, Eq. 12.9), but instead used to gauge fit to the observa-
tions alone.

The non-raining CSU 1DVAR solves for six parameters:
wind speed, liquid water path, SST, and coefficients of the
first three PCs of water vapour. Just as described in Sect. 3.2,
PCs reduce the dimensionality of the water vapour profile.
To make the problem more Gaussian, LWP is retrieved in
logarithm space but with effectively no constraint by the a
priori. The a priori states for SST, wind, and water vapour
come from a global model, as do sea level pressure and the
temperature profile. For this study, the GEOS5 FP-IT model
(Lucchesi, 2013) was used. A priori covariances for wind
speed and water vapour were derived from reanalysis data;
as reanalysis cloud water is not representative, only the co-
variance between LWP and the first PC of water vapour is
included.

The forward model for the CSU 1DVAR uses the Commu-
nity Radiative Transfer Model (CRTM) v2.3.3 coupled with
the FASTEM6 emissivity model (Liu and Weng, 2013; Kazu-
mori and English, 2015). There are 16 vertical layers from

the surface up to 100 hPa. Cloud liquid water is evenly dis-
tributed from 925 to 850 hPa with a cloud drop effective ra-
dius of 12 µm, a value consistent with observations (Lebsock
et al., 2008).

4.2 Drizzle

Drizzle is poorly characterized by passive measurements
alone, and so the drizzle retrieval depends heavily on
CloudSat data. Conditions in which the non-raining (non-
scattering) retrieval converges with a high quality of fit
(χ2 < 1) are not necessarily non-raining for the reasons men-
tioned in Sect. 3.1. Thus, if retrieved LWP is greater than
the CloudSat-derived drizzle onset threshold (Fig. 1), LWP
is partitioned into cloud and rain water. Not all extra water
is partitioned into drizzle, with some of the extra water re-
maining as cloud water as discussed by Wentz and Spencer
(1998). RWP is defined thus, with LWPdriz determined from
Fig. 1 using the a priori SST and TPW states:

RWP= δLWP(1−
1

√
δLWP

),

where δLWP= LWP−LWPdriz(SST,TPW). (4)

The resultant drizzle rate is a function of RWP. Because
no information exists on the drops’ distribution or altitude,
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a simple regression relationship derived from the 2C-Rain-
Profile dataset is used to calculate a rain rate, linearly related
to RWP and subset by SST regime. In most regimes the rela-
tionship is on order of 70 g m−2 of RWP per 1 mm h−1 of rain
rate. Relative to the CloudSat estimate, this regression rela-
tionship tends to underestimate heavy rain rates and slightly
overestimate light rain rates.

The predominantly non-scattering scenario with drizzle is
quite common, especially at high latitudes, and forms a plu-
rality of global scenes with retrieved rain. Shallow clouds
with high liquid water contents often converge well in the
non-scattering retrieval if there is a lack of significant snow
or mixed phase hydrometeors. The high frequency channels
on GMI, 166 GHz and higher, are sensitive to scattering from
frozen hydrometeors (Gong and Wu, 2017). Because this re-
trieval is for warm rain only, a significant departure between
observed and simulated TB at 166V, 166H, and 183± 7V is
a sign that the warm rain retrieval should not be run because
the forward model is inadequate (Fig. 6). In the algorithm,
this condition is met if the mean observed minus simulated
TB of those three channels is less than −8 K, in which case
missing values are output.

4.3 Warm rain retrieval

For cases where the non-scattering retrieval fails, or cases in
which LWP> LWPdriz but χ2 > 1.0, indicating a fit to the
TBs that exceeds assumed errors, the warm rain retrievals
are run subsequent to the non-scattering retrieval. The num-
ber of retrieved parameters drops from six to four: PC1 of
RWC, PC1 of PIWC, LWP, and PC1 of water vapour. This
is necessary due to the limited information content afforded
by the TB vector in raining conditions, where sensitivity to
the surface and water vapour are superseded by signals from
hydrometeors. The a priori wind and SST are thus held con-
stant; attempting to retrieve wind speed or SST tends to de-
grade retrieval of the other parameters.

Even with four variables, the a priori errors on LWP and
PC1 of water vapour are decreased, to 10 g m−2 and 60 %
smaller, respectively, so as to discourage unphysical be-
haviour in the retrieval, with the prior for LWP coming from
the non-raining retrieval. These tighter constraints help to
avoid a tendency of the retrieval to push humidity and cloud
water to very high levels in some cases. A priori errors on
the profiles of RWC and PIWC come from global Cloud-
Sat statistics that produced Fig. 2. Raining scenes can exhibit
1.5–3.5 degrees of freedom for signal (DFS) given these four
retrieved parameters, indicating that even with four variables
the problem is information-limited.

A key element of the rain retrieval is its dynamic obser-
vation error covariance matrix. In theory, Sy should contain
all the uncertainties of the forward model, forward model
parameters, and instrument noise. In practice, this means
adding the non-scattering retrieval’s errors with the errors for
a given RWP. As described in Sect. 3.3, the forward model

error caused by assuming a DSD is a function of RWP. Dy-
namic adjustment of observation errors based on the retrieved
scene’s characteristics is not commonly done in either re-
trievals or DA schemes; an analogue is Lean et al. (2017),
which uses a proxy for cloud amount to determine errors,
a scheme akin to a dynamic error assignment though not
specific to DSD assumptions. Interestingly, the largest errors
given by Lean et al. (2017) are at the 19H and 37H channels
for GMI, in line with the results of Fig. 5 for large RWP.

The vertical distribution of RWC is also assumed by
virtue of using only one PC of RWC. This too affects for-
ward model errors, and was quantified by similar analysis of
CloudSat retrievals, also as a function of RWP. These values
are added to the Sy,rain(RWP) depicted in Fig. 5. This partic-
ular error source has little impact on the retrieval as channel
errors are effectively zero for most channels, maximizing at
3.5 K2 for high RWP at 36H in the convective case. Because
the errors add in quadrature, these are mostly insignificant.

Summing Sy,non-scat+Sy,rain(RWP) yields the observation
error covariance matrix used in the iteration (though some
care needs to be taken to ensure that it remains positive def-
inite). Because RWP is retrieved, the matrix is updated with
every iteration. This complicates the iteration process, but it
is based in the physics of the situation; heavier rainfall begets
larger uncertainties. Examples of observation error channel
variances are given in Table 2 for randomly selected RWP
values from an extratropical case with both (i.e. convective
and stratiform) DSD assumptions. Note that the DSD as-
sumptions and corresponding errors depend on latitude, re-
trievals within the tropics (30◦ N to 30◦ S) use a different
DSD from those in the extra tropics, as described in Sect. 3.3.

The stratiform and convective rain retrievals are run side
by side. Whichever converges with a better fit to observations
(lower χ2) is output. If neither converges, the output is ei-
ther that from the non-scattering retrieval, i.e. non-scattering
drizzle, or missing values (see Fig. 6). The convective case is
treated the same as the stratiform case, only the DSD param-
eters and observation errors differ. For both cases, the resul-
tant rain rate is averaged from the three lowest altitude layers
of RWC in the forward model. This includes the standard
assumption that drops reach their terminal fall speed. No ex-
plicit evaporation model is included due to the lack of true
vertical information, other than that implicit in the shape of
the RWC profile (Fig. 2).

The forward model for warm rain builds upon the non-
raining forward model but requires some modification, as
CRTM does not currently support functional variations in
DSD. Thus, the warm rain forward model uses both CRTM
and the Eddington absorption model (Kummerow, 1993)
with Mie code modules. The Eddington codes are the same
codes used for the GPROF a priori database creation and the
RT simulations described in Sect. 3.3. In practice, this means
calling CRTM and then running Eddington twice, once with
the RWC and PIWC profiles included and once without, then
differencing the two and adding this to the CRTM-derived
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Table 2. GMI channel error variances used during iteration for randomly chosen pixels from the scene in Fig. 7. The square roots of error
variances are given so as to be in K, and RWP is given in g m−2. The first line (RWP= 0) shows the non-raining algorithm’s error variances.

DSD RWP 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V 166H 183± 3 183± 7

– 0 1.51 1.13 1.86 2.43 2.60 1.43 2.32 1.61 3.42 1.83 2.71 5.61 3.22
Stra. 18 1.52 1.14 1.87 2.44 2.61 1.45 2.35 1.63 3.47 1.84 2.72 5.61 3.23
Stra. 309 1.54 1.19 2.02 2.81 2.76 2.07 4.23 2.03 3.51 1.98 2.80 5.61 3.24
Conv. 79 1.63 1.64 2.02 2.93 2.71 1.63 3.21 1.69 3.62 1.85 2.73 5.61 3.24
Conv. 195 2.26 3.43 2.86 4.91 3.24 2.37 5.27 1.97 3.91 1.98 2.80 5.61 3.24

TB vector. This avoids forward model discontinuity between
raining and non-raining pixels, but is not ideal and computa-
tionally expensive.

5 Proof of concept

5.1 Case studies with space-borne radars

CloudSat’s sensitivity to light rain rates makes it a useful
point of comparison, although the orbits of GPM and Cloud-
Sat result in limited high quality matchups. This section in-
cludes one case with GMI, DPR, and CloudSat observations
in the North Atlantic, and one case with GMI and CloudSat
off the coast of France.

Figure 7 compares the CSU 1DVAR, GPROF, DPR, and
CloudSat rain rates for a coincident overpass in the North
Atlantic on 1 June 2015. The figure’s projection orients the
CloudSat ribbon horizontally, with CloudSat reflectivities
shown at the top of the figure. GPROF and DPR underesti-
mate rainfall relative to CloudSat, whereas the CSU 1DVAR
estimates are closer in magnitude to CloudSat, as seen in the
line plot within Fig. 7. DPR misses the majority of the rain-
ing pixels seen by CloudSat, as the reflectivities are generally
below DPR’s detection threshold. From 49 to 51.5◦ N, the re-
gion of overlap for the three sensors, the CloudSat 2C-Rain-
Profile product has a mean rain rate of 1.30 mm h−1 whereas
GPROF and DPR NS measure 0.58 and 0.13 mm h−1, re-
spectively. The CSU 1DVAR mean for the same pixels is
1.87 mm h−1, though a few pixels failed to converge. This is
an encouraging result, showing that warm rain from the vari-
ational algorithm is of the same order as that from CloudSat.

The freezing level is denoted by a grey line in the top panel
of Fig. 7, calculated from ancillary data. This lies above most
of the cloud tops seen by CloudSat, indicating that most of
the clouds are probably liquid. The CSU 1DVAR converges
for many of these pixels, except a few near 52 and 50◦ N,
where CloudSat shows stronger convection and radar echoes
above the freezing level. The GPM and CloudSat overpasses
were 10 min apart, which may explain some incongruity in
the pixels that converged, especially with regard to convec-
tive clouds.

Figure 8 provides a closer look of a raining system in the
Atlantic, a scene from 30 March 2016 off the coast of France.

In this figure, CloudSat reflectivities show a complex scene
with multiple cloud layers and cloud depths ranging from 1 to
8 km. The second panel holds retrieval results from 2C-Rain-
Profile, colour-coded to differentiate between liquid and ice
portions of the cloud. CloudSat shows significant rainwater
content near the surface that translates into rain rates of about
4 mm h−1. This is in contrast to the GPROF rain rates, which
are all less than 0.5 mm h−1. As with the previous case, this
is not surprising because GPROF’s a priori database is based
upon DPR and most of the CloudSat reflectivities seen from
46 to 47◦ N in Fig. 8 are below the sensitivity limit of DPR.
This raining system is on the edge of the GMI swath, so no
DPR data are available.

The CSU 1DVAR mostly performs well in this scene. On
the right of the figure where the clouds are shallow and
mostly liquid, it retrieves rain rates on the order of Cloud-
Sat and much higher than GPROF. As the cloud deepens and
non-liquid hydrometeors dominate, it fails to converge – the
forward model is insufficient due to the transition away from
warm rain. In fact, the apparent overestimation of rain rates
on the right side of the figure may be due to CloudSat missing
some rainwater; GMI senses total columnar liquid, whereas
CloudSat is mostly blind in the lowest kilometre of the at-
mosphere and thus may miss rainwater near the surface (Liu
et al., 2016).

On the northern edge of the retrieved rain band in Fig. 8
exists a transition zone with low retrieved rain rates in an
area with moderate CloudSat rainfall. This violates the as-
sumptions of the forward model, but not strongly enough
to cause non-convergence. Instead, the scattering signal of
mixed phase hydrometeors appears to cancel out the rain
drops’ emission signal, and the algorithm reaches conver-
gence with limited rainfall, albeit with a fairly poor fit. As
with the previous case, about 9 min elapsed between the over-
passes, so the characteristics of the clouds and precipitation
may have evolved. The plane parallel forward model could
also be a cause of discrepancies at the rain band’s edge.

5.2 Case studies with ground radar

In this section two GPM overpasses of the PAIH ground radar
are examined. Due to GPM’s orbit and the radar’s location
south of Alaska, it is an ideal location for comparisons be-
tween high latitude oceanic GPM observations and a polari-
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Figure 7. GPM and CloudSat rain rates for coincident overpasses in the North Atlantic on 1 June 2015. Panel (a) shows CloudSat reflectivities
with a grey line indicating the freezing level. Panel (b) gives rainfall rates along the CloudSat track. For the bottom panels, black along the
CloudSat track indicates no rain and grey is snow or mixed phase precipitation. Black pixels for the 1DVAR signify non-convergence. In
panel (e), black stippling marks the extent of the DPR NS swath.

metric ground radar. For this analysis, the focus is on pre-
cipitation away from the coastline, as emission from nearby
land is a contaminating factor in precipitation retrievals; in-

deed the CSU 1DVAR does not run if a pixel contains land
contamination.

The first case, shown in Fig. 9, is from an overpass on
12 July 2015 with scattered showers visible from PAIH. DPR
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Figure 8. Shallow rain and mixed phase cloud off the coast of France, 30 March 2016. The panel (a) is CloudSat reflectivities while panel
(b) shows 2C-Rain-Profile RWC and PIWC profile retrievals from the same scene. The panels (c) and (d) contrast CloudSat rain rates with
those of the CSU 1DVAR and GPROF. Colour conventions follow those of Fig. 7.

does a fairly good job of seeing these showers, although it
misses some of the lightest raining pixels observed by PAIH.
GPROF picks up the strongest region of rainfall but underes-
timates the rain rate relative to PAIH and misses the weaker
showers. This scene proves challenging for the CSU 1DVAR

as well. This region is covered with retrieved liquid cloud,
including some pixels above the drizzle onset threshold that
fit the forward model well. Contrasting these pixels with
PAIH, some are not raining to the surface while others are
below the drizzle threshold but do indeed seem to be raining.
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Figure 9. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from 12 July 2015. Panel (a) contains
CSU 1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (χ2). Panel (b) contains rain rates from GPROF, DPR, and
the ground radar. Colour conventions follow those of Fig. 7.

The few pixels containing the largest rain rates according to
PAIH, DPR, and GPROF do not converge in the iteration,
in line with significant mixed phase or frozen hydromete-
ors present and echo top heights of 3 to 5 km observed by
DPR. So while this scene is nearly ideal for the CSU 1DVAR
rain retrieval, in that it rarely violates the assumptions of the
forward model, the assumption of a drizzle onset threshold
proves too simplistic to accurately capture drizzling vs. non-
drizzling liquid clouds in this scene.

Figure 10 shows a second ground radar matchup with
GPM, from 29 June 2015. A stronger band of rain is iden-
tified consistently by DPR and GPROF, and they agree on
the general magnitude of precipitation, but PAIH is slightly
higher. The CSU 1DVAR gets the right general shape of this
rain band but mostly overestimates the rain rates compared to
the other estimates. Examination of the fit metric (χ2) shows
that much of this band exhibited relatively poor fits to the
observations.

Further analysis of the DPR and PAIH data in Fig. 10 in-
dicates that the forward model assumptions were violated
for many of these raining pixels (not shown). DPR retrieved
echo top heights of 1.5 to 4.0 km, with bright bands evi-
dent in most pixels between 1.6 and 1.8 km. The existence of
these bright bands picked up by DPR demonstrates that there

were significant areas of mixed phase hydrometeors present,
something absent from the forward model. Most of the rain-
ing pixels in the figure reached convergence with the convec-
tive DSD assumptions but many still exhibit relatively poor
fits to the observations. This points to the utility of χ2 as a
marker of trustworthiness for retrieved parameters (Elsaesser
and Kummerow, 2008), suggesting caution in interpreting
such pixels that display errors larger than those assumed.

5.3 Statistical analysis against DPR

Moving beyond case studies, twelve months of data from the
1DVAR retrieval were compared against DPR rain estimates
to assess the representativeness of the analysed cases. Only
pixels within the DPR matched scan (MS), containing both
Ku- and Ka-band observations, were considered. DPR pixels
were averaged into the GMI 23 GHz FOV via the same spa-
tial weighting scheme used to create the GPROF database.
The matched data constitute over 120 million coincident ob-
servations spanning September 2014 through August 2015,
20 million of which contain positive rain rates in one or both
datasets. Here a threshold of 0.2 mm h−1 defines non-zero
rain to avoid the distribution’s tail that arises from averaging
of DPR data into the GMI footprint.
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Figure 10. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from 29 June 2015. (a) contains CSU
1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (χ2). (b) contains rain rates from GPROF, DPR, and the ground
radar. Colour conventions follow those of Fig. 7.

The 1DVAR retrieves rainfall in a significant percentage of
pixels where DPR sees no precipitation. Of all pixels where
the 1DVAR retrieved rain rates greater than 0.2 mm h−1,
DPR saw zero rain in 44 % of them, with an overall mean
rain rate of 0.24 mm h−1 vs. 1.43 mm h−1 from the 1DVAR.
This discrepancy is biggest for the drizzle retrievals, where
DPR retrieves zero rain rates for 59 % of GMI pixels found
to be drizzling. However, of all these cases with zero DPR
rain and positive rain from the 1DVAR, 80 % are below
2 mm h−1. This indicates that it is almost always light rain
that the 1DVAR picks up, consistent with the sensitivity lim-
itations of DPR. In the opposite view, the 1DVAR misses
a relatively small percentage of definite raining cases from
DPR and effectively none at higher rain rates. The 1DVAR
ascribes non-raining to only 2.3 % of DPR retrievals greater
than 0.5 mm h−1 and a mere 0.03 % of DPR retrievals greater
than 2 mm h−1. This result speaks to the sensitivity of the
1DVAR and its forward model, consistent with Duncan and
Kummerow (2016).

Additional analysis elucidates some physical causes for
1DVAR vs. DPR discrepancies beyond those of the sensors’
differing sensitivities. For example, pixels where the 1DVAR
fails to converge are more often characterized by the pres-
ence of a detectable bright band and higher DPR-detected

echo top heights. This is most stark for pixels screened out
due to high frequency scattering, which exhibit bright bands
in 42 % of their area on average and have echo top heights
over double those of 1DVAR-retrieved drizzle pixels, 5.3
vs. 2.5 km. This fits the hypothesis that most precipitation
missed by the 1DVAR involves significant mixed phase or
frozen hydrometeors. In fact, from the subset of pixels where
both DPR and 1DVAR retrieved rain, the echo top heights
bear out the algorithm’s large-scale separations. Mean echo
top heights of 2.7 and 3.4 km were found for converged strat-
iform and convective retrievals, respectively. The other main
cause for discrepancy is sub-pixel FOV heterogeneity. For
pixels where DPR and 1DVAR agree that it is raining, DPR
observes much less variability in sub-pixel rain rates. There-
fore, these are more aligned with the forward model, which
assumes a plane parallel atmosphere. The sub-pixel standard
deviation of rain rates from DPR is 3.2 mm h−1 for failed
1DVAR retrievals, compared to 0.5 mm h−1 for pixels where
the 1DVAR reached convergence.
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Figure 11. The same scene as Fig. 8, showing the difference of observed and simulated radiances, specifically at 37V (a) and 89H (b)
channels, and quality of fit (c). Black signifies pixels that did not converge.

6 Discussion

There are advantages and disadvantages to the variational
approach when applied to precipitation retrieval. As shown
in the comparisons against radar estimates, the retrieval de-
scribed here compares favourably in some cases and fails to
converge in others, sometimes for observations tens of kilo-
metres apart. This is a function of the simple forward model’s
ability or inability to adequately represent all radiometri-
cally significant constituents associated with oceanic rainfall.
However, the simplicity of the forward model is dictated by
the limited information content from the observed TB vec-
tor. This is the fundamental catch-22 of precipitation retrieval
with limited information. Additionally, the 1DVAR approach
will perform poorly if the relationship between state and ob-
servation vectors surpasses moderately non-linear behaviour
(Rodgers, 2000), a key upside of Bayesian integration (Kum-
merow et al., 2015).

Warm rain is difficult to observe with conventional valida-
tion sources and is a small fraction of the total precipitation
in many regions (Mülmenstädt et al., 2015), making it very
challenging to validate. The limited case studies presented
indicate that the 1DVAR can outperform GPROF and the
DPR in hand-picked situations, at least relative to CloudSat.
It is beyond the scope of this study to exhaustively validate
the retrieval, as it is experimental and not intended to be oper-
ational, meant instead to suggest a possible way forward for
future passive rainfall retrievals to reconcile the distribution
of precipitation from the GPM constellation (Skofronick-
Jackson et al., 2017) with those of other estimates (Behrangi
et al., 2016). With this in mind, the following discussion
probes the presented retrieval’s limitations, sensitivities, and
implications.

6.1 Limitations

This study has shown that DSD effects on forward model
error can be dealt with, but other impediments such as parti-
tioning liquid water path are perhaps the main cause of errors
with respect to radar rainfall estimates. A globally derived
drizzle onset threshold can cause high and low biases side
by side (Figs. 9 and 10), as the TBs cannot necessarily con-
vey information on cloud life cycle stage, microphysics, or
environmental regime that will affect whether or not a cloud
is raining. Similarly, because GMI lacks profile information,
there is no evaporation model, nor a physical model for driz-
zle rate. These aspects could conceivably be improved by
more extensive use of ancillary data.

The simplicity of the forward model – which accounts for
no spatial heterogeneity or 3-D radiative transfer effects –
is certainly a limitation. Beam-filling is a challenging obsta-
cle for physical retrievals with an explicit forward model,
and can cause high biases in retrieved liquid water (Rapp
et al., 2009). In the absence of independent sub-FOV obser-
vations, cloud fraction parametrizations or TB-based metrics
as a proxy for heterogeneity are not ideal or straightforward
to apply during iteration, and neither is post-processing of
rain rates after running a physical retrieval. This class of er-
rors is not addressed here, and is expected to cause a general
high bias in retrieved liquid water and rain rates, consistent
with Figs. 7 and 10.

6.2 Sensitivities

A few sensitivity experiments were conducted to investigate
the retrieval’s robustness. Experiments conducted with ad-
ditional PCs of RWC and PIWC yielded approximately the
same DFS as with one PC, demonstrating that retrieval of
additional profile parameters is not possible with the infor-
mation content available. In fact, the algorithm is quite in-
sensitive to the specific shape of the RWC profile employed.
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Figure 12. One year of GMI 1DVAR retrievals gridded at 0.5◦ resolution. The panels show: frequency of pixels with a non-zero rain rate (a),
frequency of non-convergent pixels (b), and the average root mean squared (RMS) errors between observed and simulated TB over all 13
channels for raining retrievals only (c).

A separate experiment using the mean RWC profile from the
PC analysis of CloudSat instead of the first PC yielded almost
identical results in the case studies examined (not shown),
due to TBs and rain rate being tied strongly to columnar liq-
uid and not its distribution (Fig. 4).

Another possible sensitivity of variational retrievals is
their dependency on the a priori state. To test this, the GPROF
retrieval was run before the 1DVAR and its columnar rain-
water used for the a priori value of RWP. This had a small
impact, increasing the number of raining pixels on average
by about 5 % but only changing the mean by 2 % as the dis-
tribution of rain rates was essentially the same. This more so-
phisticated prior led to greater convergence rates, with con-
vergence for the stratiform and convective cases 7 % more
likely. The case studies shown in Figs. 7 and 9 can be com-
pared with these modified a priori cases seen in Figs. A1 and
A2 in the Appendix, respectively.

Also shown in Figs. A1 and A2 are the sensitivity exper-
iments regarding the drizzle onset threshold. The threshold
was modified by adding and subtracting 50 g m−2 from the
drizzle LWP value. This is a large perturbation, but is about
2σ of typical LWP posterior errors and approximately the
difference between non-precipitating and transitional cloud
water paths reported by Lebsock et al. (2008). Increasing the
drizzle onset threshold caused a decrease in raining pixels by
about 30 %, while a decrease in the threshold caused an in-
crease in raining pixels by 50 %, with the number of points
retrieved as drizzle changing by a factor of two in each di-
rection. This seems quite significant, but perturbations had a
smaller impact on overall accumulations, increasing the av-
erage rain rate 9 % for the lower drizzle onset, and decreas-
ing the rain rate 7 % for the higher onset. Because drizzle
rates are generally insubstantial, changes to the drizzle onset
threshold may have a large impact on the frequency of light
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Figure 13. One year of GMI 1DVAR retrievals gridded at 0.5◦ resolution. Panel (a) shows GPROF mean rain rates from GMI. Panel (b)
shows a combination of GPROF plus 1DVAR-derived rain rates. The 1DVAR solution supersedes GPROF wherever it converged in rain and
non-raining conditions with χ2 < 1.0. Panel (c) shows the dominant modes of 1DVAR precipitation retrieved.

rain but not on global accumulations, though the impacts may
be substantial in persistently cloudy regions.

6.3 Implications

This study demonstrates that explicit forward modelling of
warm rain in a passive-only variational algorithm can indeed
work if constructed and constrained properly. Observed radi-
ances can be matched to modelled radiances successfully in a
selection of raining scenes if DSD variability is taken into ac-
count. Figure 11 shows observed minus simulated radiances
for two GMI channels, with little difference exhibited be-
tween raining and non-raining cloudy pixels. Similarly, the
bottom panel of Fig. 12 demonstrates that the 1DVAR re-
alistically simulates all 13 GMI channels in raining condi-
tions globally, typically within 2 to 3 K for the average chan-
nel without strong regional dependence. Though all-sky radi-
ance assimilation is not a directly comparable problem, this
level of agreement with observed radiances has implications

for how all-sky DA schemes could better match radiances in
raining conditions.

Figures 12 and 13 offer a global, more climatological view
of the warm rain retrieval, using the same 12 months of re-
trievals located within the DPR MS swath from the analysis
in Sect. 5.3. The frequency of converged 1DVAR raining re-
trievals lies between 2 and 10 % for much of the global ocean.
This can be contrasted with the frequency of non-convergent
retrievals to approximate the relative frequency of warm rain
vs. all precipitation. However, while it bears similarity to the
map of GPROF rain rates in Fig. 13, the retrieval can fail for
reasons other than precipitation not represented by the for-
ward model. For instance, much of the United States’ coast
exhibits a high frequency of non-convergent retrievals. This
is a function of radio frequency interference at 19 GHz, a
documented issue for GMI radiances in that region (Draper,
2018). Similarly, the algorithm relies on a χ2 threshold for
output, and thus the relative frequency of retrieved warm rain
will vary if using different χ2 thresholds.
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An unresolved question is how to reconcile the differences
between CloudSat-derived and GPM-derived precipitation
distributions over the global oceans (Skofronick-Jackson
et al., 2017, Fig. 5). GPROF and DPR observe less precip-
itation accumulation over the high latitude oceans and stra-
tocumulus regions, for instance, a function of their limited
sensitivities and sensor resolution (Behrangi et al., 2012).
To probe this question, the 1DVAR rain rates were added
to GPROF to ascertain the impact on the global rain distri-
bution, seen in Fig. 13. For all raining and non-raining pix-
els where the 1DVAR converged, GPROF values were sup-
planted by the 1DVAR rain rate and the averages recom-
puted. To be conservative, only 1DVAR retrievals with a fit
to observations within prescribed errors (χ2 < 1) were in-
cluded. This results in more rain just about everywhere over
the global oceans, but it especially enhances accumulated
rain in many regions where disagreements between Cloud-
Sat and GPM are strongest.

It is not surprising that 1DVAR-derived rainfall brings
GMI retrieval totals more in line with those of CloudSat due
to the algorithm’s reliance on CloudSat data for drizzle onset
thresholds. However, the relative simplicity of the 1DVAR’s
forward model and rainfall rate calculation – especially for
drizzle – means that these results should be treated with cau-
tion. This should be considered as a naive estimate with po-
tentially strong regional biases. Greater physical understand-
ing and dedicated work into rain rates from drizzle in differ-
ent regions would be needed to provide such an estimate with
confidence.

For the stated reasons, a Bayesian retrieval such as GPROF
still has advantages over a variational scheme for operational
global products of precipitation. But it is conjectured that a
blended Bayesian and variational approach may be prefer-
able for current generation radiometers, as warm rain’s rel-
atively small signal to noise can be ascertained better by
a variational algorithm while anything beyond warm rain
is currently better handled via Bayesian integration. Hyper-
spectral passive microwave sensors could provide better ob-
servational constraints for a variational algorithm in the fu-
ture (Birman et al., 2017), but current sensors’ information
content limitations dictate that sensing precipitation from a
passive satellite platform requires many compromises yet.

7 Summary and conclusions

This study has explored the feasibility of extending vari-
ational passive microwave retrievals from non-raining/non-
scattering regimes into the simplest precipitation regimes to
forward model, namely oceanic warm rain and drizzle. This
extension of a 1DVAR retrieval was accomplished via use of
CloudSat-derived a priori information for hydrometeor pro-
files and drizzle onset, combined with a novel treatment of
forward model errors caused by DSD assumptions. This aug-
mentation of the retrieval described by Duncan and Kum-

merow (2016) was applied to a year of GMI data to assess its
performance. Proofs of concept in Sect. 5 demonstrated that
the variational retrieval can add information on precipitation
in selected scenes. This was judged relative to an operational
algorithm using Bayesian integration and a case in which
drops exist between the sensitivity limits of the CloudSat and
GPM radars (Fig. 7), results that are in line with theory. Lim-
itations and sensitivities of the experimental retrieval were
discussed in Sect. 6, with the drizzle onset threshold the key
sensitivity. Limitations of the approach include the crude for-
ward model and the ambiguity of assigning drizzle or warm
rain. The transition from cloud to drizzle and warm rain is
continuous, reflected in a continuum of TB response, and de-
lineation between raining or non-raining states has to rely on
quality of fit metrics to collapse this into algorithmic rules.

It is concluded that a variational retrieval can add infor-
mation relative to operational precipitation products, albeit
in limited circumstances. Treatment of correlated forward
model errors, especially those caused by DSD assumptions,
is important – analysis herein shows that errors vary strongly,
depending on frequency, columnar rainwater, and meteoro-
logical regime (Fig. 5, Table 2). Collapsing the DSD vari-
ability to a binary classification was effective enough to per-
mit convergence in a variety of regimes and simulate radi-
ances with fidelity (Figs. 11, 12), an approach that can be
adapted as data on global DSD variability improves. The rain
rate estimates proffered by this experimental retrieval are ad-
mittedly simplistic due to beam-filling and evaporation not
being considered, and it remains to be seen whether such
an approach can be extended to other types of precipitation.
However, it is conjectured that the variational approach de-
scribed here could be useful for future operational precipita-
tion retrievals and radiance assimilation schemes, a way to
maximize the information currently available from passive
microwave sensors.

Code and data availability. The retrieval code referenced in this
study is available (https://doi.org/10.5281/zenodo.1098212, Dun-
can, 2017) along with sample output files.
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Appendix A: Appendix figures

Figure A1. Sensitivity tests following Fig. 7. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset
threshold decreased 50 g m−2, (b) increased 50 g m−2, and (c) using GPROF columnar rain water for the a priori state.

Figure A2. Sensitivity tests following Fig. 10. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset
threshold decreased 50 g m−2, (b) increased 50 g m−2, and (c) using GPROF columnar rain water for the a priori state.
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