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Abstract. Air pollution sensors are quickly proliferating for
use in a wide variety of applications, with a low price point
that supports use in high-density networks, citizen science,
and individual consumer use. This emerging technology mo-
tivates the assessment under real-world conditions, includ-
ing varying pollution levels and environmental conditions.
A seven-month, systematic field evaluation of low-cost air
pollution sensors was performed in Denver, Colorado, over
2015–2016; the location was chosen to evaluate the sensors
in a high-altitude, cool, and dry climate. A suite of particulate
matter (PM), ozone (O3), and nitrogen dioxide (NO2) sen-
sors were deployed in triplicate and were collocated with fed-
eral equivalent method (FEM) monitors at an urban regula-
tory site. Sensors were evaluated for their data completeness,
correlation with reference monitors, and ability to reproduce
trends in pollution data, such as daily concentration values
and wind-direction patterns. Most sensors showed high data
completeness when data loggers were functioning properly.
The sensors displayed a range of correlations with reference
instruments, from poor to very high (e.g., hourly-average
PM Pearson correlations with reference measurements var-
ied from 0.01 to 0.86). Some sensors showed a change in re-
sponse to laboratory audits/testing from before the sampling
campaign to afterwards, such as Aeroqual, where the O3 re-
sponse slope changed from about 1.2 to 0.6. Some PM sen-

sors measured wind-direction and time-of-day trends similar
to those measured by reference monitors, while others did
not. This study showed different results for sensor perfor-
mance than previous studies performed by the U.S. EPA and
others, which could be due to different geographic location,
meteorology, and aerosol properties. These results imply that
continued field testing is necessary to understand emerging
air sensing technology.

1 Introduction

Next-generation air monitoring (NGAM) is a quickly evolv-
ing and expanding field. Low-cost air pollution sensors have
improved the access for both citizens and researchers to ob-
tain pollutant concentration data in more locations. Many
new sensors are now sold and marketed to consumers and
come with messaging on implications for health. In addition
to improving the accessibility of measurement data, air pollu-
tion sensors have been used to supplement ambient air mon-
itoring by providing measurements with high spatial density
and high time resolution (Mead et al., 2013; Snyder et al.,
2013; Kaufman et al., 2017). Low-cost air pollution sensors
have the potential to be important enablers of smart cities and
the Internet of things (IoT), especially in terms of forecasting
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and health messaging in megacities with significant variabil-
ity in microenvironments (Mead et al., 2013; Kumar et al.,
2015; Ramaswami et al, 2016). Sensors also enable new tech-
niques for mobile monitoring (McKercher and Vanos, 2018;
Woodall et al., 2017). However, without a proper understand-
ing of sensor data quality and calibration, low-cost sensors
have the potential to mislead interested community and re-
search groups (Rai et al., 2017). Evaluating how well these
sensors perform in both laboratory and field environments
is critical for understanding their possible uses in research,
citizen science, and consumer use, for individual exposure
assessment.

Low-cost air pollution sensors, with purchase prices rang-
ing from the low hundreds to the low thousands of dollars per
pollutant, have been developed for both particulate and gas-
phase pollutants, including ozone (O3) and nitrogen diox-
ide (NO2). Particulate matter (PM) sensors typically mea-
sure particle counts using light scattering principles. By us-
ing light scattering to measure an ensemble of particles, sen-
sors can be produced that are miniaturized, have a lower cost,
and provide real-time data. However, this detection approach
can result in bias and inaccuracy from measurement artifacts
(Gao et al., 2015; Holstius et al., 2014). Some sensors, such
as the OPC-N2 (AlphaSense), measure single particles and
allocate them into size bins. This approach is subject to mea-
surement artifacts due to humidity effects and potential parti-
cle coincidence, and it assumes particles are spherical and of
a homogenous density (Mukherjee et al., 2017). Gas-phase
sensors produce a signal through the reaction of the target
gases with electrochemical or metal oxide sensors. However,
the reactive agents used in these types of sensors may de-
grade over time, and measurement artifacts may also exist,
such as cross-interferences and impacts of temperature (Rai
et al., 2017). Therefore, it is necessary to evaluate sensor per-
formance in long-term, real-world study conditions (Lewis
and Edwards, 2016; Williams et al., 2014).

The evaluation of low-cost air pollution sensors and
their performance is continually evolving (McKercher et al.,
2017). Many sensors are evaluated in laboratory settings by
exposure to known concentrations of gases and PM, with
PM often being evaluated by well-defined aerosols, such
as polystyrene latex, in controlled conditions (Wang et al.,
2015; Lewis et al., 2016; Manikonda et al., 2016). In outdoor
field settings, sensors are often evaluated to determine their
performance in comparison with reference methods (Borrego
et al., 2016; Jiao et al., 2017; Crilley et al., 2018; Mukher-
jee et al., 2017; Hagan et al., 2018). Correlations of low-cost
sensors have been found to vary from study to study, span-
ning from negligible to high correlations. Recent studies have
shown the correlation between sensors and reference mea-
surements can be improved by the application of correction
factors for environmental conditions such as relative humid-
ity (Crilley et al., 2018) or multivariate models and machine
learning (Cross et al., 2017; Zimmerman et al, 2018; Hagan
et al., 2018).

There are relatively few efforts that exist to systemati-
cally examine air pollution sensor technology performance
that test a variety of replicate sensor types against refer-
ence monitors in a real-world environment. In the United
States, the U.S. EPA and the South Coast Air Quality
Management District (SCAQMD) have developed field- and
laboratory-testing programs for both gas and particulate mat-
ter sensors. These efforts represent specific geographic loca-
tions and concentration ranges (U.S. EPA, 2017; SCAQMD,
2017). For example, EPA’s Community Air Sensor Network
(CAIRSENSE) project tested a variety of gas-phase and
particulate-matter sensors in Atlanta, Georgia, under condi-
tions that were high temperature, high humidity, and fairly
low ambient concentrations (e.g., hourly PM2.5 ranging 0
to 40 µg m−3) (Jiao et al., 2016). The SCAQMD AQ-SPEC
program similarly conducts field testing of sensor technol-
ogy in Diamond Bar, California, at a near-road location ap-
proximately two months. Evaluation of identical sensors by
the EPA and SCAQMD has revealed that the sensor perfor-
mance may vary by geographical region. For example, Jiao et
al. (2016) found AirBeam sensor correlations to be moderate
(r2
≈ 0.43), while SCAQMD (2017) reported much stronger

correlations (r2
≈ 0.74). This might be a result of both dif-

ferent concentration ranges as well as the optical properties
of the aerosol being measured.

The Community Air Sensor Network (CAIRSENSE)
project was a multi-year, multi-location project that focused
on evaluating performance characteristics and limitations of
low-cost sensors. A prior CAIRSENSE study in Atlanta,
Georgia, was conducted in 2014 and early 2015 (Jiao et al.,
2016). Atlanta was chosen to test the sensors’ performance
in the face of higher temperatures and humidity. For the sec-
ond part of the CAIRSENSE study, Denver, Colorado, was
chosen to test the sensors’ performance under conditions of
high altitude, dryness, and lower temperature. Beyond as-
sessing sensor performance through correlation with a refer-
ence monitor, this study also investigates the degree to which
data from sensors are able to produce similar temporal, wind-
direction, and transient-event trends in comparison to high-
time-resolution reference monitors.

2 Methods

Sensors for this study were selected based on cost, commer-
cial availability, market prevalence, capability, and applica-
bility to EPA research objectives. Table 1 lists the sensors
chosen for this study, pollutants measured by each sensor,
and the measurement principle used by each sensor. Cost in-
formation for these sensors can be found on the EPA’s Air
Sensor Toolbox (U.S. EPA, 2017). Two different Dylos units
were used for this study. Unit 1 was a Dylos DC1100, while
units 2 and 3 were Dylos DC1100 Pro models, where the
Pro models are advertised to have increased sensitivity for
smaller particles. The Shinyei, Dylos, AirBeam, Aeroqual,
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Table 1. Sensors used during the CAIRSENSE – Denver study.

Sensor Pollutant(s) Principle of
measured operation

Aeroqual SM-50 O3 Electrochemical sensor
TSI AirAssure PM Light scattering
AirCasting AirBeam PM Light scattering
Cairpol CairClip NO2+O3 Electrochemical sensor
Dylos DC1100/ PM Laser particle counter
DC1100 Pro
AlphaSense OPC-N2 PM Laser particle counter
Shinyei PMS-SYS-1 PM Light scattering
AirViz Speck PM Light scattering
TZOA PM Research PM Laser particle counter
Sensor

and CairClip sensors were used in both the Denver and At-
lanta studies (Jiao et al., 2016). Additionally, several of these
sensors have been evaluated in laboratory or short-term am-
bient settings (e.g., Air Sensor Toolbox reference; Sousan et
al., 2016; SCAQMD 2017).

Air pollution sensors were acquired and deployed in trip-
licate. Before deployment, laboratory sensor response audits
were performed for all of the available sensors. PM sen-
sors were zero-checked in a clean room environment, all re-
porting < 2 µg m−3 values under those conditions, except for
the AirAssure. The software for the AirAssure performs its
own zeroing; therefore, they were operated “as is”. A pre-
deployment sensor response audit was not performed for the
TZOA as it was received shortly before deployment. Sensor
output was not adjusted based on the calibration audits in or-
der to reflect their “out of the box” performance. Sensor re-
sponses were also audited by either recording their responses
to known concentrations (Aeroqual and CairClip sensors) or
in a clean air environment (PM sensors) after the end of the
measurement period, to evaluate possible sensor drift. Labo-
ratory audit results are presented in the Supplement.

Sensors were deployed at the downtown Denver Continu-
ous Ambient Monitoring Program (CAMP) regulatory mon-
itoring site (latitude: 39.751184; longitude: −104.987625)
from September 2015 to March 2016. The CAMP site was
operated by the state of Colorado for the duration of the
study. Sensors were placed in a ventilated, multi-level shelter
designed to allow ambient air circulation and prevent intru-
sion from precipitation, as shown in Fig. 1. A full description
of the shelter has been previously reported (Jiao et al., 2016).
The sensors were connected to data loggers stored in weath-
erproof enclosures attached to the bottom of the shelter. Most
of the sensors were connected to Arduino (single-board) mi-
croprocessors with either Ethernet (IEEE 802.3 standard) or
Recommended Standard 232 (RS-232) serial communication
cables. The OPC-N2 and Speck sensor data were logged us-
ing laptops, and the TZOA data were stored internally on se-
cure digital (SD) cards. To comply with EPA data security re-

Figure 1. Sensor deployment shelter.

quirements, the cloud based storage capability of the AirAs-
sure sensors was disabled, and these units reported data lo-
cally via the Arduino microprocessors with onboard memory.
The CairClip sensor measures the combined signal from NO2
and O3. Therefore, both NO2 and O3 measurements from the
CairClip were determined by subtracting the opposite (col-
located) reference measurement. The Dylos units also mea-
sure multiple particle size fractions. In this study, the “small”
particle size fraction, as described by the manufacturer, was
used for PM2.5 comparisons. TZOA sensors did not have a
real-time clock and only measured time as the elapsed num-
ber of milliseconds since the device was powered on. There-
fore, field operators were required to accurately record start
and end times as a means of establishing the sensor response
time series.

A total of four Arduino microprocessors and three laptops
were used simultaneously for data logging. Between the data
loggers, laptops and onboard data storage, there were many
different sensor data output formats. Separate data scripts
were developed to process each different data format into
similarly formatted files for each air pollution sensor type.
Once data collections were initiated in September 2015, the
sensors were operated with little or no intervention through
the entirety of the study. Noted interventions included restart-
ing data systems when they “locked up” or removing snow
from the shelves housing the sensors during a major winter
snowstorm.

Federal equivalent method (FEM) measurements at the
Denver monitoring site were collected using a Teledyne 400E
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Table 2. Sensor data completeness.

Sensor Measurement % Sensor on and Completely Comments
not logging % missing %

Aeroqual 82 % 0 % 18 % 45 % of logged values were 0
73 % 0 % 27 % 42 % of logged values were 0
81 % 5 % 13 % 32 % of logged values were 0
87 % 0 % 13 %

AirAssure 87 % 0 % 13 %
87 % 0 % 13 %
74 % 0 % 25 %

AirBeam 62 % 6 % 32 %
62 % 6 % 32 %
29 % 53 % 18 % 56 % of logged values were 255∗

CairClip 63 % 13 % 24 % No data before 10 Aug 2015
63 % 23 % 13 %
82 % 0 % 18 %

Dylos 82 % 0 % 18 %
72 % 1 % 27 %
77 % 0 % 23 %

OPC-N2 76 % 0 % 24 %
71 % 0 % 29 % 59 % of logged values were 0
82 % 0 % 18 %

Shinyei 73 % 0 % 27 %
87 % 0 % 13 %
92 % 0 % 8 %

Speck 93 % 0 % 7 %
96 % 0 % 4 %
61 % 0 % 39 %

TZOA 47 % 0 % 53 %
47 % 0 % 53 %

∗ 255 represented a communication or other unknown sensor failure.

O3 monitor, Teledyne 200EU NO2 analyzer, and a GRIMM
EDM 180 dust monitor, which measured PM2.5 and PM10
mass at 1 min intervals using optical detection. All sensors
and monitors collected pollutant data at 1 min intervals or
less. One-minute values were used to generate concentrations
at multiple time intervals, with primarily 1 h averages used
for data analysis. All averaging and other data processing
was performed using the following software: RStudio ver-
sion 0.98.1103, R version 3.2.2, and the ggplot2, scales, plyr,
lattice, corrplot, and “data.table” (extension of “data.frame”)
packages.

Sensor data were recovered from the connected laptops
and SD cards connected to the data loggers. Most sensors
reported data in 1 min intervals. The AlphaSense OPC-N2
units recorded concentrations every 10 s. These measure-
ments were used to calculate 1 min averages. The TZOA sen-
sors reported data based on time elapsed from turning on
each unit. The start times for each unit and total elapsed time

for each measurement were combined to generate 5 s time
stamps for the TZOA measurements. These values were then
used to calculate 1 min averages.

In order to best replicate actual use by non-experts and
avoid biasing the results towards a positive direction, min-
imal screening of data was performed. Quality assurance
screening consisted primarily of removing data where there
was a clear malfunction of the sensor, such as non-numeric
data output, or when a sensor (e.g., CairClip unit 1) became
“stuck”, reporting a repeated value (value= 255) for long
time spans. These types of errors had previously been identi-
fied for the output of this sensor type. The Aeroqual units had
significant numbers of measurements that, for some reason,
were reported as zero. These were possibly due to the in-
ability of the sensor to detect trace concentrations and were
therefore not screened out of the data.

Timestamps for all sensors except the TZOA were
recorded in Mountain Standard Time. As previously men-
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Table 3. Regression and precision results for CAIRSENSE sensors (1 h time averaged).

Sensor Pollutant Reference Slope Intercept Pearson rms Number of
average correlation, precision hourly
concentration1 r (%) measurements

Aeroqual SM-50 O3, ppb 18.8 ppb 0.56 −0.004 0.93 73 3325
0.58 −0.004 0.92 2963
0.77 −0.004 0.96 3279

TSI AirAssure PM, µg m−3 7.8 µg m−3 1.14 2.64 0.8 41 3486
1.13 −0.04 0.78 3486
1.19 −1.38 0.81 3486

AirCasting AirBeam Particle count, hundreds of 7.8 µg m−3 273 −323 0.82 6 3028
particles per cubic foot (hppcf) 278 −124 0.84 2539

322 −352 0.82 2532

Cairpol CairClip O3, ppb 18.8 ppb NA2 NA2 NA2 NA2 738
−0.04 −23.6 −0.06 2831

1.03 −39.0 0.46 2852

Cairpol CairClip NO2, ppb 26.8 ppb NA2 NA2 NA2 NA2 738
0.65 −10 0.87 2831
0.67 −15 0.84 2852

Dylos DC1100/DC1100 Pro “Small” particle count, hppcf 7.8 µg m−3 64 −152 0.86 15 3324
428 −1182 0.78 3324
431 −941 0.73 2937

Dylos DC1100/DC1100 Pro “Large” particle count, hppcf 12.0 µg m−3 1.3 5.5 0.40 10 3324
5.7 73 0.33 3324
4.9 84 0.27 2937

AlphaSense OPC-N2 PM2.5, µg m−3 7.8 µg m−3 0.4 −0.30 0.45 108 2969
0.49 −1.66 0.34 2939
0.07 0.60 0.11 2735

AlphaSense OPC-N2 PM10, µg m−3 19.6 µg m−3 0.45 2.98 0.47 101 2969
0.54 −1.06 0.68 2939
0.12 2.86 0.20 2735

Shinyei PMS-SYS-1 PM2.5, µg m−3 7.8 µg m−3 0.58 0.24 0.71 20 3325
0.54 0.8 0.72 2963
0.42 4.35 0.013 3486

AirViz Speck PM2.5, µg m−3 7.8 µg m−3 0.76 13 0.24 37 3557
0.74 15 0.40 3584
0.62 10 0.35 3971

TZOA PM Research Sensor Particle count, hppcf 7.8 µg m−3 NA2 NA2 NA2 174 2341
6.68 1.37 0.66 1838
6.75 2.16 0.72 1836

1 Average concentration calculated for hours with valid sampling data. 2 Correlation results not shown due to large amount of missing or invalid data. 3 Shinyei unit 3’s correlation improved to
0.84 when only considering data from October 16 and later. 4 TZOA unit 1 was excluded from rms precision calculations.

tioned, TZOA timestamps were generated by combining the
initial recording time and the elapsed time reported by the
sensors. One-minute measurements and averages were used
to calculate 5 min and hourly averages. Hourly averages were
further used to calculate 12 h and daily averages. FEM mea-
surements from the state of Colorado instruments were also
recorded at 1 min intervals and averaged in the same manner
as the sensor data. Data from all sensors and reference instru-
ments were stored in separate data files and combined based
on timestamps for analyses using R scripts.

Sensors were also investigated for how well they repli-
cated different trends in the regulatory monitor measurement
data. The trends analyzed included average sensor responses
based on time of day and wind direction. In order to evalu-
ate these trends, different normalized sensor responses were
used. The normalized average sensor response for the diel
(daily, 24 h) patterns was calculated as the average concen-
tration for a given hour divided by the average concentra-
tion for the hour beginning at 12:00. The normalized average
sensor response for wind direction data was defined as the
mean concentration for each 10◦ wind “bin”, divided by the
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Figure 2. Correlation (r×100) plot for sensors measuring fine PM.
Ellipses represent the overall scatter of the data (1 h averaged mea-
surements).

average concentration of the 170 to 180◦ bin. The sensor re-
sponse times were also analyzed by calculating the average
1 min relative sensor response, as defined by the distribution
of the 1 min concentration differences divided by the average
sensor response.

3 Results and discussion

Table 2 shows a summary of data completeness from the air
pollution sensors, including the total percentage of minutes
measured, percentage of measurements missed by not log-
ging data, and the percentage of completely missing data.
The majority of missing data was due to events where the
sensor and data loggers were inoperative. The most signifi-
cant of these events was due to snow intrusion into the mon-
itoring platform in December 2015, which caused units to
shut down. Most sensors had a very high data capture rate
throughout the study when the units were on (and opera-
tional). The CairClip units had significant amounts of miss-
ing data, likely due to data transmission errors from the uni-
versal asynchronous receiver-transmitter (UART) serial com-
munication system. In the previous Atlanta study as well as in
a Newark-based citizen science study (Kaufman et al., 2017),
CairClip units with identical sensors but different universal
serial bus (USB) data connections were used and did not have
significant amounts of missing data.

Measurements from air pollution sensors and regulatory
monitors were time-averaged at multiple intervals for com-

parison. The time intervals included 5 min, hourly, 12 h, and
daily averages. For each set of time averaging, regressions
were calculated to evaluate sensor correlation and bias when
compared to regulatory measurements. Additionally, inter-
comparisons were made between sensors of the same pol-
lutant type (e.g., correlations between PM sensors). Table 3
displays a summary of regression statistics for sensors when
compared to regulatory measurements as well as precision
calculations for 1 h time averages. The precision was cal-
culated as the root mean square (rms) of the hourly coef-
ficients of variation. In general, correlations were greatest
at the 1 h time average. Correlations in general improved
slightly with increasing length of the averaging period up
to hourly averages. Reduced correlations for most sensors at
the 12 h and daily averages may be a result of a lower num-
ber of data points. In contrast to most other measurements,
sensors that reported data for coarse PM (Dylos) or PM10
(OPC-N2) showed improved correlations with increasing av-
eraging time for those measurements. The correlations for
all the time averaging periods can be found in the Supple-
ment. Sensors that measured particle count had better pre-
cision than those measuring particle mass concentrations.
Figure 2 shows a Pearson correlation (R) plot for 1 h av-
erage reference (SoC) and PM sensor measurements. The
PM units show high correlation among sensors of the same
model, except for when one sensor in a group had signifi-
cant issues. Of the PM2.5 sensors, the AirAssure, AirBeam,
and Dylos (R = 0.73 to 0.86) units exhibited the highest cor-
relation with reference measurements. Dylos unit 1 had the
highest linearity; however, it had the lowest particle count re-
sponse, both of which are likely explained by not detecting
the smallest particles as effectively as other units. CairClip
unit 1 rarely properly transmitted data throughout the study,
leading to its low correlations. CairClip units 2 and 3 had
more sporadic data transmission issues. All CairClip units
recovered data properly once returned to the lab after the
field campaign where their internal data storage was used.
The response from Shinyei unit 3 changed in mid-October.
The correlation between the unit and the reference monitor
was initially 0.01, then increased to 0.84 when comparing
only the data starting October 16 and later.

Several sensor models were used in both the Atlanta and
Denver CAIRSENSE evaluation campaigns. Both studies de-
ployed the AirBeam, Dylos, and Shinyei PM sensors. In all
cases except for Shinyei unit 3, these sensors showed greater
linearity in Denver than in Atlanta, when comparing 12 h av-
erages. When only considering data after October 16, Shinyei
unit 3 also had higher correlation in Denver than in Atlanta.
This may be due to less noise caused by lower humidity in
Denver than in Atlanta. Aeroqual and CairClip air pollution
sensors were also deployed in both Atlanta and Denver. O3
measured by the Aeroqual units showed similar correlations
in both locations (R2

= 0.82 to 0.94 in Atlanta, R2
= 0.85

to 0.92 in Denver). O3 measured by CairClip units 2 and 3
in Denver showed poorer correlations than the CairClip units
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Figure 3. OPC-N2 PM2.5 and relative humidity (a) and hourly average FEM PM2.5 concentration and AirBeam particle count stratified by
relative humidity (b).

Figure 4. Diel patterns for (a) PM2.5 and (b) O3 sensor and reference measurements.

used in Atlanta (R2
= 0.00 to 0.21 in Denver versus R2

=

0.68 to 0.88 in Atlanta). However, NO2 measured by Cair-
Clip units 2 and 3 in Denver was more highly correlated than
in Atlanta (R2

= 0.71 to 0.76 in Denver versus 0.57 in At-
lanta).

While Denver is not necessarily known for high humid-
ity, humidity artifacts were observed in some sensors. Fig-
ure 3a shows the PM2.5 concentrations measured by one of
the OPC-N2 against relative humidity. At relative humidity
around 90 %, the PM concentration spikes significantly, sug-
gesting that humidity is interfering with the sensor response
measurement. This behavior is similar to that observed by
Sousan et al. (2016). Some other instruments also had differ-
ent responses based on humidity. Figure 3b shows hourly par-
ticle counts measured by an AirBeam sensor against PM2.5
concentration measured by the reference instrument, strati-

fied by relative humidity. There appear to be two separate re-
lations between reference measured concentrations and sen-
sor measured particle counts, with a greater particle count re-
sponse occurring more at higher humidity. This relationship
was observed in each of the AirBeam sensors. An example
of humidity relationships from each sensor type can be found
in the Supplement.

In addition to understanding the precision of air pollution
sensors and how well they correlate with reference measure-
ments, it is also important to understand how well a sensor
can capture trends and distributions of pollutant concentra-
tions. There are many ways to examine these trends and dis-
tributions. Figure 4 shows the diel patterns of PM2.5 (a) and
O3 (b) reference and sensor measurements respectively. The
results, for each sensor, represent the measurements of the
best performing unit for each sensor type/model, as deter-
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Figure 5. Wind direction patterns for (a) PM2.5 and (b) O3 sensor and reference measurements.

Figure 6. Cumulative distribution functions for 1 min response differences for (a) PM2.5 and (b) O3 sensor and reference measurements.

mined by R2 values. The various PM air pollution sensors
have a wide range of comparisons to the reference moni-
tor. Two sensors (TZOA and AirBeam) show similar patterns
throughout the day, while some other sensors do not reflect
the reference diel pattern at all (e.g., OPC, Speck). It is in-
teresting to note that both the TZOA and AirBeam measure
particle count; however, there is no basis to say why these
sensors performed better than those measuring mass concen-
trations. The Aeroqual sensor diel pattern was similar to that
of the reference O3 monitor. The nature of the calculation of
O3 and NO2 by subtraction, and missing data from the Cair-

Clip sensors, prevented this analysis from providing mean-
ingful results.

Air quality measurements are also known to be dependent
on wind direction, and it is important to know whether these
differences were reflected in the sensor measurements. Fig-
ure 5 shows the normalized average sensor response PM2.5
(a) and O3 (b) response of the sensors and the reference mon-
itors respectively. The reference monitor response is repre-
sented by the black line. Both the highest concentrations and
greatest variation from the reference monitor concentrations
occurred when winds were from the north, where there are
multiple large roadways and a railyard. However, there was
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no other evidence to suggest that these sources contributed to
differences in the measurement trends. The sensors generally
compared more favorably with the reference monitors when
examining the wind direction dependence of concentration.
This is most apparent in the OPC-N2 sensor, where the sen-
sor trends track the trends measured by the reference monitor.
This increases the confidence that sensors may be useful in
studies that pair wind direction with concentration to deter-
mine potential bearings or locations of pollution sources to
supplement source apportionment and receptor modeling. It
also raises questions as to why an air pollution sensor would
be able to reproduce wind direction trends but not necessar-
ily reproduce daily concentration measurement patterns. We
undertook exploration of this perplexing result, but we were
not able to determine a clearly identifiable cause. While rela-
tive humidity and temperature do have time-of-day variation
that is not reflected in wind direction, we were unable to use
these parameters to explain the differences between time-of-
day and wind-direction trends.

The high-time-resolution data collected for this study al-
lowed for the examination of air pollution sensor response
trends compared to that of regulatory air pollution monitors.
Figure 6 shows a cumulative distribution function (CDF) for
the relative change in sensor and regulatory monitor response
between 1 min measurements for PM2.5 (a) and O3 (b) sen-
sor and reference measurements respectively. The relative
response was calculated as the absolute value of the differ-
ence between consecutive 1 min measurements divided by
the mean measurement over the entire study period for each
sensor/monitor. If the reference monitor were considered a
perfect measurement, sensor curves to the left and above the
reference monitor line would have smaller relative changes
than the reference monitor, indicating a slower response to
changes in concentration, while curves below and to the right
of the monitor line would signify larger measurement-to-
measurement changes than the reference monitor, indicating
potential high levels of measurement noise. Most PM moni-
tors exhibited a slower response to changes in concentration
than the reference monitor. The OPC-N2 and AirBeam sen-
sors were the only ones with curves to the right of the ref-
erence monitor, suggesting that they may have more noise
in their measurements. The Aeroqual sensor showed more
O3 measurement noise when compared to the reference mea-
surement.

4 Conclusions

Nine different air pollution sensor devices were deployed in
triplicate with collocated air pollution reference monitors in
Denver, Colorado, over an extended operational timeline of
longer than six months. The sensors showed a wide range of
correlations with reference measurements, but they tended
to have high correlation with sensors of the same model.
PM sensors deployed in both Denver and Atlanta had higher

correlations with reference monitors in Denver than in At-
lanta. This is likely due to less humidity-related response
in Denver. Aeroqual O3 measurements in Denver showed
similar linearity to those measured in Atlanta. CairClip O3
correlations were lower in Denver than in Atlanta, but NO2
correlations were higher. Sensors that have also been eval-
uated by the South Coast Air Quality Management District
(SCAQMD) tended to show similar results in terms of corre-
lation (SCAQMD, 2017). However, in all cases, sensors’ per-
formance in this long-term field deployment was lower than
that of laboratory-based comparisons performed in this study
and others (U.S. EPA, 2017). It is not surprising that the re-
sults of this study for PM sensors varied from other studies,
as the responses to optical measurement techniques used by
these sensors are likely influenced by aerosol composition.
This study demonstrates the need for long-term, real-world
evaluation studies for current and future air pollution sen-
sors, which should be performed in locations with different
air pollutant concentration ranges and aerosol characteristics.

Several air pollution sensors were able to capture varia-
tions in important trends, such as diel patterns and wind di-
rection dependence on concentration. However, the OPC-N2
units showed similar results to reference monitor measure-
ment data when analyzing the wind direction trends but not
when analyzing “time-of-day” trends. These promising re-
sults show that sensors have the possibility for supplement-
ing measurement research capabilities when interested in air
pollution trends such as those dependent on wind direction.
Analyses of wind-direction-based air pollutant trends could
be useful for possible identification of source locations or re-
gions, especially with the use of a sensor-based network.

Data availability. The CAIRSENSE dataset will be available
at the EPA environmental dataset gateway (https://edg.epa.gov)
(Williams, 2018), where the dataset can be retrieved by searching
for “CAIRSENSE Denver.” Project data can also be requested from
the corresponding author.
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