Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-473-2018
https://doi.org/10.5194/amt-11-473-2018
Research article
 | 
23 Jan 2018
Research article |  | 23 Jan 2018

Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans

Amirmahdi Zarboo, Stefan Bender, John P. Burrows, Johannes Orphal, and Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands.

We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.

Download
Short summary
We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. These observations provide information about the chemistry and dynamics and can be used to infer ozone, solar heating rates, and temperature in the MLT.