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Abstract. Radar-based hydrometeor classification typically
comes down to determining the dominant type of hydrom-
eteor populating a given radar sampling volume. In this pa-
per we address the subsequent problem of inferring the sec-
ondary hydrometeor types present in a volume – the is-
sue of hydrometeor de-mixing. The present study relies on
the semi-supervised hydrometeor classification proposed by
Besic et al. (2016) but nevertheless results in solutions and
conclusions of a more general character and applicability.
In the first part, oriented towards synthesis, a bin-based
de-mixing approach is proposed, inspired by the conven-
tional coherent and linear decomposition methods widely
employed across different remote-sensing disciplines. Intrin-
sically related to the concept of entropy, introduced in the
context of the radar hydrometeor classification in Besic et al.
(2016), the proposed method, based on the hypothesis of the
reduced random interferences of backscattered signals, es-
timates the proportions of different hydrometeor types in a
given radar sampling volume, without considering the neigh-
boring spatial context. Plausibility and performances of the
method are evaluated using C- and X-band radar measure-
ments, compared with hydrometeor properties derived from
a Multi-Angle Snowflake Camera instrument. In the second
part, we examine the influence of the potential residual ran-
dom interference contribution in the backscattering from dif-
ferent hydrometeors populating a radar sampling volume.
This part consists in adapting and testing the techniques com-
monly used in conventional incoherent decomposition meth-
ods to the context of weather radar polarimetry. The impact
of the residual incoherency is found to be limited, justifying

the hypothesis of the reduced random interferences even in
a case of mixed volumes and confirming the applicability of
the proposed bin-based approach, which essentially relies on
first-order statistics.

1 Introduction

Precipitation, and in particular snowfall, often occurs as a
mixture of several different hydrometeor types (Bringi and
Chandrasekar, 2001). In the context of radar meteorology,
we define hydrometeor mixture as a radar sampling vol-
ume populated by hydrometeors of different types. As such,
it is more frequent in the regions of the atmosphere expe-
riencing marked transitions between different hydrometeor
types, due to specific microphysical processes like onset of
aggregation, riming and melting. The probability of its oc-
currence increases with the distance from the radar, given
the increase of the radar sampling volume. This type of sub-
grid heterogeneity is not taken into account by classical hy-
drometeor classification techniques, which assign a single
label to the entire radar sampling volume. Therefore, a hy-
drometeor classification should ideally be complemented by
a de-mixing step which gives insight into the radar sam-
pling volume when that proves to be relevant. More pre-
cisely, the term de-mixing refers to the attempt to system-
atically identify and quantify the presence of mixtures of dif-
ferent hydrometeor types in the radar sampling volume, as
has been specifically done for the mixed rain–hail precipi-
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tation (Balakrishnan and Zrnic, 1990), or for ice aggregates
and pristine ice crystals (Keat and Westbrook, 2017).

Hydrometeor classification is a very popular topic in
the weather radar community, particularly since dual-
polarization radar became a widely used technology (Bringi
et al., 2007). In its dominant, supervised form, the methods
were initially based on Boolean logic decision trees (Straka
and Zrnic, 1993), before being replaced by a strong tendency
to rely on a fuzzy-logic routine, which was first employed by
Straka (1996) and has become a standard tool in the commu-
nity (e.g., Vivekanandan et al., 1999). The hypotheses about
the microstructure and the microphysics of the precipitat-
ing particles are used to simulate the polarimetric signatures
of different hydrometeor types. These are then employed in
defining fuzzy-logic membership functions, either directly
(Dolan and Rutledge, 2009) or reinforced by some empiri-
cal knowledge (Al-Sakka et al., 2013). Unlike this, the un-
supervised method proposed by Grazioli et al. (2015b) has
confidence in the acquired radar data and distinguishes be-
tween different hydrometeor types by clustering the polari-
metric radar observations.

In an effort to find a combination of these two concep-
tually opposed ideas, a series of semi-supervised methods
was proposed (Bechini and Chandrasekar, 2015; Wen et al.,
2015, 2016; Besic et al., 2016). The one we rely upon in this
work, presented by Besic et al. (2016), clusters the data by
including the hypotheses about the microstructure and the
microphysics as a constraint. The method provides a set of
centroids in a space formed by four polarimetric variables
and a precipitation phase indicator, reducing the classifica-
tion problem to the simple computation of Euclidean dis-
tances. This simplicity made it possible for the method to
be operationally implemented within the processing chain of
the MeteoSwiss radar network (Germann et al., 2015), which
allows one to monitor and in a way continuously verify and
evaluate the performances of the classification.

Aside from assigning a label with the hydrometeor type to
every volume, Besic et al. (2016) proposed a complementary
measure of entropy, which gives an estimate of the classifica-
tion uncertainty and is therefore a potential indicator of hy-
drometeor mixtures. In the present study, the entropy param-
eter is appropriately parameterized using a synthetic dataset
and serves as the basis for a proposed bin-based de-mixing
method (Fig. 1a). This approach does not consider the con-
tent of the surrounding volumes but only the polarimetric pa-
rameters integrated over the volume of interest. The method
is inspired by conventional model-based decompositions of
synthetic aperture radar (SAR) data (Massonnet and Souyris,
2008) and linear unmixing of hyperspectral data (Bioucas-
Dias et al., 2013). Its efficiency is assessed throughout the
article by means of appropriate performance analyses. The
latter includes simultaneous employment of the mobile MX-
Pol X-band radar and MeteoSwiss C-band radars, as well as
the collocated Multi-Angle Snowflake Camera (MASC).

Figure 1. Simplified schematic representation of (a) bin-based de-
mixing and (b) neighborhood-based analysis. In reality, the spatial
organization of mixed hydrometeor types is presumed to be signifi-
cantly more chaotic.

The article also investigates the potential impact of resid-
ual incoherency in weather radar measurements. This effect
can be presumed to be likely in the case of radar sampling
volumes with mixed hydrometeors, despite the conventional
pulse averaging, which is supposed to filter out the contribu-
tion of interferences. Namely, stronger random interferences
between the backscattered signals from the different hydrom-
eteors populating a radar sampling volume can be expected
in the case of a more pronounced heterogeneity among parti-
cles in a volume, potentially resulting in non-negligible resid-
ual interference contribution. The study is done through the
neighborhood-based analysis, which is conducted by intro-
ducing the blind source separation (BSS) techniques, prin-
cipal component analysis (PCA) and independent compo-
nent analysis (ICA), into the weather radar data processing
(Fig. 1b). That is to say, this part comes down to the employ-
ment of the BSS techniques over a region of hydrometeor
mixtures with the aim of asserting the influence of the resid-
ual spatial incoherency on the weather radar measurements
by checking for the spatial consistency and, by doing so, ver-
ifying the applicability of the proposed bin-based approach,
intrinsically based on first-order statistics and therefore not
capable of dealing with the potentially present incoherency.

The article is organized as follows: in Sect. 2 we briefly
introduce the polarimetric framework we rely upon in dis-
criminating between different hydrometeor types as well as
the more general concept of entropy in the context of radar
remote sensing. In Sect. 3 we introduce and elaborate the bin-
based approach, after describing the entropy parametrization.
This section also contains the “Performance analyses” sub-
section, focused on the bin-based approach. In Sect. 4 we
present the analysis, based on the conventional statistical
techniques and dedicated to the incoherency in the mixed-
radar sampling volumes. The subsequent evaluation subsec-
tion illustrates the impact of incoherency in the context of
weather radar de-mixing. Section 5 concludes the article with
a discussion and provides a series of perspectives for the pre-
sented work.
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2 Polarimetric framework and the concept of entropy

The main objective of this paper could be summarized as
drawing a parallel between the specific polarimetric frame-
work of weather radar and the paradigm of decomposi-
tion/unmixing commonly used in SAR and hyperspectral re-
mote sensing. The motivation for relying on the experience of
SAR and hyperspectral communities comes from the demon-
strated pertinence and utility of decomposition/unmixing in
the data interpretation. This link we want to elaborate on,
with the aim of de-mixing a weather radar sampling volume,
is constructed around the common variable – entropy.

2.1 Polarimetric framework

The radar variables we rely upon to discriminate between dif-
ferent hydrometeor types are the reflectivity factor at hori-
zontal polarization (ZH), the differential reflectivity (ZDR),
the specific differential phase shift of propagation (Kdp) and
the co-polar correlation (ρhv). The hydrometeor classification
(Besic et al., 2016) and the bin-based de-mixing approach
proposed in this article also consider a phase indicator (Ind),
which can be derived from radar data in stratiform cases or
from external information like ground observations or model
simulations. This indicator takes the value Ind≈−1 for the
liquid phase, Ind≈ 0 for the mixed phase and Ind≈ 1 for the
solid phase (the approximative character is due to the em-
ployed sigmoid transformation of the relative altitude with
respect to 0◦ isotherm).

Due to the skewness and the leptokurticity (fatter distribu-
tion tails) of their distributions, Kdp and ρhv undergo the fol-
lowing logarithmic transformations:K ′dp = 10log(Kdp+0.6)
and ρ′hv = 10log(1−ρhv). Further on, all four radar variables
are linearly scaled, i.e., min–max-transformed ([·]scaled), to
the [−1,1] range in the following limits:ZH:−10 to 60 dBZ;
ZDR: −1.5 to 5 dB; K ′dp: −10 to 7; and ρ′hv: −50 to −5.23.

Therefore, each radar sampling volume is characterized by
a five-element weather radar target vector,

k =


x1
x2
x3
x4
x5

=

Zscaled

H
Zscaled

DR
K ’scaled

dp
ρ’scaled

hv
Ind

 , (1)

and can be represented as a point in a five-dimensional space
formed by the five introduced parameters (Fig. 2a). The same
space contains nine particular points, i.e., centroids (kc),
which represent the nine hydrometeor classes, and the clas-
sification itself comes down to the calculation of the Eu-
clidean distance between the centroids and the observations
(Fig. 2b):

d = ||kc− k||2, (2)

where || · ||2 is the `2 norm.

Figure 2. The multi-dimensional (four out of five dimensions)
space: (a) target vectors representing centroids (larger points with
different classes depicted by different colors) and observations
(smaller black points), (b) observations with assigned labels. Ab-
breviations: CRs – crystals; AGs – aggregates; LR – light rain; RN
– rain; RPs – rimed ice particles; VI – vertically aligned ice; WS –
wet snow; IH/HDG – ice hail/high-density graupel; MH – melting
hail.

2.2 The concept of entropy

The concept of entropy (H ) was introduced in radar po-
larimetry by Cloude and Pottier (1997) via the decomposition
theory. It serves as an indicator of the usefulness of the po-
larimetry, demonstrating simultaneously important discrimi-
nating capabilities in the context of target classification. By
equaling the proportion of n different components from the
polarimetric decomposition to the probability of their occur-
rence (pi), we obtain the entropy parameter, which converges
towards 1 if we do not have a clearly dominant component (a
“total” mixture) or towards 0 if we identify a clearly domi-
nant component.

The min-entropy, being the minimum of Rényi’s entropies
(Rényi, 1960) and the originally proposed version of en-
tropy estimator in Besic et al. (2016), is substituted here by
the Shannon entropy estimator for the purpose of coherence
with the conventional usage of the parameter in the remote-
sensing community:
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H =−

n∑
i=1

pi lognpi, (3)

having values in the range [0,1].
The estimation of probabilities pi , from now on occasion-

ally referred to as proportions, is the focal point of the first
part of this paper, i.e., the bin-based approach, proposed in
the following section. A version of entropy, a bit closer to its
original meaning in radar polarimetry (and therefore named
HCP – after Cloude and Pottier), with a slightly different na-
ture of pi , is used in the second part of the paper, studying
the influence of potential spatial incoherency in backscatter-
ing in weather radar measurements.

3 Bin-based approach

The bin-based approach considers one volume at a time,
without taking the neighboring spatial context into account.
The proposed method is inspired by the SAR coherent po-
larimetric decomposition of elementary processes (e.g., Pauli
and Krogager, Massonnet and Souyris, 2008) and the hyper-
spectral linear unmixing (Bioucas-Dias et al., 2012), and it
is adapted to the context of the semi-supervised hydrometeor
classification (Besic et al., 2016). Like its SAR role model,
this method assumes the coherent summing of backscattering
responses of different hydrometeors populating a radar sam-
pling volume. This hypothesis is supported by the conven-
tional averaging of backscattering information over a number
of successive radar pulses, which aims to remove the influ-
ence of random spatial interferences.

Namely, the coherent decomposition of polarimetric SAR
(PoLSAR) data relies on the first-order statistics and repre-
sents the scattering matrix of a target as a coherent sum of
the scattering matrix of elementary interactions (odd bounce
and double bounce with two different orientations). By com-
paring this to our polarimetric framework introduced in
Sect. 2.1, we can deduce that our standard mechanisms, i.e.,
elementary interactions, would correspond to different hy-
drometeor classes. The important difference which prevents
us from applying the equivalent formalism, even under the
assumption of a total lack of interferences, is the orthogo-
nality of the basis. That is to say, due to the different phys-
ical nature of the elements of the weather radar target vec-
tor (Eq. 1), which contains much less geometrical informa-
tion than the scattering matrix, we cannot expect any orthog-
onality between the elementary hydrometeors or centroids.
Therefore, the starting point of the bin-based de-mixing en-
deavor is to establish hydrometeor classes as elementary pro-
cesses and to find a reliable, alternative way to sum them up,
which somehow evades the lack of a real orthogonal basis.

In terms of non-orthogonality, the hyperspectral linear un-
mixing problem appears more analogous to our polarimetric
framework (Fig. 3). Namely, the target of the hyperspectral

Figure 3. An example inspired by Bioucas-Dias et al. (2013) il-
lustrating the problem of linear unmixing: blue simplex is defined
by red mi points depicting “pure” materials, whereas encompassed
green points represent mixtures of these materials.

vector y contains the reflectance in n frequency bands and
under the hypothesis of linearity can be represented as

y =

p∑
i=1

αimi, (4)

where mi is the vector of the ith “pure” material, i.e., end-
member, while αi would be its corresponding proportion. In
the simplest of all cases, where we actually have the pure
materials (e.g., types of ground or crop) among the observa-
tions, we are dealing with the so-called pure-pixel unmixing,
where the method is reduced to the optimization problem:

min
M,A
||Y−MA||F

subject to A≥ 0,ITpA= In, (5)

with Y being the matrix of observations, ||X||F =√
trace

(
XXT

)
; A the matrix containing the proportions of

every end-member in every observation; and M the matrix
containing end-members. Column vectors Ip and In are re-
spectively p- and n-long vectors of ones. The problem can
be represented geometrically as the estimation of a simplex
around the observations, as illustrated in Fig. 3.

When comparing Figs. 2a and 3, one can notice the in-
tuitive similarity of the problem: estimating proportions of
pure components by considering their distances from the ob-
servations. However, the major obstacle in applying the very
efficient paradigm of the spectral unmixing to the particular
context of hydrometeor de-mixing is the fact that our cen-
troids do not really represent the end-members in the five-
dimensional space. Namely, the target vectors corresponding
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to centroids are supposed to be the representative examples
of different classes, and they are thus not represented by the
extreme values of our polarimetric parameters. Nevertheless,
basing the estimates of proportions on the distance in the
space populated by the standard mechanisms (centroids) and
measurements is a reasonable way to sum up the standard
mechanisms.

Now that we have identified our centroids as standard
mechanisms (analogy with PolSAR) and have found a mode
for their addition via the distances in the Euclidean space
of the classification, we have to adapt the latter to the par-
ticular nature of the former. That is to say, our centroids
do not form a regular structure (e.g., cube), where under
the assumption of coherence and linearity the distance of a
measurement with respect to the standard mechanism could
be directly interpreted as the probability, i.e., as the propor-
tion of the given standard mechanism. They are rather non-
uniformly distributed in the five-dimensional space. In order
to deal with this, we adopted the varying slope exponential
transformation of the distance between the measurement and
the ith centroid (di) to the probability (pi), i.e., the propor-
tion of the hydrometeor class i depicted by the centroid in the
measurement. The exponential function is chosen in order to
account for the uncertainty around the centroid (p has higher
values in the vicinity of the centroid), while the varying slope
(ti) accounts for the irregular distribution of the centroids in
the classification space:

pi = e
−tidi , i = 1, . . .8(9). (6)

Namely, ti depends on the assigned classification label,
which is basically the nearest centroid to the measurement
(ci). The idea here is for a probability to drop to a thresh-
old value pt at the distance corresponding to the separation
between ci and cclosest – the closest centroid to the one deter-
mining the label (Fig. 4):

pt ≈ e
−tid(ci ,cclosest), (7)

which results in

ti =
ln 1
pt

d(ci,cclosest)
. (8)

The threshold value of probability (pt) is determined using
a synthetic dataset, created by linearly mixing different pairs
of hydrometeor classes in equal proportions (an example is
given in Fig. 5). Each pure hydrometeor box contains 900
synthetic realizations of hydrometeors varying uniformly in
the very restricted interval around the values of the corre-
sponding centroid (−1% to 1%, in order to emphasize the
hypothesis of the “pureness”). Boxes of hydrometeor mix-
tures contain different versions of mostly plausible mixtures
obtained by linearly combining in equal shares polarimet-
ric parameters of two hydrometeor types involved, follow-
ing assumptions of coherence and linearity. Linear combi-

Figure 4. An example of the exponential transformation: the scaled
distances to the probability (d→ p).

nation here stands for the arithmetic mean (equal propor-
tions) in each dimension of the five-dimensional classifica-
tion space. Each of these boxes again contains 900 synthetic
realizations, where each realization represents a presumingly
equiprobable mixture. We opted for this “quadratic” organi-
zation of boxes, in order to indicate the limitations of the
proposed approach as well, aside from obviously emphasiz-
ing the plausible mixtures.

It would be indeed even more precise to combine the mix-
ing components at the level of the electromagnetic scattering,
before the integration leading to the employed polarimet-
ric parameters. However, not event this would help us over-
come the unavoidable lack of methodological “transparency”
in terms of physics, due to the absence of the orthogonal
de-mixing basis. The proposed method is therefore rather
defined in a more empirical fashion, in the data processing
plane, with the physical trustworthiness being verified exper-
imentally, mostly using the independent measurements.

Applying the hydrometeor classification to the synthetic
dataset results in an expectedly proper recognition of pure
hydrometeor boxes (Fig. 6). The mixed hydrometeor boxes
are identified as an ensemble of both hydrometeor classes
involved in the mixing, as an ensemble of only one of the
classes involved in the mixing or as an ensemble of the
classes which are not presumed to be involved in the mix-
ing. The latter case, which mostly relates to the less plausi-
ble mixtures, represents the sort of limitation of the method
(primarily boxes marked with the darkest shade of gray in
Fig. 5a), but the co-existence of two classes with very distinct
polarimetric properties (particularly in terms of ZH) is in-
deed physically not very probable. However, in these critical
cases, the presence of the identified class which was not in-
volved in the mixing process can still be justified, e.g., when
the mixture of melting snow and melting hail contains some
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Figure 5. Quadratically organized synthetic dataset used in the entropy parametrization: (a) the plan with pure hydrometeors (light gray),
mixtures (gray), and not very plausible mixtures (dark gray); (b) the value of elements of weather radar target vector (including the relative
altitude with respect to the 0◦ isotherm – H).

rain or the mixture of ice hail and vertical ice contains aggre-
gates and rimed particles.

The parameterized entropy, obtained by substituting pi in
Eq. (3) with the one from Eq. (6), indeed shows very low val-
ues in the case of pure hydrometeors (Fig. 6). The synthetic
hydrometeor mixtures are, on the other hand, characterized
by higher entropy values. This is true even for the less plau-
sible mixtures mentioned in the previous paragraph, where
the bin-based mixing approach reaches its limitations.

The utility of the proposed parameterization of entropy,
which is based on the estimated proportions of different hy-
drometeors involved in a mixture, can be adequately illus-
trated using the exemplary data introduced in Fig. 2. In Fig. 7
we show the comparison between the original and the pa-
rameterized version of entropy values for the considered data
samples. The increased values of entropy between the “mix-
able” neighbor centroids reflect clearly the results obtained
with synthetic datasets. The limitation of the method can also
be more clearly conceived here, because the mixtures of ex-
treme points (e.g., vertical ice and ice hail) unavoidably finish
close to the centroids in between.

Before proceeding to the performance analysis, in order to
quantify the potential implicit biases of the introduced pa-
rameterization, we apply the de-mixing method to the par-
ticular combinations of hydrometeors mixed in both equal
and non-equal proportions. Namely, as illustrated in Fig. 8
we consider the mixtures of AG–CR, AG–RP and RN–MH
(see figure caption for abbreviation definitions) in the follow-
ing proportions: 75 %–25 %, 60 %–40 %, 50 %–50 %, 40 %–
60 % and 25 %–75 %.

Quantification of the results presented in Fig. 8, provided
in Table 1, shows that a mean error for the 50 %–50 % com-
bination does not exceed 9.2 % with a very small standard
deviation (< 1%), meaning that we definitely do much better
than the classification without de-mixing, which in this case

Table 1. Quantitative evaluation of de-mixing errors (biases) ob-
tained using synthetic (simulated) dataset.

Mixture 50 %–50 % 50 %–50 % all σerror [%]
µerror [%] σerror [%] µerror [%]

AG–CR 2.5833 0.8838 12.1988 0.9957
AG–RP 9.1829 0.7487 9.9326 0.7110
RN–MH 5.9835 0.2877 11.7355 0.1603

can cause a 50 % error. A mean error for all combinations
does not exceed 12.2 % with a very small standard deviation
(< 1%), showing again that we necessarily do far better than
the classification without the de-mixing.

3.1 Performance analyses

The performance of the introduced bin-based method is an-
alyzed hereby in three respective stages, very characteristic
for the validation of techniques related to the hydrometeor
classification: spatial plausibility, comparison between two
radars and comparison between a radar and a ground level
instrument.

3.1.1 Spatial plausibility

In Fig. 9a1 we show an example of the classification applied
to the MXPol X-band radar data acquired at the Dumont-
d’Urville base, on the coast of Antarctica, during the Antarc-
tic Precipitation, Remote Sensing from Surface and Space
(APRES3) campaign (Grazioli et al., 2017). Given the sys-
tematically low temperatures at the ground level, in the il-
lustrated range height indicator (RHI), only solid-phase hy-
drometeors are identified. By analyzing the estimation of en-
tropy, we can notice a rise in the entropy characterizing bor-
dering regions between aggregation and riming. The high
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Figure 6. Classification and entropy applied to the synthetic dataset from Fig. 5. Low and high entropy values correspond to the limits of the
range [0,1].

Figure 7. The multi-dimensional (four out of five dimensions)
space, with target vectors representing centroids (larger points with
different classes depicted by different colors) and observations with
the level of gray depicting (a) Shannon version of the entropy from
Besic et al. (2016) and (b) parametrized entropy.

probability of mixing and misclassification of aggregates and
rimed particles is due to the similarity in their polarimetric
signatures and their spatial co-occurrence. Furthermore, in
the context of meteorology, aggregates and rimed particles
are not so distinct classes (a frequent phenomenon, riming of
aggregates, is identified as rimed ice particles (RPs) by the

employed classification). All this calls for particular atten-
tion to this challenging and relevant de-mixing problem in
the performance analyses. This is also sustained by the spe-
cial interest in the riming identification due to its role in bet-
ter understanding the orographic precipitation mechanisms
(Grazioli et al., 2015a; Houze and Medina, 2005).

The results of the bin-based de-mixing, illustrated in
Fig. 9b, do not indicate the presence of hydrometeors other
than the ones identified as dominant in Fig. 9a. However,
they indicate the significant percentage of aggregates in the
volumes labeled as rimed ice particles and vice versa, as
could be intuitively expected from the entropy estimate. The
first stage of the performance analyses would be exactly
the spatial continuity of this observation, i.e., the fact that
the percentage of rimed particles decreases progressively as
we move away from the region labeled as rimed particles,
the same being true for aggregates. No matter how simple
this may seem, given that we are dealing with a bin-based
method, which does not consider at all the spatial context,
the observed spatial continuity can indeed be considered as
the very first positive indicator of reliable performances.

Figure 10a depicts an example of the classification of a
hail cell and its surrounding, observed by the MXPol X-
band radar during the HYdrological cycle in the Mediter-
ranean EXperiment (HyMeX) campaign (Ducrocq et al.,
2014; Bousquet et al., 2015). The results of the bin-based
de-mixing (Fig. 10b) again show the smooth and plausible
transition between the lower part of the hail cell and the sur-
rounding rain, with the borders of the cell (as defined by the
classification) representing the intense mixing. The same sit-
uation is noted in the upper part of the cell, where hail mixes
with the encircling rimed ice particles.

3.1.2 Inter-radar comparison

The following two stages of the performance verification are
related to the measurement campaign organized in the Swiss
canton of Valais, from November 2016 to April 2017. The
campaign was based on the careful collocation of different
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Figure 8. Classification (1) and entropy (2) for different combina-
tions of synthetically produced mixtures: (a) aggregates–crystals,
(b) aggregates–rimed ice particles and (c) rain–melting hail.

instruments, depicted in Fig. 11: MeteoSwiss operational C-
band radar at Pointe de la Plaine Morte (2920 m a.s.l.), MX-
Pol X-band radar (460 m a.s.l.) and the MASC (2370 m a.s.l.;
Garrett et al., 2012).

Not having the possibility to retroactively manipulate the
scanning strategy, we decided to base the second step of the
verification on analyzing the influence of the proposed de-
mixing method on the classification matching between two
radars covering a certain common volume. Namely, we de-
fined the vertical cross section sized 7 km in range and 2 km
in height, being common for the Plaine Morte radar 227◦

and the MXPol radar 47◦ azimuthal RHI (see blue and or-
ange segments in Fig. 11). Further on, we selected a period of

50 min, corresponding to 10 acquisitions by the Plaine Morte
radar (plan position indicators (PPIs) and therefore recon-
structed RHIs) and 14 RHI acquisitions by the MXPol radar
(5:05–5:55 UTC on 28 February 2017), where the stationar-
ity in terms of proportions of dominant labeled hydrometeors
could be assumed.

One of the acquisitions, illustrated in Fig. 12a, shows a
clear difference in the sampling volume size between two
radars. Namely, although the range resolutions of the two
radars are indeed comparable (75 m for the MXPol radar and
83 m for the Plaine Morte radar), the vertical cross section
is significantly closer to the MXPol radar, which makes it
have much better azimuthal resolution as well. Entropy es-
timations in Fig. 12b show an overall significant rise in the
entropy values for the Plaine Morte radar, with respect to the
ones of the MXPol radar. Due to the expected increase in
hydrometeor mixing with the increase of the radar sampling
volume, this observation, supported by other analyzed acqui-
sitions, confirms the crucial role of the parameterized entropy
in detecting hydrometeor mixtures. It therefore confirms the
plausibility of the proposed bin-based approach, intrinsically
related to the concept and the definition of the entropy pa-
rameter.

With the data being kept in polar coordinates, it was im-
possible to properly match the volumes. Thus, a more direct,
quantitative way of proving the utility of the proposed de-
mixing approach comes down to the comparison of the pro-
portions of detected classes in the entire cross section, be-
fore and after the de-mixing (Fig. 12c–e). The quantitative
mismatching criterion is the simple measure of distance be-
tween the normalized proportions of hydrometeors seen by
the MXPol radar (PRMX) and by the Plaine Morte (PRPM):

D =

∑4
i=1PRiMX−PRiPM∑4

i=1|PRiMX|
0 ∨ |PRiPM|

0
, (9)

normalized by the number of classes detected either by one
or by both instruments (logical or operator, in the denomina-
tor). The value of D, averaged over all considered scans, is
provided in the titles of Fig. 12c–e.

In Fig. 12d the de-mixing is limited to the proportions of
the first three dominant components, which tend to occupy
the majority of the radar sampling volume, and are not likely
to account for only the residual presence of a hydrometeor
class. This comparison shows not only the improved match-
ing but also the presence of hydrometeors unidentified before
the de-mixing. Extending the de-mixing to all eight com-
ponents (VI being merged with CR) furthermore improves
the matching, at the expense of the occurrence of residually
present classes (WS in this case).

The share of the dominant class (Fig. 12f and g) would be
the quantitative confirmation of the logical assertion made in
the previous paragraph: in the case of a bigger radar sam-
pling volume, with the proposed method we tend to infer
more mixing.
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Figure 9. Bin-based de-mixing applied to an example MXPol dataset acquired during the APRES3 campaign at the Dumont-d’Urville base,
Antarctica, on 28 January 2016: (a) classification followed by the entropy estimate, (b) proportion of eight hydrometeor classes in each of
the radar sampling volumes.

We also benefited from this configuration checking for the
potential correlation between the entropy parameter/mixture
indicator H and polarimetric parameters constituting the
weather radar target vector (Eq. 1). The weak but statisti-
cally significant linear correlation (at .05 significance level)
of −0.4 for MXPol and −0.17 for the Plaine Morte radar
is observed for the co-polar correlation (ρhv), which makes

quite a bit of sense given that ρhv is often interpreted as a
measure of heterogeneity.

3.1.3 Comparison with the ground level observations

The final stage of the verification is based on comparing
the outcome of the de-mixing method with the classifica-
tion of individual particles from the ground level instru-
ment. The principle intuitively resembles the comparison
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Figure 10. Bin-based de-mixing applied to an example MXPol dataset acquired during the HyMeX campaign in the region of Ardèche,
France, on 24 September 2012: (a) classification followed by the entropy estimate, (b) proportion of eight hydrometeor classes in each of the
radar sampling volumes.

with classification based on the 2-Dimensional Video Dis-
drometer (2DVD) (Grazioli et al., 2014) in the original clas-
sification paper (Besic et al., 2016). The classification of
MASC images is described in Praz et al. (2017). Using a
supervised machine learning approach, it distinguishes be-
tween small particles (SPs), columnar crystals (CCs), planar
crystals (PCs), a combination of columnar and plate crystals

(CPCs), aggregates (AGs) and graupel (GR), with the addi-
tional possibility of estimating a degree of riming and de-
termining whether the particle is melting or not. In order to
make the comparison possible, we formed the corresponding
merged classes: CR (CC+PC+CPC), AG (AG), RP (GR)
and MS (any of the classes with the melting degree different
from zero). Evidently, neither the MASC as the instrument
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Figure 11. Configuration of instruments deployed during the Valais
campaign.

nor the classification applied to its measurements can be con-
sidered as an ideal reference. The major limitations which
ought to be considered when analyzing the results presented
in this section are the possible occurrence of blowing snow,
the limited sampling volume of the instrument, the quality
of recorded images and the inevitable classification random
errors.

The setup is again based on considering the vertical cross
section of the reconstructed RHI of the Plaine Morte radar,
though this time in a slightly more restricted area of 4 km
in the range direction, around the MASC (Fig. 13a and b).
The unavoidable difference in height between the MASC and
the lowest (non-clutter-contaminated) considered radar sam-
pling volume could hypothetically compromise the compar-
ison given the microphysical processes which can occur in
this non-observed region. However, given the relative nature
of the comparison (before and after de-mixing), as well as the
employed spatial and temporal averaging, this effect is fairly
limited.

In order to fully satisfy the hypothesis of stationarity (in
terms of proportions of dominant labeled hydrometeors),
which allows us to properly average the de-mixing scores,
we selected different periods across different events, summa-
rized in Table 2. The quantitative matching criterion is iden-
tical to the D defined in Eq. (9), with PrMX being replaced
by PrMASC.

Though the quantitative evaluation of mismatching shows
pretty good results from the classification itself, similarly to
the second stage of the verification, we can still notice that in
all six analyzed events, regardless of their duration, the ap-
plied de-mixing method improves the distribution matching
(smaller D). The matching also systematically appears to be
better if we consider all components, rather than the three
dominant ones. The improvement in matching is also corre-
lated with the measure of entropy averaged over the event

and the vertical cross section (µ(H)). Namely, lower µ(H)
means smaller probability of mixing and therefore more lim-
ited potential in terms of distribution matching.

In Fig. 13c–e we illustrate how the distributions actually
compare across four merged classes. The presented event
(no. 3 in Table 2) highlights the improved agreement in terms
of concentration of AGs and RPs. It also shows the risk of
overestimating residually present particles (MS in this case)
in the case of the extension to all eight de-mixing compo-
nents (Fig. 13e).

In order to demonstrate the capability of the method of
dealing with the hydrometeor classes other than the over-
represented aggregated and rimed ice particles, we illustrate
the comparison of distributions across four classes for event
no. 5 in Fig. 14. Namely, it was the warmest day with a sig-
nificant amount of precipitation during the campaign, and
our hope was to perform some de-mixing around the melting
layer. Unfortunately, though the MASC was effectively in the
melting layer, the lowest radar beam was 400–500 m above
the 0◦ isotherm, and MXPol data happen to be compromised
by ground clutter in the direction of interest. Nevertheless,
the de-mixing shows very good performances in estimating
the proper percentage of the third class involved – crystals
(Fig. 14b and c).

The agreement with the MASC is further reinforced by
considering the additional parameter estimated from the
MASC measurements – the continuous riming degree in-
dex (DoR) (Praz et al., 2017). Independent from the previ-
ously mentioned classification, DoR is defined in the range
between 0 (no riming) and 1 (graupel). Relying on the previ-
ously introduced setup, we now only consider the proportion
of rimed ice particles detected by the radar (before and after
de-mixing) and the proportion of particles characterized as
rimed with a different level of strictness with respect to the
DoR (DoR≥N , with N being a riming threshold).

In Fig. 15a we can see an example (event no. 2) of the tem-
poral evolution of the proportion of the RPs as seen by the
radar before and after the de-mixing, versus the proportion of
rimed particles as seen by the MASC for different thresholds
applied to DoR. The moderate temporal correlation which
can be intuited from this example is quantified in Fig. 15b
for the merged observations from all six events. By introduc-
ing the temporal dimension into the analysis, we can deduce
that the correlation actually slightly decreases after the de-
mixing, though not significantly. By checking for the time-
lagged correlation, we see that the vertical trajectory between
the lowest radar sampling volume and the MASC does not
seem to compromise significantly the time matching of the
samples. Finally, still considering the merged observations,
by looking at the root mean square error between the esti-
mated proportions for different DoR thresholds in Fig. 15c,
one can notice a significant improvement introduced by the
de-mixing method.
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Figure 12. Comparison example in terms of classification (a) and entropy (b) between Plaine Morte (1) and MXPol (2), followed by the
quantitative matching analysis before de-mixing (c), after de-mixing with only three dominant components (d) and after de-mixing with all
components(e), and quantitative measure of mixing ratio with only three components (f) and with all components (g).

4 Neighborhood-based analysis

The neighborhood-based analysis is founded on simultane-
ously considering an ensemble of pixels, rather than one
pixel at a time as was the case with the bin-based approach.
This approach increases the potential issue of the spatial in-
coherency in weather radar measurements (Tso and Mather,
2009), a phenomenon which is conveniently neglected in
the previously presented bin-based approach, even though it
could potentially be considered relevant in the context of hy-
drometeor mixtures. Namely, given that the size of the hy-
drometeors populating the sampling volume is inferior to
the size of the volume itself, the conventional radar mea-
surements are affected by the random spatial interference of

the scattered waves (otherwise known as the speckle effect),
causing the incoherency in the measurements. It is important
to state that the precipitation has also been characterized as
a partly coherent scatterer (Jameson and Kostinski, 2010a,
b), even though the former is more commonly associated
with the clutter response (Zhang, 2016). Averaging the pa-
rameters over several pulse responses, i.e., obtaining the es-
timates from time averages of auto- and cross-correlations of
received echoes (Sauvageot, 1982; Balakrishnan and Zrnic,
1990), conventionally serves as a sort of speckle filter, which
should deal with the incoherency by canceling the random
interferences. This technique is presumed to be efficient in
the case of measurements corresponding to incoherent scat-
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Figure 13. Comparison of classification applied to Plaine Morte data (a, b) with the MASC classification, before de-mixing (c) and after
de-mixing: with the three dominant components (d) and with all components (e).

Table 2. Quantitative scores (D) of the Plaine Morte–MASC comparison before and after the bin-based de-mixing. Events 3 and 5 are
illustrated respectively in Figs. 13 and 14.

No. Event D bef. the D aft. the D aft. the µ(H)

de-mix. de-mix. de-mix.
(3 comp.) (all comp.)

1 12/01/17, 20:10–21:00 UTC 0.1074 0.0977 0.0857 0.3303
2 05/02/17, 6:10–8:00 UTC 0.2233 0.1372 0.1196 0.4445
3 06/03/17, 14:15–14:50 UTC 0.0741 0.0376 0.0280 0.4091
4 06/03/17, 17:25–18:00 UTC 0.3289 0.1954 0.1813 0.4510
5 18/03/17, 12:00–14:00 UTC 0.1760 0.0859 0.0690 0.4429
6 18/03/17, 16:00–17:00 UTC 0.3070 0.2092 0.1965 0.4290
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Figure 14. Comparison of classification applied to Plaine Morte
data with the MASC classification, before de-mixing (a) and after
de-mixing: with only three de-mixing components (b) and with all
de-mixing components (c).

tering, whereas in the case of non-random interferences (co-
herent scatterer) its usefulness remains questionable.

In the radar sampling volume populated by different
hydrometeor types (characterized by significantly different
shapes and fall velocities), it is logical to suspect that some
residual interferences could “survive” the conventional aver-
aging over several pulses. Embracing the hypothesis of orig-
inally incoherent measurements, one could consider this to
be the residual incoherency, though this could equally be an
intrinsically coherent backscattering as described by Jame-
son and Kostinski (2010a, b). However, in the context of de-
mixing, only the residual incoherency really potentially com-
promises the proposed bin-based approach, which is funda-
mentally based on first-order statistics – the vectors repre-
senting centroids. That is to say, the presence of incoherency
in backscattering would require relying on at least second-
order statistics in evaluating a mixture.

Figure 15. Radar vs. MASC, detection of rimed particles: (a) tem-
poral evolution of event no. 2, with the shades of gray correspond-
ing to different thresholds (≥) applied to DoR (dark corresponding
to 0.5; light corresponding to 1), green dashed line being the pro-
portion of RPs before the de-mixing and green solid line being the
proportion of RPs after the de-mixing; (b) cross correlation for all
events from Table 2; and (c) root mean square error (RMSE) for all
events from Table 2.

This being said, we decided to proceed with the following
analysis, inspired by SAR incoherent polarimetric decompo-
sitions (Cloude and Pottier, 1996) and adapted to our spe-
cific polarimetric framework introduced in Sect. 2.1. The ac-
tual idea behind it is that, by considering the spatial ensem-
ble of integrated radar responses over radar sampling vol-
umes, we can assess the level of the “surviving” random in-
terference of individual hydrometeor responses inside a radar
sampling volume. Therefore, the following analysis can be
considered as a way of diagnosing, by means of assessing
the spatial consistency, the presence of the hereby described
residual spatial incoherency. It is important to keep in mind
that this technique most probably cannot distinguish the very
small scale coherency in backscattering from the residual in-
coherency.

It should be noted that the phase indicator, as external in-
formation, is not included (phase indicator, the fifth element
of our weather radar target vector (Eq. 1), meaning that from
now on k is a four-element vector).
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4.1 PCA

Principal component analysis is a statistical method which
transforms the data represented in a space formed by corre-
lated variables to the space formed by orthogonal, linearly
uncorrelated variables (Pearson, 1901). By assuming that
our data samples represent points in the space formed by
four transformed and linearly scaled polarimetric variables
([x1 x2 x3 x4]T ), the PCA comes down to the eigenvector
decomposition of the sample estimated (〈·〉) covariance ma-
trix of data samples. This allows us to describe the covari-
ance matrix as a weighted sum of covariance matrices of the
eigenvectors, i.e., the principal components ki :〈
kkT

〉
=

〈
[x1 x2 x3 x4]T [x1 x2 x3 x4]

〉
=

= λ1k1k
T
1 + λ2k2k

T
2 + λ3k3k

T
3 + λ4k4k

T
4 , (10)

with the weights λi being the corresponding eigenvalues. The
obtained eigenvectors should represent scatterers, in our case
types of hydrometeors, incoherently mixed in the considered
data (X). By projecting the original incoherent dataset values
X onto the set of eigenvectors, we obtain the dataset values
in the new space – Y. These new values could be taken for
the measurements as they presumingly should be if it were
not for the incoherence in the measurements:

Y=


y11 y12 y13 · · ·

y21 y22 y23 · · ·

y31 y32 y33 · · ·

y41 y42 y43 · · ·

= [k1 k2 k3 k4]TX=

= [k1 k2 k3 k4]T


x11 x12 x13 · · ·

x21 x22 x23 · · ·

x31 x32 x33 · · ·

x41 x42 x43 · · ·

 . (11)

Going backwards, by applying the inverse PCA transform,
we can estimate the proportions of the originally measured
samples contributing to each of the pure uncorrelated com-
ponents:

Xi = ki
[
yi1 yi2 yi3· · ·

]
, i = 1, · · ·4. (12)

4.2 ICA

Independent component analysis allows for a more rigor-
ous separation of components with respect to PCA (Comon,
1994). Namely, in the case of having non-Gaussian data, the
separation can be achieved at statistical moments higher than
variance. That is to say, the principal components in this case
are only uncorrelated, not actually independent. If we rely
on the framework introduced in Eq. (11) and substitute the
matrix of projected points Y with the matrix of independent
sources S, the vectors ki take up the role of independent com-

ponents:

S=


s11 s12 s13 · · ·

s21 s22 s23 · · ·

s31 s32 s33 · · ·

s41 s42 s43 · · ·

= [k1 k2 k3 k4]TX=

= [k1 k2 k3 k4]T


x11 x12 x13 · · ·

x21 x22 x23 · · ·

x31 x32 x33 · · ·

x41 x42 x43 · · ·

 . (13)

Their independence is reached by relying on the paradigm
used in PCA (eigenvalue decomposition) but applied to ten-
sorial structures, which are higher-order generalizations of
covariance matrices. Alternatively, it is done by means of an
iterative process aiming to increase the non-Gaussianity of
the sources. In the latter case, adopted in this analysis, the
hypothesis is that, due to the central limit theorem, the in-
crease in the non-Gaussianity of the sources will lead to the
increase in their mutual independence (Hyvärinen and Oja,
2000). Therefore, an independent component is found as

ki = arg max E
(
fng ([si1 si2 si3 · · ·])

)
=

= arg max E
(
fng(k

T
i X)

)
, (14)

with fng(·) being the measure of non-Gaussianity (most com-
monly kurtosis or negentropy). Basically, the vector k should
be such that its product with the data samples X results in a
variable s with higher statistical moments (above the second)
as pronounced as possible.

As was the case with PCA (Eq. 12), we can go backwards
and estimate the contribution of the original samples to the
each of pure independent components:

Xi = ki [si1 si2 si3· · ·] , i = 1, · · ·4. (15)

4.3 Evaluation

After elaborating in the previous section the de-mixing of
aggregates, rimed ice particles and crystals through the bin-
based approach, now we approach the same problem by try-
ing to evaluate the potential lack of coherency. As previously
stated, the polarimetric parameters characterizing a radar vol-
ume (k) are already obtained through temporal averaging of
subsequent radar pulses, and therefore the wider spatial con-
text, determined by the values of entropy, is adopted here as
a sort of polygon for the coherency study. Namely, the per-
formance of PCA and ICA is studied on the example of MX-
Pol and Plaine Morte datasets already used in Fig. 12, with a
slightly more restricted surface but a less restricted temporal
stationarity constraint (a longer event).

In Fig. 16a we see the region of significant transitions be-
tween aggregates and rimed ice particles, seen simultane-
ously by the MXPol and the Plaine Morte radar, which is,
due to the entropy estimation (thresholded at H > 0.4), sus-
pected to be dominated by mixtures. The subsequent Fig. 16b
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Figure 16. The example of (1) MXPol radar RHI and (2) Plaine Morte reconstructed RHI (from the dataset used in Sect. 3), with the
accentuated volumes with entropy H > 0.4: (a) the entropy of the region of interest, (b) the first-closest centroid, (c) the second-closest
centroid .

and c show the first (the closest centroid) and the second
(the second closest centroid) dominant component as seen
by the hydrometeor classification. Rather than analyzing sep-
arately each of the pixels and estimating the proportions of
these components by applying the bin-based approach based
on the assumption of coherence, here we analyze the poten-
tial of the PCA and ICA techniques to detect the potential
residual incoherency. That is to say, we try to infer either the
coherent component or the component cleaned of any inter-
ferences,involved in the overall mixing process, by consider-
ing the ensemble of the pixels, regardless of their position in
space.

We start by taking all the pixels observed by the MXPol
radar in one of the acquisitions during the extended event
introduced in Sect. 3.1.2 (34 acquisitions between 4:00 and
6:00 UTC on 28 February 2017) and characterized by higher
entropy values (H > 0.4). By representing them in a space
formed by our four transformed and stretched polarimetric
variables, we obtain a not exactly informative cloud of points
(black circles in Fig. 17). This cloud of points, which would
be the matrix X introduced in Eq. (11) (each point is a matrix
column), is characterized by relatively high entropy values,
as this was the criterion for the selection of the region of in-
terest. The following four columns in Fig. 17 represent the
vectors ki , which are the axes of the new space, i.e., the prin-
cipal, uncorrelated components (in blue), or the independent
components (in red).

As suggested in Sect. 4.1, the first uncorrelated component
is supposed to represent a pure component, freed up of the ef-
fect of incoherency in the data acquisition. And indeed, this
first component does cover the majority of spatial variance
(in Fig. 17, the proportion of the first component is about

85 % for the PCA and 68 % for the ICA), indicating that we
should not be too concerned by the residual incoherency. It
is even truer if we recall that our sample cannot be consid-
ered as completely homogeneous, meaning that the portion
of variance unexplained by the first uncorrelated component
does not exclusively refer to the incoherency. By repeating
the analysis over the entire considered event, we confirm that
the proportion of the first component is important enough to
discard a significant influence of residual backscattering in-
coherency (Fig. 18a), its median value being 86 % and its
median Cloude and Pottier entropy value (Eq. 3, with λi
from Eq. 10 taking the role of pi) being H̃CP = 0.38. The
low value of HCP emphasizes the non-uniform distribution
among proportions of the four estimated principal compo-
nents.

Unfortunately, by evaluating the entropy estimate of the
pure component in the space of the original centroids, we
see that these vectors ki do not correspond at all to the pre-
defined centroids (not illustrated in Figs. 17 and 19). Hence,
they cannot be considered at all as the pure components in the
context of the hydrometeor classification. The conclusion is
confirmed by checking the entropy distribution of the propor-
tions of original data contributing to each of the components
(Eq. 12). This implies that PCA cannot really be used as a de-
mixing tool, because the coherent backscattering proportion
corresponds not to the backscattering of a pure hydrometeor
type but rather to the backscattering of the mixture.

Aside from uncorrelated components, in Fig. 17, we
also show the results of employing the introduced Fas-
tICA method (with kurtosis value for the measure of non-
Gaussianity), following its demonstrated benefits in the
framework of the SAR decomposition theory (Besic et al.,
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Figure 17. PCA (blue) and ICA (red) applied to the H > 0.4 regions of an example of the RHI from the event considered in the inter-radar
comparison in Sect. 3.1 (MXPol X-band data).

Figure 18. The distribution of the proportions of the most domi-
nant component, calculated by generalizing the analysis illustrated
in Figs. 16, 17 and 19 onto the entire (extended) event considered
in the inter-radar comparison in Sect. 3.1: (a) PCA, (b) ICA.

2015; Pralon et al., 2016). The principal advantage of this
tool with respect to PCA would be the lack of the orthog-
onality constraint. Basically, each successive component is
not required to be orthogonal to the previous one but is the
one which is genuinely independent, assuming the very plau-
sible non-Gaussianity of the data. This effect, allowing for
the subtle “splitting” of the first component, causes the pro-

portion of the first estimated component, event though it ob-
viously corresponds to the first uncorrelated component, to
end up being far inferior with respect to the one estimated by
PCA (over the entire event, median proportion of 46.4 % and
H̃CP = 0.86, with pi being ||k1||

2
2). This kind of increased

sensibility, which results in the subtle splitting of the first
component, does not indicate higher incoherency than seen
by PCA but rather confirms the previously stated assumption
that the incoherence is not the dominant cause of the propor-
tion unexplained by the first correlated component.

The same analysis applied to the Plaine Morte data (24 ac-
quisitions between 4:00 and 6:00 UTC on 28 February 2017)
is illustrated in Fig. 19. The quantitative parameters esti-
mated over the entire event (PCA: median proportion of
the first component, 56%, H̃CP = 0.73; ICA: 46.4%, H̃CP =

0.88) show a drop in the first uncorrelated component propor-
tion (Fig. 18), a drop which can be explained by the signifi-
cantly increased volume size (which can be seen in Fig. 16)
and a lower number of pulses averaged in estimating the po-
larimetric parameters. Both factors logically make the hy-
pothesis of negligible random interference slightly weaker.

Aside from studying the potential effect of incoherency,
this analysis is also useful in highlighting the limit of the
concept of discrete hydrometeor classification. Namely, this
concept prevents us from exploiting the conventional tools
in dealing with the residual incoherency that could allow us
to have an even more systematic and assumptions-free in-
sight into the mixed-radar sampling volumes, with respect to
the one presented in this article as the bin-based approach.
A possible way forward would be to investigate the possibil-
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Figure 19. PCA (blue) and ICA (red) applied to the H > 0.4 regions of an example of the RHI from the event considered in the inter-radar
comparison in Sect. 3.1 (Plaine Morte C-band data).

ity of modeling the weather radar target vector. Following
suggestions from the micro-physical modeling community
(Morrison and Milbrandt, 2015) or practices from the SAR
remote-sensing community (Touzi, 2007), one could develop
a way to introduce some degrees of liberty in depicting hy-
drometeor classes, degrees of freedom which would reflect
the physical properties of the hydrometeor itself. That would
not guarantee that we would exploit all the statistical infor-
mation from the measurements, because inferring total inde-
pendence might not even be possible (the proportions sum-
ming up to unity could represent an obstacle to the concept of
independence, as suggested by Nascimento and Dias, 2005).
However, it could very probably allow us to account for the
incoherency by exploiting the first two statistical moments
(PCA).

5 Conclusions and future perspectives

In this paper, we address the issue of hydrometeor mix-
tures in polarimetric radar measurements by adapting the
paradigm of decomposition/unmixing widely elaborated in
other remote-sensing domains to the field of weather radar
remote sensing.

In the first part of the paper we propose a bin-based de-
mixing approach, which is largely based on the hypothesis
of coherent backscattering of hydrometeors inside the radar
sampling volume. The proposed approach is built upon the
semi-supervised hydrometeor classification method which
reduces the classification problem to the distances in the Eu-

clidean space formed essentially by the polarimetric param-
eters (Besic et al., 2016) but could be adapted to any clas-
sification technique providing a distance to the various hy-
drometeor types. Inspired by the SAR polarimetric decom-
position on standard mechanisms and hyperspectral linear
unmixing, the method estimates proportions of different hy-
drometeor classes in each radar sampling volume, without
considering the wider spatial context. The performance of
such an approach is analyzed in three stages, based on C-
band and X-band radar data, together with a ground-based
Multi-Angle Snowflake Camera. The analysis, aside from
demonstrating the potential of the method, also shows the
improved matching between different radars and, most sig-
nificantly, the improved matching between the radar and the
independent ground-based instrument.

The second part of the paper is dedicated to the study of
a potential influence of the residual spatial incoherency in
the backscattering of hydrometeors inside the radar sampling
volume. The study is based on adapting the conventional sta-
tistical methods, such as PCA and ICA, used to deal with the
spatial incoherency in the SAR remote sensing to the spe-
cific framework of the weather radar polarimetry. The perfor-
mance analysis points out the limited influence of the resid-
ual incoherency in the regions of hydrometeor mixtures. The
introduced evaluation of the spatial consistency in the case
of heterogeneousness radar sampling volumes is important
given that potentially present incoherency is not only due
to the intraclass variability but also due to the interclass hy-
drometeor variability. The conclusion, implying that after all
there is not a significant rise in incoherency in the case of hy-
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drometeor mixtures on the one hand strengthens the proposed
bin-based approach and on the other hands makes the tools
such as PCA and ICA less useful in the context of weather
radar decomposition/de-mixing than they are in the context
of SAR remote sensing.

The overall message of this paper is to focus some atten-
tion of the weather radar community on the importance of
the decomposition/de-mixing methods, which make it pos-
sible to look into the radar sampling volume. The present
work remains exploratory, and many avenues still need to be
explored, including the potential benefits of a continuous hy-
drometeor classification approach. Finally, the proposed bin-
based approach, allowing already plausible and fairly vali-
dated estimation of hydrometeor type at the sub-bin level,
can be used to improve the quantitative estimation of precip-
itation using radar.
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