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Abstract. Measuring particle size distribution accurately
down to approximately 1 nm is needed for studying atmo-
spheric new particle formation. The scanning particle size
magnifier (PSM) using diethylene glycol as a working fluid
has been used for measuring sub-3 nm atmospheric aerosol.
A proper inversion method is required to recover the parti-
cle size distribution from PSM raw data. Similarly to other
aerosol spectrometers and classifiers, PSM inversion can be
deduced from a problem described by the Fredholm inte-
gral equation of the first kind. We tested the performance of
the stepwise method, the kernel function method (Lehtipalo
et al., 2014), the H&A linear inversion method (Hagen and
Alofs, 1983), and the expectation–maximization (EM) algo-
rithm. The stepwise method and the kernel function method
were used in previous studies on PSM. The H&A method
and the expectation–maximization algorithm were used in
data inversion for the electrical mobility spectrometers and
the diffusion batteries, respectively (Maher and Laird, 1985).
In addition, Monte Carlo simulation and laboratory experi-
ments were used to test the accuracy and precision of the par-
ticle size distributions recovered using four inversion meth-
ods. When all of the detected particles are larger than 3 nm,
the stepwise method may report false sub-3 nm particle con-
centrations because an infinite resolution is assumed while

the kernel function method and the H&A method occasion-
ally report false sub-3 nm particles because of the unstable
least squares method. The accuracy and precision of the re-
covered particle size distribution using the EM algorithm are
the best among the tested four inversion methods. Compared
to the kernel function method, the H&A method reduces the
uncertainty while keeping a similar computational expense.
The measuring uncertainties in the present scanning mode
may contribute to the uncertainties of the recovered particle
size distributions. We suggest using the EM algorithm to re-
trieve the particle size distributions using the particle number
concentrations recorded by the PSM. Considering the rela-
tively high computation expenses of the EM algorithm, the
H&A method is recommended for preliminary data analysis.
We also gave practical suggestions on PSM operation based
on the inversion analysis.

1 Introduction

The particle size magnifier (PSM) using diethylene glycol as
a working fluid (Vanhanen et al., 2011) is widely used in new
particle formation studies (Kulmala et al., 2012, 2013; Kon-
tkanen et al., 2017) and other industrial applications (Nosko
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et al., 2016; Ahonen et al., 2017). A PSM can report particle
size distributions in the 1–3 nm size range, which is a key size
region in the nucleation study. Particles in the PSM grow to
larger sizes due to the condensation of supersaturated diethy-
lene glycol, and after the initial growth these particles are
detected using a downstream condensation particle counter
(CPC). The PSM detection efficiency (the CPC is included
if not specially mentioned) of particles with a certain diam-
eter is a function of the supersaturation ratio of diethylene
glycol. Increasing the flow rate passing through the chamber
containing saturated diethylene glycol vapour, i.e. the satura-
tor flow rate, can enhance the supersaturation ratio and thus
the particle detection efficiencies. The total particle number
concentration detected by the PSM varies with the varying
saturator flow rate, and one can determine the particle size
distribution according to the observed relationship between
the particle number concentration and the saturator flow rate.

A proper inversion method is required to recover the parti-
cle size distribution using the recorded relationship between
the particle number concentration and the saturator flow rate.
The stepwise method and the kernel function method were
used in previous studies for PSM inversion (Lehtipalo et al.,
2014). The stepwise method is a one-to-one linear inversion
method using the relationship between the 50 % cut-off size
and the saturator flow rate, which essentially assumes infi-
nite sizing resolutions; i.e. the particles of a specific size are
activated at a certain saturator flow rate. However, such an
approximation may lead to non-negligible errors due to the
relatively low resolution of the PSM. The kernel function
method accounts for the detection efficiency curves, and the
particle size distribution is recovered using the non-negative
least squares method.

Although the uncertainties of the particle size distribu-
tion determined using the PSM was discussed recently (Kan-
gasluoma and Kontkanen, 2017), the uncertainties intro-
duced during the data inversion have not been systemati-
cally addressed. There are always measuring uncertainties in
practical conditions; thus one should account for the mea-
suring errors when evaluating the performance of a data in-
version method. Because of the relatively low resolution of
the PSM, the matrix connecting the particle size distribution
and the observed total number concentration is usually ill-
conditioned. The kernel function method may theoretically
recover the observed particle size distribution when there are
no random errors. However, it sometimes leads to large un-
certainties when there are small random errors because of the
instability of the least squares method at a near-collinear data
set (Ellis, 1998).

The equation mapping the particle size distribution to the
particle number concentration detected by the PSM is the
Fredholm integral equation of the first kind, which arises in
many fields, e.g. when studying the molecular dynamics in
complex systems (Schäfer et al., 1996) and characterizing
the transfer function of an ion drift tube (Buckley and Hogan,
2017). Various types of aerosol spectrometers or classifiers,

e.g. cascade impactors, optical particle spectrometers, elec-
trical mobility spectrometers, and diffusional barriers, clas-
sify particles according to the signals recorded by a num-
ber of channels. There is no strict one-to-one relationship
between the particle number concentration in a certain size
range and the detected signal in a certain channel because of
the finite sizing resolutions. The inversion methods used in
the previous aerosol spectrometers can possibly be applied
to address the PSM inversion problem. The review of the in-
version methods for aerosol spectrometers can be found in
Kandlikar and Ramachandran (1999), Knutson (1999), and
Ramachandran and Cooper (2011).

An inversion method with less prior information on the
particle size distribution is preferable for the PSM inver-
sion problem. It is impossible to obtain a continuous particle
size distribution using a finite number of the detected signals
without any constraints, e.g. a known analytical expression
to describe the size distribution. Some inversion methods rely
on a presumed particle size distribution formula (Fuchs et al.,
1962; Raabe, 1978; Ramachandran and Kandlikar, 1996) or
prior information on the detection efficiencies (e.g. Onischuk
et al., 2018). However, approximating various shapes of the
observed sub-3 nm particle size distributions or the PSM de-
tection efficiency curves using a specific formula may lead
to relatively large uncertainties. Some methods are feasible
in certain conditions; however, sometimes they are not con-
vergent or may lead to high-frequency oscillations (Twomey,
1975; Ferri et al., 1989) due to practical random errors. Some
methods use smoothing criterions to deal with the oscilla-
tions (Markowski, 1987; Winklmayr et al., 1990). However,
they occasionally report an over-smoothed size distribution
because of the relatively low resolution and limited size bins
of the PSM. The Tikhonov regularization (Tikhonov, 1963)
uses a regularization parameter to determine the balance of
smoothing and the agreement with the recorded signals; thus
the method may cause the inverted result to determine the
regularization parameter (e.g. Wahba, 1977; Hansen, 1992).

Based on the reasons mentioned above, we chose the H&A
linear inversion method (Hagen and Alofs, 1983) and the
expectation–maximization algorithm, and tested the feasibil-
ity to apply these methods in the PSM inversion problem.
The H&A method is a linear inversion method used in size
distribution multicharge correction which has a relatively low
computational expense. The expectation–maximization al-
gorithm is an iterative method based on probability theory
(Dempster et al., 1977), and it was used to reconstruct parti-
cle size distributions from diffusion battery data (Maher and
Laird, 1985; Wu et al., 1989).

In this study, we tested the performance of the stepwise
method, the kernel function method, the H&A method, and
the expectation–maximization algorithm in the PSM inver-
sion. Experiments and Monte Carlo simulations accounting
for random errors were used to evaluate the sizing accuracies
and the uncertainties of the particle size distributions recov-
ered using four inversion methods. The influence of particles
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larger than 3 nm on the reported sub-3 nm particle size distri-
butions was discussed. Based on the comparison, the meth-
ods with comparatively low uncertainties and high stabilities
were recommended to address the PSM inversion problem.

2 Theory

2.1 PSM measuring theory

A PSM measures the total particle number concentration of
the activated particles. The sampled aerosol flow is mixed
with a high-temperature flow containing saturated diethylene
glycol coming from the saturator, and then the mixed flow
passes through a low-temperature growth tube. The parti-
cles large than a specific diameter can overcome the Kelvin
effect and grow to larger sizes due to the condensation of
supersaturated diethylene glycol. The detection efficiency is
mainly determined by the particle diameter and the saturator
flow rate. The chemical compositions and charging state may
affect the detection efficiencies (Kangasluoma et al., 2013,
2016a) and lead to errors in the reported particle size distri-
butions (Kangasluoma and Kontkanen, 2017). However, we
mainly focus on the inversion method in this study and as-
sume the detection efficiency is only size dependent at a cer-
tain saturator flow rate. Since the temperatures in the satu-
rator and the growth tube are fixed, a higher saturator flow
rate leads to a higher supersaturation ratio of diethylene gly-
col in the growth tube and hence higher detection efficiencies
(Fig. 1a). See Sect. 3.1 for the details on how to obtain the
detection efficiency curves. The detected total particle num-
ber concentration varies with the varying saturator flow rate
when the particle size distribution is unchanged. The rela-
tionship between the detected total particle concentration, R,
the saturator flow rate, s, and the particle size distribution
function, n, can be expressed in the Fredholm integral equa-
tion of the first kind:

Ri =

+∞∫
0

η
(
si,dp

)
× n× ddp+ εi, (1)

where Ri is the number concentration recorded at the ith
saturator flow rate, si ; dp is the electrical mobility diameter
since the calibrating particles are classified according to their
electrical mobility; η is the overall detection efficiency de-
termined by s and dp, including the detection efficiency and
the sampling efficiency; n is the probability density of par-
ticle number concentration (particle size distribution func-
tion), dN/ddp and N is the accumulated number concentra-
tion of particles smaller than dp; and εi is the error in the
recorded particle concentration at si .

There are many potential sources of the error, ε. For in-
stance, the uncertainties in the calibrated detection efficien-
cies, the systematic errors caused by the non-ideal fitting for-
mula of the detection efficiency curves, the CPC counting un-
certainties, the uncertainties in the supersaturation ratio due

Figure 1. (a) The fitted detection efficiency curves according to cal-
ibration data. (b) The estimated kernel function curves according to
the fitted detection efficiencies. The kernel function is equal to the
derivative of the detection efficiency with the respect to the saturator
flow rate.

to fluctuations in the flow rate and temperature, and the un-
stable aerosol source will all contribute to the difference be-
tween the detected number concentration and the expected
particle concentration assuming there is no error.

As shown in Fig. 1b, the kernel function of the PSM, K ,
is defined as the derivative of the detection efficiency, η, with
respect to the saturator flow rate, s. The area of the kernel
function is equal to the difference between the detection effi-
ciencies at the maximum and minimum saturator flow rates.
Here we define r as the derivative of the detected number
concentration, R, with respect to s. According to Eq. (1),
the relationship between r and s is also a Fredholm integral
equation of the first kind:

rm =

+∞∫
0

K
(
sm,dp

)
× n× ddp+ ε

′
m, (2)

where rm is the r at the mth saturator flow rate, sm; and ε′m
is the error in rm. Although r is theoretically defined as the
derivative of R, practically one can only approximate r using
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the difference between two adjacent Ri over the increment in
si and approximate sm with the mean value of the two cor-
responding si . These approximations also contribute to the
uncertainties, ε′m in addition to the aforementioned sources
for εi .

When using a PSM to determine particle size distributions,
the PSM records the varying total particle concentration, Ri ,
and the corresponding saturator flow rate, si . The saturator
flow rate may vary continuously in the scanning mode or
fixed at different flow rates in the stepping mode. The par-
ticle size distributions are recovered using the recorded rela-
tionship between Ri and si or the relationship between the
approximated rm and sm.

The sizing ability of the PSM can be described using the
size resolution. Similarly to defining the sizing resolution of
a differential mobility analyser (DMA, Flagan, 1999) to clas-
sify particles according to their electrical mobility, we define
the resolution of a PSM as

Res=
s∗

1s
, (3)

where Res is the resolution at s∗, s∗ is the peak saturator flow
rate of a kernel function, and1s is the full width at half max-
imum of the kernel function peak. A relationship between
the saturator flow rate and the electrical mobility diameter is
defined to straightforwardly relate the resolution and the par-
ticle diameter. The peak saturator flow rate, s∗ is defined as
the corresponding saturator flow rate of the particle diame-
ter. This definition is similar but different from the definition
using the saturator flow rate at the half maximum detection
efficiency in Lehtipalo et al. (2014) and in the commercial-
ized PSM. The sizing resolution of a PSM can be estimated
according to the relationship between s and dp, as shown in
Fig. 2. However, the resolution alone is not sufficient to indi-
cate the possible reported size range when the PSM is mea-
suring monodisperse particles because the kernel functions
are asymmetric and the inversion method also affects the re-
constructed peaks. One should especially keep in mind that
the PSM does not measure particle diameter because the re-
lationship between s and dp is only a definition rather than
an intrinsic correlation. A PSM only records the varying par-
ticle concentration against the varying saturator flow rate (as
indicated in Eqs. 1 and 2). One can only obtain the particle
diameters via proper data inversion.

2.2 The stepwise method

The resolution of the PSM is assumed infinite in the stepwise
method. Thus, the integral equation relating n and r collapses
into a one-to-one corresponding relationship (Lehtipalo et
al., 2014).

nm =
2(Ri+1−Ri)

η (smax,di)+ η(smax,di+1)
×

1
di − di+1

, (4)

where nm is the particle size distribution function (dN/ddp)
at dm; dm, di , and di+1 are the corresponding half-maximum

Figure 2. The saturator flow rate at kernel function peak and the
resolution as functions of the particle diameter. Note that the reso-
lution is defined using the saturator flow rate, but the horizontal axis
is shown in the particle diameter corresponding to the peak saturator
flow rate for a more straightforward understanding.

cut-off diameters of sm, si , and si+1; and sm is the mean value
of si and si+1. The relationship between particle diameter
and the saturator flow rate is determined using the saturator
flow rate at the half maximum detection efficiency (Lehti-
palo et al., 2014). The stepwise method does not magnify the
relative error in measurement since it is a one-to-one inver-
sion method. However, the inverted results using the stepwise
method are perhaps non-negligibly affected by the relatively
low resolutions of the PSM.

2.3 The kernel function method

The kernel function method assumes that the particle size
distribution can be approximated using several particle size
bins and the detection efficiencies of particles in each size
bin are the same. The mathematical description of this ap-
proximation is

rm ≈

J∑
j=1

K
(
sm,dj

)
× nj ×1dj , J ≤ I − 1, (5)

where dj is the representing particle diameter of each size
bin; J is the number of dj ; nj is the particle size distribution
function (dN/ddp) at dj ; 1dj is the length of each size bin;
and I is the number of Ri . The symbol of ≈ is to emphasize
that Eq. (5) is an approximation even if there are no measur-
ing errors because it approximates the integral with a finite
discrete sum and estimates rm using the recorded Ri . Using
a matrix, Eq. (5) can be rewritten as

r(I−1)×1 ≈G(I−1)×J ·nJ×1, J ≤ I − 1, (6)

where

Gi,j =K
(
si,dj

)
×1dj . (7)
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The upper case letters in Eq. (6) indicate the dimensions of
the matrix and the vectors, while the lower case letters in
Eq. (7) represent the corresponding element. The particle size
distribution is obtained via solving Eq. (6) using the non-
negative least squares method.

2.4 The Hagen & Alofs method

The H&A method (Hagen and Alofs, 1983) was proposed to
deal with the multicharging correction problem when using
a DMA. It can also be used to solve the PSM inversion prob-
lem. Similarly to the kernel function method, a discrete sum
is used to approximate the integral:

Ri =

J∑
j=1

η
(
si,dj

)
× nj ×1dj , J � I (8)

RI×1 = PI×J ·nJ×1. (9)

Equation (9) is the vector form for Eq. (8) and P is the ma-
trix relating nj and R. We use the symbol of = in Eqs. (8)
and (9) rather than ≈ because the H&A method requires a
J much larger than I . One should increase J if the error
in approximating the integral with the discrete sum is still
large. Usually, J is determined as 30 times that of I consid-
ering the computational expenses. However, Eq. (8) itself is
not solvable because there are more unknown variables than
the equations. Thus, additional constraints are required. The
H&A method assumes that any nj can be approximated us-
ing ni , i.e.

nj ≈ f
(
ni,dj

)
(10)

nJ×1 ≈ FJ×I ·nI×1, (11)

where f is the function relating nj and ni (ni is a vector); ni
is the particle size distribution function at di ; nj is estimated
using more than one single ni ; and Eq. (11) is the vector form
for Eq. (10). The determination of di is theoretically arbitrary
as long as the number of di is the same as the number of Ri .
For the details on determining f , please refer to Hagen and
Alofs (1983).

Similarly to the kernel function method, the relationship
between the particle size distribution and the number concen-
tration recorded by the PSM can be described in the vector
form:

RI×1 ≈ PI×J ·FJ×I ·nI×1 =QI×I ·nI×1. (12)

P and F are determined according to Eqs. (8)–(11) and thus
Q is determined by η, f , and 1dj . One can directly solve
Eq. (10) (e.g. via Gaussian elimination) since Q is usually
non-singular. However, in contrast to the matrix obtained
from a DMA, the matrix Q in PSM inversion problem is
usually not a positive-definite matrix because the detected
particle concentration sometimes decreases with the increas-
ing saturator flow rate due to random errors. Simply solving

Eq. (12) often obtains negative values in particle size distri-
butions. Thus, the non-negative least squares method is sug-
gested to determine the particle size distribution in the PSM
inversion problem. The H&A methods can also reconstruct
the particle size distribution according to the relationship be-
tween rm and sm. However, using the kernel functions in-
stead of the detection efficiencies does not necessarily im-
prove the accuracy or precision of the results. On the con-
trary, we found that using the kernel functions usually leads
to larger uncertainties than when using the detection efficien-
cies, because of the errors caused by approximating rm.

The H&A method is theoretically more stable than the
kernel function method because of the more accurate as-
sumption of the true aerosol size distribution. However, the
H&A method adapted for PSM inversion may still report
size distributions with large uncertainties because of the least
squares method. The computational expense of the H&A
method is similar to that of the kernel function method be-
cause the rate-limiting step is to solve the least square ques-
tion. Their low computational expense is an advantage over
other non-linear inversion methods.

2.5 The expectation–maximization algorithm

The EM algorithm is a statistical method dealing with in-
version problems with unobserved latent variables. An ex-
planation of the EM algorithm can be found in Do and Bat-
zoglou (2008). In the PSM inversion problem, the latent vari-
able is Ri,j , defined as the contribution of particles with the
diameter of dj to the detected number concentration,Ri (Ma-
her and Laird, 1985). The algorithm obtains the recovered
particle size distribution using two steps: the expectation step
and the maximization step. In the expectation step, the values
of Ri,j are estimated according to Bayesian theorem:

Ri,j =
nj × η

(
si,dj

)
×1dj

J∑
j=1

nj × η
(
si,dj

)
×1dj

. (13)

In the maximization step, the particle size distribution func-
tion is estimated according to the maximum likelihood:

nj =

I∑
i=1
Ri,j

I∑
I=1

η
(
si,dj

)
×1dj

. (14)

The EM algorithm obtains the recovered particle size distri-
bution by repeating the expectation step and the maximiza-
tion step until convergence. The convergence can be mea-
sured by the likelihood function (Maher and Laird, 1985).
The values and the number of dj are not limited when using
the EM algorithm, and a larger J can reduce the errors in
approximating the integral using the discrete sum. Thus, the
EM algorithm is able to report particle size distributions with
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more size bins compared to the stepwise method, the kernel
function method, and the H&A method.

The EM algorithm is more stable compared to the al-
gorithms based on the least squares methods (Maher and
Laird, 1985). The convergence of the EM algorithm has been
proved (Dempster et al., 1977), but the convergence speed
is not mathematically guaranteed. Compared to the kernel
function method and the H&A method, the computational
expense of the EM algorithm is much higher. In addition, the
EM algorithm is a greedy algorithm in that the iteration is
easily trapped in a local optimum. To start the first expecta-
tion step, an initial guess of the particle size distribution is
required. We suggest the initial guess to be a vector of all of
them. Note that the EM algorithm is sensitive to the initial
guess and uses a recovered particle size distribution obtained
from another method; i.e. the stepwise method does not nec-
essarily improve the iteration results.

3 Methods

3.1 Experiments

Laboratory experiments using particles with known peak
sizes or size distributions were conducted to test the inver-
sion methods (Fig. 3). Sub-10 nm tungsten oxide particles
were generated using a wire generator (Peineke et al., 2006;
Kangasluoma et al., 2015). In the narrow peak measure-
ment, the negatively charged particles were classified using
a high-resolution Herrmann DMA. The sizing resolutions of
the Herrmann DMA in the experimental conditions were no
smaller than 25 (Kangasluoma et al., 2016b). Thus, the clas-
sified aerosols out of the Herrmann DMA can be approxi-
mately regarded as monodisperse. The relationship between
the Herrmann DMA voltage and the classified particle size
was calibrated using standard molecular ions (Ude and de la
Mora, 2005). A TSI 3068B aerosol electrometer using the
same aerosol flow rate with the PSM (2.5 L min−1) was used
as the reference.

In the wide peak measurement, the particle size distri-
butions classified using a TSI nanoDMA have wider peaks
than those generated in the narrow peak measurement. The
aerosol and sheath flow rates of the nanoDMA were 2 and
10 L min−1. It should be clarified that the particle size distri-
butions classified using the nanoDMA in the wide peak mea-
surement were still narrow due to the limitation of the nan-
oDMA. A lower sizing resolution either achieved by a higher
aerosol-to-sheath flow ratio will cause the nanoDMA to be
out of work due to significant turbulence. A half-mini DMA
(Fernández de la Mora and Kozlowski, 2013) with calibrated
penetration efficiency and a downstream Faraday cage elec-
trometer (FCE) was used to measure the classified particle
size distributions in parallel.

The PSM (Airmodus A11) was calibrated using negatively
charged tungsten oxide particles before the test. The experi-

Figure 3. The experimental set-up to calibration the PSM and test
the inversion methods.

mental set-up for the calibration was the same as that used
in the narrow peak measurement. The influence of the fi-
nite resolution of the Herrmann DMA on the calibrated ef-
ficiency curves was negligible. The saturator flow rate of
the tested PSM varied from 0.05 to 1.3 L min−1. This sat-
urator flow rate range is wider than that of a typical PSM
and obtains a complete kernel function curve of 3 nm parti-
cles. The maximum background noise of the PSM was ap-
proximately 1 cm−3, which was negligible compared to the
usually detected particle concentrations. The detection effi-
ciency is determined as the ratio of the particle number con-
centrations reported by PSM over the number concentration
reported by the electrometer. The detection efficiency curves
of the PSM were fitted using a function (Eq. 15) modified
from the Chapman–Richards growth curve (Richards, 1959),
which fitted better than other tested functions for the tested
PSM.

η = a× [1+ |b| × (s− smax)]×
[
1− exp(−c× s)

]d
, (15)

where smax is the maximum saturator flow rate (1.3 L min−1);
a, b, c, and d are the fitting parameters. If not specially men-
tioned, the PSM was fixed at 18 different saturator flow rates
when measuring the particle size distributions in this study.
This operation in the stepping mode was to avoid the poten-
tial uncertainties introduced in the scanning mode. The sta-
bility of the particle size distribution was monitored using the
reference FCE during the relatively long measuring period.

3.2 Simulation

The performance of the four inversion methods was also
studied using Monte Carlo simulations. The detection effi-
ciencies used in the simulations were determined according
to the calibrated efficiencies but slightly adjusted towards
smoother curves. The uncertainties in practical calibration
were neglected in the simulation.

The particle number concentrations detected at different
saturator flow rates were simulated using a certain initial par-
ticle size distribution. The random error, εi , was inserted into
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Figure 4. The recovered particle size distributions using different inversion methods when measuring monodisperse particles. FCE, SW,
kernel, H&A, and EM are short for the Faraday cage electrometer, the stepwise method, the kernel function method, the H&A method, and
the expectation–maximization algorithm, respectively. The number concentration detected by the reference FCE and the sum of recovered
sub-3 nm particle concentration in each size bin are shown in the text. The size distributions in panel (d) were recovered using the sum
of the recorded number concentrations in panels (a), (b), and (c), i.e. assuming the PSM was measuring 1.51, 2.41, and 3.93 nm particles
simultaneously. The sub-3 nm particle concentrations reported by different inversion methods are summarized in Table 1.

the simulated particle concentration, Ri . The random errors
were determined experimentally. The relative random errors
were larger than the statistical relative errors predicted using
Poisson distribution (Iida, 2008; Kuang et al., 2012; Kan-
gasluoma and Kontkanen, 2017) and independent of the par-
ticle concentrations at a certain instrumental configuration,
indicating that random errors were governed by the fluctua-
tions of the source and/or the instrumental parameters (e.g.
flow rate). We used the mean relative random standard de-
viation observed in the experimental tests with 3.7 % as the
representative value. In total 10 data points were assumed
to be collected at each saturator flow rate. Thus, the random
errors inserted into the simulated particle concentrations; i.e.
the relative standard deviations of the mean particles concen-
trations, were assumed to be 1.2 % (= 3.7%/

√
10). A rela-

tively large random error of 10 % obtained from the ambient
measurements was also tested. The Monte Carol simulation
was conducted 10 000 times using each inversion method to
estimate the accuracy and precision of the recovered particle
size distribution indicated by the mean values and the stan-
dard deviations of the inverted results.

4 Results and discussion

4.1 Sizing accuracy

The inversion methods tested in this study, i.e. the stepwise
method, the kernel function method, the H&A method, and
the EM algorithm, are able to estimate the classified parti-
cle diameters when the PSM was measuring nearly monodis-
perse sub-3 nm particles. When the classified particle diam-
eters were 1.51 and 2.41 nm, all of the four inversion meth-
ods could recover single peaks around the classified diame-
ter (Fig. 4a, b). The size distribution reported by the stepwise
method was the largest because the stepwise method does not
account for the resolution of the PSM. Note that the peak di-
ameters reported by the kernel function method and the H&A
method were also affected by the selection of the particle size
bins. The total particle concentrations obtained via inversion
were similar to the number concentration detected by the ref-
erence FCE, except for the number concentration of 1.51 nm
particles reported by the kernel function method.
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None of the four inversion methods could size parti-
cles larger than 3 nm with relatively good sizing accuracies.
When the classified particle diameter was 3.93 nm, the four
inversion methods failed to report narrow peaks with peak
diameters approximating 3.93 nm (Fig. 4c). This is because
the PSM resolution for particles larger than 3 nm is low;
i.e. the resolution was ∼ 1.0 when measuring the classified
3.93 nm particles (Fig. 2). The 3.93 nm particles contribute
to the signal for 2.17 nm particles when using the stepwise
method (inferred from Figs. 1 and 2). When focusing on
the sub-3 nm particle size range, the kernel function method,
the H&A method, and the EM algorithm reported nearly no
sub-3 nm particles. However, the stepwise method reported
a non-negligible number of sub-3 nm particles with a total
number concentration of 1591 cm−3 due to the low size res-
olution.

We further tested the sizing ability of the four inversion
methods using the sum of the recorded particle concentra-
tions when the PSM was measuring 1.51, 2.41, and 3.93 nm
particles (Fig. 4d). The kernel function method, the H&A
method, and the EM algorithm distinguished the particles
with different sizes, and the reconstructed peaks were simi-
lar to the corresponding peaks when the PSM was measuring
monodisperse particles. The inverted results using the step-
wise method was also unaffected by the summation; how-
ever, it was difficult to distinguish the isolated peaks from
the recovered particle size distribution due to the broadened
size distribution.

The size distributions of particles larger than 3 nm could
not be successfully retrieved via data inversion because of the
low resolution of PSM for these particles. However, it helped
to recover sub-3 nm particle size distributions. Most of the
reported particle sizes using the kernel function method, the
H&A method, and the EM algorithm were larger than 3 nm
when the PSM was measuring 3.93 nm particles (Fig. 4c).
This estimation of particles larger than 3 nm ensured a rela-
tively accurate sizing of sub-3 nm particle size distribution
(Fig. 4d). Thus, we recovered the particle size distribution up
to 5 nm using different inversion methods but focus only on
the sub-3 nm size range.

4.2 Uncertainties using different inversion methods

The stepwise method, the kernel function method, and the
H&A method may report false sub-3 nm particles when there
are only particles are larger than 3 nm in the input aerosol. A
particle size distribution with a peak diameter of 5 nm and
nearly no sub-3 nm particles was simulated (Fig. 5a). The
detected particle concentrations were assumed to fluctuate
with a 1.2 % relative standard deviation due to measuring un-
certainties (Fig. 5b). The EM algorithm reported nearly no
sub-3 nm particles except for the smallest size bin at 1.16 nm
(Fig. 5c). The expected values of particle concentrations in
the bins smaller than 3 nm recovered using the H&A method
were near zero; however, false sub-3 nm particle concentra-

tions were occasionally reported (Fig. 5d). Compared to the
H&A method, the size distribution recovered using the kernel
function method was more unstable, especially in the sub-
2 nm size range (Fig. 5e). The simulated uncertainty is the
main cause of the false sub-3 nm particle concentrations re-
ported by the H&A method and the kernel function method
in Fig. 5. When assuming that there is no error in the par-
ticle concentration detected by the PSM, the H&A method
and the kernel function method report nearly no particles in
the sub-3 nm size range. In contrast to the H&A method and
the kernel function method that reported false results due to
their instability, the stepwise method reported false particle
size distributions when assuming there are no uncertainties
(Fig. 5f). This is because the stepwise method assumes a sim-
ple one-to-one relationship between the saturator flow rate
and the recovered particle diameter instead of accounting for
the wide kernel function peaks. For sub-1.5 nm particles, the
non-zero mean particle concentration reported by the step-
wise method is due to the simulated uncertainties.

The false sub-3 nm particle concentrations due to im-
proper inversion methods were tested experimentally. Par-
ticles larger than 5 nm were classified using the nanoDMA
(Fig. 6a). No sub-3 nm particles were reported using the EM
algorithm and the H&A method. On the contrary, the kernel
function method and the stepwise method reported approxi-
mately 3×103 particles when the total particle concentration
measured using the DMA–FCE system was approximately
2.4×104. Based on both the simulating and experimental re-
sults, we conclude that the PSM may report false sub-3 nm
particle size distributions when there are actually no sub-
3 nm particles because of the uncertainties and the non-ideal
data inversion methods, especially the stepwise method. Note
that large particles with detection efficiencies that do not vary
with the saturator flow rate do not lead to a bias in the re-
covered sub-3 nm particle concentrations. We examined this
theoretical deduction experimentally using a PSM to mea-
sure ambient particles in the room air and the recorded parti-
cle concentration did not significantly vary with the saturator
flow rate.

The performance of the four inversion methods in the sub-
3 nm size range under the influence of larger particles was
tested using a bimodal distribution (Fig. 7a). Similar parti-
cle size distributions are usually observed in the atmospheric
new particle formation events (Jiang et al., 2011) and in flame
(Tang et al., 2017). As shown in Fig. 7, the particle size dis-
tribution recovered using the EM algorithm had the highest
accuracy and the smallest uncertainties among the four meth-
ods. The recovered particle size distribution using the EM
algorithm had a slightly different shape compared to the ini-
tial distribution because the results were trapped in the local
optimum. However, the differences between the recovered
and the initial size distributions were the smallest. The stan-
dard deviations of the size distribution recovered using the
H&A method and the kernel function method were relatively
large due to the unstable least squares method. Because of a

Atmos. Meas. Tech., 11, 4477–4491, 2018 www.atmos-meas-tech.net/11/4477/2018/



R. Cai et al.: Data inversion methods to determine sub-3 nm aerosol size distributions 4485

Table 1. The inverted particle concentrations (in cm−3) using different inversion methods and the total particle number concentration (in
cm−3) recorded by the Faraday cage electrometer when measuring monodisperse particles.

Diameter of test particles

1.51 nm 2.41 nm 3.93 nm 1.51, 2.41, and 3.93 nm
(Fig. 4a) (Fig. 4a) (Fig. 4a) (Fig. 4d)

Electrometer 5540 3097 7081 8637
EM algorithm 5528 3243 20.5 8546
H&A method 5426 3027 0 8050
Kernel function method 7562 3497 227 10 948
Stepwise method 5910 3179 1591 12 035

better assumption of the initial particle size distribution, the
H&A method resulted in smaller uncertainties compared to
the kernel function method, especially in the sub-2 nm size
range. The size distribution recovered using the EM algo-
rithm has higher accuracy and stability compared to both the
H&A method and the kernel method because the one-to-one
inversion method does not magnify relative errors.

The experimental tests using bimodal distributions agreed
with the simulation results. The particles with a peak diam-
eter at approximately 2.3 nm were classified using the nan-
oDMA. We added the observed number concentration to
those detected in Fig. 6a (particles larger than 5 nm) to ac-
count for the influence of large particles. Unfiltered room
air served as the make-up flow to provide background par-
ticles. As shown in Fig. 8, all the four inversion methods re-
covered the peak around 2.3 nm, while the results reported
by the H&A method and the kernel function method were
less smooth compared to the EM algorithm and the stepwise
method.

Smoothing the size distribution recovered using the H&A
method and the kernel function method into fewer size bins
can reduce the uncertainties. We determined the number of
the size bins of the recovered distributions according to the
number of the fixed saturator flow rates. Too many size bins
will lead to relatively large uncertainties, but the uncertain-
ties can be reduced by sacrificing the resolution, i.e. reporting
the size distribution in fewer bins. The size distributions re-
covered using the kernel function method were typically re-
ported in 4–6 bins (Lehtipalo et al., 2014). This was achieved
by assuming fewer discrete particle diameters in Eq. (5). An-
other option is to merge bins into fewer numbers after in-
version rather than assume fewer bins at the beginning. Note
that the H&A method cannot assume fewer discrete size bins
at the beginning. Instead, the H&A method assumes an ad-
equate number of size bins to guarantee a relatively smooth
distribution (Eq. 8). As shown in Fig. 9, the standard devi-
ations of the reported size distribution with fewer size bins
were comparatively smaller than the corresponding standard
deviations with more size bins shown in Fig. 7. The H&A
method reported size distributions with smaller standard de-
viations than the kernel function method, and the kernel func-

tion reported in merged size bins had smaller standard de-
viations than the kernel function method using fewer size
bins at the beginning. This is because approximating the true
particle size distribution, which is usually a smooth curve,
with fewer discrete size bins will lead to larger uncertainties.
Thus, we suggest merging the recovered particle size distri-
bution into a few size bins to reduce the uncertainties when
using the H&A method and the kernel function method.

Relatively large uncertainties were found when recovering
sub-1.3 nm particle size distributions. A particle size distribu-
tion with an increasing dN/ddp as a function of the decreas-
ing particle diameter, which is a typical particle size distri-
bution observed in the atmospheric new particle formation
events (Jiang et al., 2011), was used to test the four inversion
methods (Fig. 10). None of the inversion methods reported
a particle size distribution with relatively small uncertainties
comparable to the inverted results shown in Fig. 7c, espe-
cially in the sub-1.3 nm size range. Similarly to the results
for particles larger than 3 nm, the low resolution of particles
smaller than 1.3 nm (Fig. 2) is possibly the cause of the large
uncertainties. In addition, incomplete kernel function peaks
and the relatively low detection efficiencies of sub-1.3 nm
particles may also contribute to the uncertainties (Fig. 1).

The performance of the inversion methods under relatively
large random errors was also tested. The relative standard de-
viation used in the above simulations, 3.7 %, was estimated
according to laboratory experiments. The relative standard
deviations of the recorded particle number concentration ob-
tained from the atmospheric measurement were usually sim-
ilar to the value obtained in the laboratory, indicating that
the random errors were governed by instrumental factors.
However, relatively large uncertainties in the recorded par-
ticle number concentrations were sometimes observed due
to the unstable atmospheric aerosol source. Thus, we simu-
lated the performance of the four inversion methods using a
relative standard deviation of 10 %. It should be clarified that
the value 10 % only characterizes the random errors in the
CPC since it was estimated using the data when the recorded
particle number concentration did not vary with the saturator
flow rate. Compared to the results in Fig. 7 simulated us-
ing the same aerosol size distribution, the uncertainties in the
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Figure 5. The recovered sub-3 nm particle size distributions sim-
ulated using the Monte Carlo method when the detected particles
were larger than 3 nm. (a) The assumed true particle size distri-
bution. (b) The simulated particle concentrations recorded by the
PSM. The concentrations were assumed to fluctuate due to random
errors. The particle size distributions were recovered using (c) the
EM algorithm, (d) the H&A method, (e) the kernel function method,
and (f) the stepwise method. The error bar represents the standard
deviation of the recorded particle concentration or the recovered
size distribution, and the shaded area indicates the range determined
by 3 times the standard deviation. The dashed lines represent the in-
verted results assuming there were no random errors in the recorded
particle number concentrations. Note that the scale of the vertical
axis in panels (c)–(f) is different and the appearing possibility of
recorded counts or the recovered size distribution is not uniform in
the shaded area.

Figure 6. The experimental testing results of the four inversion
methods when the PSM was measuring particles larger than 3 nm.
(a) The particle size distribution detected by the reference half-mini
DMA–FCE system. (b) The particle concentrations recorded by the
PSM. The error bars indicate the standard deviations of the recorded
particle concentrations. (c) The recovered particle distributions us-
ing different inversion methods.

recovered particle size distributions using the larger relative
standard deviation of 10 % was larger (Fig. 11). The EM al-
gorithm still reported smaller uncertainties compared to the
H&A method and the kernel function method. Note the ex-
pected value of sub-2 nm particle size distribution recovered
using the kernel method was close to the input size distribu-
tion when the uncertainty was 3.7 % (Fig. 7); however, the
recovered size distribution in the sub-2 nm size range was
non-negligibly overestimated when the uncertainty was 10 %
(Fig. 11).

4.3 Uncertainties in the scanning mode

The PSM instrumental factors limiting the accuracy of the
inversion were also tested. Although using the EM algorithm
and the H&A method can reduce the errors in the recovered
size distributions compared to the kernel function method
and the stepwise method, relatively small measuring uncer-
tainties are still vital to retrieve a particle size distribution
with relatively high accuracy. The uncertainty in the scan-
ning mode, for example, is one of the potential sources of the
measuring uncertainties. The saturator flow rate of a scan-
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Figure 7. The input and recovered sub-3 nm particle size distribu-
tions simulated using the Monte Carlo method. Note the vertical
axes in panels (c)–(f) are not the same.

ning PSM increases linearly with time in previous studies.
However, the relationship between the particle diameters and
the saturator flow rates at the kernel function peaks is non-
linear (Fig. 2). The detection efficiencies of particles larger
than 1.6 nm vary mainly in the flow rate range from 0.05 to
0.3 L min−1, while the corresponding scanning time is only
20 % of the whole scanning cycle. This non-linear relation-
ship may result in non-negligible uncertainties in the recov-
ered particle size distributions (Fig. 12). The EM algorithm
recovered the single peak when using the particle concentra-
tions recorded in the stepping mode. However, the recovered
particle size distribution using the EM algorithm was not a
single smooth peak when using data recorded in the scan-

Figure 8. The experimental testing results of the four inversion
methods when the PSM was measuring sub-3 nm particles with the
influence of larger particles. The particle number concentrations
for the inversion and the particle size distribution detected using
the DMA–FCE system were the sums of two separate experiments
rather than real data obtained in a single experiment.

Figure 9. Comparisons of the inverted results using (a) the H&A
method smoothing the particle size distribution via merging size
bins; (b) the kernel function method smoothing the particle size dis-
tribution via merging size bins; and (c) the kernel function method
assuming fewer discrete particle sizes in Eq. (5).

ning mode (Fig. 12). This difference can be illustrated using
the raw data. The curves of the particle number concentra-
tion recorded in the stepping mode and the scanning mode
are similar to each other and they both appear to be smooth
(Fig. 13a). When presenting in the derivate of the particle
number concentration with the respect to saturator flow rate,
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Figure 10. The input and recovered sub-3 nm particle size distri-
butions simulated using the Monte Carlo method when the particle
size distribution increases with decreasing particle diameter.

however, the curve corresponding to the stepping mode ap-
peared to be a single peak, while the other curve correspond-
ing to the scanning mode seemed to be composed of multi-
ple single peaks (Fig. 13b). Since none of the four inversion
methods tested in this study add smoothing constraints when
solving the Fredholm integral equation of the first kind, this
roughness in the raw data will lead to split peaks in the re-
covered particle size distribution unless one reports the size
distribution using only a few size bins.

Figure 11. The recovered particle size distributions simulated using
the Monte Carlo method when assuming the relative standard devi-
ation of the recorded particle number concentration are 10 %. The
reported size bins smaller than 1.3 nm recovered using the kernel
function method and the stepwise method are not shown because of
the large uncertainties.

Figure 12. The recovered particle size distributions using the par-
ticle number concentration recorded in (a) the stepping mode and
(b) the scanning mode.
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Figure 13. (a) The relationship between the recorded particle num-
ber concentration and the saturator flow rate in the scanning mode
and the stepping mode. (b) The derivative of number concentration
with the respect to the saturator flow rate.

4.4 Implications on using the PSM

According to the discussion above, we provide the follow-
ing suggestions on using a PSM to determine particle size
distributions:

a. Particle size range and saturator flow rate range

Complete efficiency curves are preferable to determine
the particle size distribution in a certain size range. For
example, to reduce the uncertainties in the recovered
size distribution of ∼ 3 nm particles, the saturator flow
rate in this study was extended from the commonly used
0.1 to 0.05 L min−1 where the detection efficiency of
3.11 nm particles was almost zero. The detection effi-
ciency curves of particles larger than the maximum con-
cerned diameter should also be calibrated to reduce the
influence of large particles on the recovered particle size
distribution and total concentration. The PSM can the-
oretically estimate particle size distributions larger than
3 nm or smaller than 1.3 nm; however, the uncertainties
are usually large due to the low resolution and the in-
complete detection efficiency curves. The particles with
detection efficiency of constant values in the measuring
saturator flow rate range cannot be determined using a
PSM and they do not influence the recovered particle
size distributions if their concentrations are stable dur-
ing each scanning cycle.

b. Scanning scheme

The scanning scheme of the saturator flow rate is sug-
gested to be improved to reduce the measuring uncer-
tainties. The scanning scheme is preferably determined
to ensure that the particle diameter corresponding to the

saturator flow rate increases linearly with time so that
the numbers of the recorded particle number concen-
tration at each saturator flow rate are the same when
the recovered particle size increases linearly. A con-
vex function between the saturator flow rate and the
scanning time, e.g. an exponentially increasing saturator
flow rate, is also better than the linear scanning scheme.
This improvement may require both the hardware and
the software to be updated.

c. Inversion method

We suggest using the EM algorithm to address the PSM
inversion problem because the particle size distributions
recovered using the EM algorithm have the best accu-
racy and stability among the four tested methods. How-
ever, considering the relatively high computational ex-
pense of the EM algorithm, the H&A method reporting
in merged size bins is recommended to be used for pre-
liminary data analysis and to meet the need of fast inver-
sion, e.g. real-time display on the instrumental screen.
The accuracy of the recovered size distribution is also
determined by the uncertainties in the recorded number
concentration rather than the inversion method alone.
The inversion methods suggested in this study do not
necessarily ensure an accurate inverted result without
properly determined detection efficiencies and an im-
proved scanning scheme.

d. Uncertainties in atmospheric measurement

One should be always aware of the potential uncertain-
ties in the recovered particle size distribution, especially
when conducting atmospheric measurement. The re-
ported sub-3 nm particle concentrations may give false
results due to systematic and random errors, especially
when using the stepwise method. The number of the re-
ported size bins should also be carefully limited. For
example, the EM algorithm can theoretically provide
infinite size bins; however, we suggest reducing the re-
ported size bins to avoid false fluctuations.

5 Conclusions

We tested the performance of four inversion methods to re-
cover particle size distributions from the particle size mag-
nifier data using a Monte Carlo simulation and experiments.
The four inversion methods are the stepwise method, the ker-
nel function method, the H&A method, and the EM algo-
rithm. The stepwise method may report false sub-3 nm par-
ticle concentrations when there are no sub-3 nm particles in
the input aerosol because it does not account for the influence
of particles larger than 3 nm. The kernel function method
and the H&A method may lead to relatively large uncer-
tainties in the recovered particle size distribution because
of the unstable least squares method, and they occasionally
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report false sub-3 nm concentrations due to the large uncer-
tainties. Compared to the kernel function method, the H&A
leads to smaller uncertainties while having a similar compu-
tation expense. This is because the H&A method assumes a
near-continuous size distribution rather than a discrete dis-
tribution with limited size bins. One can reduce the uncer-
tainties via merging the particle size distribution reported by
the H&A method into fewer size bins. Among the tested in-
version methods, the EM algorithm has the highest accuracy
and stability. Another advantage of the EM algorithm over
the other three methods is that it does not limit the number of
the particle size bins. The instrumental factors also limit the
accuracy and precision of the recovered particle size distri-
bution. The uncertainties of the recovered size distributions
of particle smaller than 1.3 nm or larger than 3 nm may be
significant due to the incomplete kernel function curves, the
low resolution, and/or the low detection efficiency. The mea-
suring uncertainties in the scanning mode may also increase
the uncertainties of the recovered size distribution.

Based on this study, we suggest that (a) the EM algorithm
is used to recover the particle size distribution measured by
the PSM and the H&A method can be used for prelimi-
nary data analysis and fast inversion purposes; (b) the hard-
ware and software of the PSM should be improved to reduce
the measuring uncertainties, e.g. via changing the scanning
scheme of the saturator flow rate; and (c) one should care-
fully distinguish the false inverted results from the true sub-
3 nm particles, especially in the sub-2 nm size range and/or
when using the stepwise method.

Data availability. The characterizations of the tested PSM are
shown in the figures. The Matlab scripts for the inversion methods
are available upon request.
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