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Abstract. Hierarchical agglomerative clustering (HAC)
analysis has been successfully applied to several sets of am-
bient data (e.g., Crawford et al., 2015; Robinson et al., 2013)
and with respect to standardized particles in the laboratory
environment (Ruske et al., 2017, 2018). Here we show for
the first time a systematic application of HAC to a compre-
hensive set of laboratory data collected for many individ-
ual particle types using the wideband integrated bioaerosol
sensor (WIBS-4A) (Savage et al., 2017). The impact of the
ratio of particle concentrations on HAC results was investi-
gated, showing that clustering quality can vary dramatically
as a function of ratio. Six strategies for particle preprocess-
ing were also compared, concluding that using raw fluores-
cence intensity (without normalizing to particle size) and
logarithmically transforming data values (scenario B) con-
sistently produced the highest-quality results for the parti-
cle types analyzed. A total of 23 one-to-one matchups of
individual particles types was investigated. Results showed
a cluster misclassification of < 15 % for 12 of 17 numerical
experiments using one biological and one nonbiological par-
ticle type each. Inputting fluorescence data using a baseline
+3σ threshold produced a lower degree of misclassification
than when inputting either all particles (without a fluores-
cence threshold) or a baseline +9σ threshold. Lastly, six nu-
merical simulations of mixtures of four to seven components
were analyzed using HAC. These results show that a range
of 12 %–24 % of fungal clusters was consistently misclas-
sified by inclusion of a mixture of nonbiological materials,
whereas bacteria and diesel soot were each able to be sepa-
rated with nearly 100 % efficiency. The study gives signifi-
cant support to clustering analysis commonly being applied

to data from commercial ultraviolet laser/light-induced fluo-
rescence (UV-LIF) instruments used for bioaerosol research
across the globe and provides practical tools that will im-
prove clustering results within scientific studies as a part of
diverse research disciplines.

1 Introduction

Particles of biological origin, or bioaerosols, make up a sub-
stantial fraction of atmospheric aerosols and have the poten-
tial to influence environmental processes and to negatively
impact human health (Després et al., 2012; Douwes et al.,
2003; Fröhlich-Nowoisky et al., 2016; Shiraiwa et al., 2017).
In order to understand the impact bioaerosols, such as pollen,
fungal spores, and bacteria, play in various systems, it is im-
portant to be able to identify and characterize these biolog-
ical particles in the atmosphere. One common method for
the detection of bioaerosols is ultraviolet laser/light-induced
fluorescence (UV-LIF) because it can provide particle de-
tection in near real time and at a high particle size resolu-
tion (Fennelly et al., 2017; Huffman and Santarpia, 2017;
Sodeau and O’Connor, 2016). Many commercial UV-LIF in-
struments have become available for bioaerosol detection,
but all of these techniques are challenged with the need to
differentiate between small differences in fluorescence prop-
erties in order to detect and quantify biological aerosols. Re-
cently commercialized instruments show an improved ability
to discriminate between particle types, for example by utiliz-
ing multiple excitation sources or other particle data (e.g.,
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size and shape). UV-LIF techniques are, however, inherently
limited by the broad nature of fluorescence spectra, and so
instruments face a ubiquitous problem of poor selectivity be-
tween particle types. By applying improved data threshold-
ing and particle classification techniques, particle characteri-
zation can be further improved, but important limitations still
remain (Hernandez et al., 2016; Huffman et al., 2012; Perring
et al., 2015; Savage et al., 2017; Toprak and Schnaiter, 2013;
Wright et al., 2014). One strategy to improve the quality of
differentiation between particles types has been to collect
full, resolved emission spectra, each at multiple excitation
wavelengths. This can lead to a high instrumental purchase
cost, and such instruments have not been widely applied or
commercialized (Huffman et al., 2016; Kiselev et al., 2013;
Pan et al., 2009b; Ruske et al., 2017; Swanson and Huffman,
2018). Most commercial UV-LIF instruments for bioaerosol
detection utilize one to two excitation wavelengths and inte-
grate fluorescence signals into a small number of emission
bands. To extend the improvements in particle classification
for these commercial UV-LIF instruments, a number of mul-
tivariate analysis techniques have been applied to ambient
particle analysis. The most common of these techniques in-
clude principal component analysis, factor analysis, and clus-
ter analysis strategies. Classification algorithms, including
several clustering techniques in particular, have shown suc-
cessful results in providing unbiased insights into the classi-
fication of bioaerosols (Crawford et al., 2015; Pinnick et al.,
2013; Robinson et al., 2013; Swanson and Huffman, 2018).

Cluster analysis is a broad class of data mining methods
in which data objects placed in the same group (or cluster)
are more similar to one another than to those objects placed
in other groups. Classification algorithms can be divided
into two central models: (1) supervised and (2) unsupervised
learning. Both models have associated advantages and dis-
advantages. Supervised learning methods allow the “train-
ing” of data and grouping to better reflect the data observa-
tions (Eick et al., 2004; Ruske et al., 2017, 2018). This type
of method enhances (trains) the classification algorithm in
that the output groups are predetermined rather than discov-
ered, as is the case for unsupervised methods. Supervision
requires the user to have appropriate starting conditions to
put into the model, which are often difficult or impossible to
determine. Supervised training methods are also much more
time-efficient compared to unsupervised methods, which is
important when analyzing ambient data sets where particle
counts (individual objects) can be greater than 106 (Ruske et
al., 2017). In contrast, unsupervised training methods present
less bias and can adapt to unique situations because the re-
sultant clusters are based on models that have not been previ-
ously trained. To access some of the advantages of supervised
methods, however, it is important to first apply unsupervised
models to wide collections of laboratory data of known par-
ticle types in order to gain insight into how these models in-
terpret data inputs and to learn how algorithms can best be
trained (Ruske et al., 2017).

Hierarchical agglomerative clustering (HAC) is an unsu-
pervised learning method that has been most commonly ap-
plied for bioaerosol-related studies (e.g., Crawford et al.,
2015, 2016; Gosselin et al., 2016; Pan et al., 2009a, 2007;
Pinnick et al., 2004, 2013; Robinson et al., 2013; Ruske et
al., 2017, 2018). Other unsupervised clustering techniques,
such as the k-means clustering method, have shown poor re-
sults when applied to ambient data sets because the num-
ber of clusters used to represent the data are required a pri-
ori, and this information is usually unknown prior to analysis
(Ruske et al., 2017). There are several different HAC meth-
ods or linkages including the following: single, complete, av-
erage, weighted, Ward’s, centroid, and median (Crawford et
al., 2015; Müllner, 2013). Ruske et al. (2017) compared a
variety of HAC linkages and determined that Ward’s linkage
had a higher percentage of correctly classifying particles in
comparison to other HAC methods.

Recently, Savage et al. (2017) published a comprehensive
laboratory study applying the wideband integrated bioaerosol
sensor (WIBS-4A) to a large and diverse set of biological and
nonbiological aerosol types. Following on to that work, the
study presented here utilizes those data as inputs to evalu-
ate and challenge the HAC strategy of particle differentia-
tion using Ward’s linkage of unsupervised clustering. Previ-
ous HAC studies have focused primarily on (a) the analy-
sis of simple particle standards (i.e., fluorescent microbeads)
and (b) the clustering of particles from ambient data sets.
There have been relatively few published attempts to differ-
entiate between biological particles and interfering particles
by clustering methods using controlled laboratory UV-LIF
data or to separate different kinds of biological particles from
one another. Presented here are results of the HAC method
applied to data from a comprehensive WIBS-4A laboratory
study showing that clustering can dramatically improve the
removal of nonbiological particle types from data sets if op-
erated under appropriate conditions.

2 Experimental and computational methods

The WIBS-4A (Droplet Measurement Techniques, Long-
mont, CO, USA) is a commonly used UV-LIF based in-
strument for the detection and characterization of biological
particles. The instrument collects particles in the size range
0.8–20 µm and interrogates them in real time as particles
flow along the path between optical sources. The WIBS col-
lects information about fluorescence intensity in three chan-
nels (FL1, FL2, and FL3), particle size, and particle asym-
metry for each interrogated particle. The bands of excita-
tion and fluorescence emission are FL1 (λex = 280, λem =

310–400 nm), FL2 (λex = 280, λem = 420–650 nm), and FL3
(λex = 370, λem = 420–650 nm). The excitation and emis-
sion wavelengths chosen for each of the three fluorescence
channels were designed to maximize the information gained
about key biological fluorophores present in a broad range of
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Figure 1. Schematic diagram showing the data preparation process
resulting in the generated clustering products. Parameters within the
pink box are the focus of this paper.

bioparticles (Kaye et al., 2005; Pöhlker et al., 2012). Early
generations of UV-LIF bioaerosol spectrometers were often
interpreted to be able to detect proteins via channels simi-
lar to FL1 and products of active cellular metabolism (i.e.,
riboflavin and NAD(P)H) via channels similar to FL3, but
these approximations are gross simplifications that confound
a more detailed investigation of particle types. For more in-
formation on the design, operation, and calibration of this
instrument, see, e.g., the papers listed here and references
therein: Foot et al. (2008), Healy et al. (2012a, b), Hernan-
dez et al. (2016), Kaye et al. (2005), Perring et al. (2015),
Robinson et al. (2017), Savage et al. (2017), and Stanley et
al. (2011).

All aerosol materials utilized have been listed previously
in Table 2 of Savage et al. (2017), where an overview of size
and fluorescence properties of particles utilized for this study
are also reported. No additional laboratory experiments were
performed here beyond the results presented previously.

The fluorescence threshold applied to the differentiation
of fluorescent from nonfluorescent particles is a key step in
UV-LIF data analysis. Traditionally, a fluorescence thresh-
old has been determined as the average baseline fluorescence
intensity measured in each of the three channels during the
forced trigger (FT) mode when no particles are present plus
3 times the standard deviation (σ) of that measurement (i.e.,
FT+3σ) (Gabey et al., 2010). Savage et al. (2017) also re-
ported that additional particle discrimination is possible by
using FT+9σ as the threshold. Both threshold definitions
will be discussed here. After choosing a threshold of mini-
mum fluorescence, the fluorescence characteristics of a par-
ticle can be classified into seven different particle types in-
troduced by Perring et al. (2015) and summarized in Fig. 1
of Savage et al. (2017).

3 Clustering strategy

Hierarchical clustering methods work by grouping objects
from the bottom up, meaning that each object (particle) starts
as its own “cluster,” and clusters are merged together based
on similarities until a greatly reduced number of clusters are
presented as a final solution. Ward’s method for clustering is
among the most popular approaches for HAC and is the only
method based on a classical sum-of-squares criterion, mini-
mizing the within-group sum of squares (or variance) (Müll-
ner, 2013). The WIBS-4A used here for data collection pro-
vides five parameters of information for each individual par-
ticle detected (three fluorescence channels, size, and asym-
metry factor (AF)), resulting in five dimensions of data.

The clustering analysis was performed using the open-
source software R package “fastercluster” (Müllner, 2013)
using a Dell Latitude E7450 laptop computer with an
Intel® Core™ Processor (i7-5600U CPU @ 2.60 GHz, 16 GB
RAM).

3.1 Data preparation

Saturation of fluorescence intensity occurs at 2047 analog-
to-digital counts (ADCs) for each of the three FL channels in
the WIBS-4A, at which point the photomultiplier tube (PMT)
reaches its upper limit of detection. A study by Ruske et
al. (2017) investigated whether nonfluorescent (in that case,
particles below the FT+3σ fluorescence threshold) and/or
saturating data points included in the clustering analysis hin-
dered the efficiency of the cluster output. The authors deter-
mined that removing both saturating and nonfluorescent par-
ticles before HAC analysis resulted in a better clustering per-
formance in terms of correctly classifying ambient particles.
The quality of the clustering results is likely to be impacted
by the types of particles involved and the assumptions placed
on those. As shown by Savage et al. (2017), many biological
particles present a large fraction that saturates one or more of
the fluorescence detectors. Conversely, many nonbiological
particles present a large fraction of very weakly fluorescent
particles with an intensity below a given threshold, which
are thus classified as nonfluorescent. To limit the premodifi-
cation of particle populations before clustering, the only fil-
ter applied before clustering was to remove particles smaller
than the lower particle size detection limit of the WIBS-4A
(0.8 µm), similar to Ruske et al. (2017). In contrast, both sat-
urating and nonfluorescent particles were analyzed and the
clustering results will be evaluated. Figure 1 outlines the data
preparation process, including the conceptual process of nor-
malization, clustering, and validation of data, which is ex-
plained in detail below.

3.2 Data normalization

Normalization of the raw data is necessary before execut-
ing the clustering algorithm because data parameters deliv-
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Table 1. Six scenarios explored, with varying combinations of pre-
analysis treatment. “Fluorescence normalization” refers to whether
fluorescence intensity values were input to HAC as reported by the
instrument (No) or after normalizing to particle size (Yes). “Vari-
ables logged” refers to whether data values were input as reported
(No) or manipulated to produce a normal distribution by using
log(value) (Yes).

Parameters A B C D E F

Fluorescence No No Yes Yes Yes No
normalization
Variables No Yes No Yes Yes, Yes,
logged only only

AF/size AF/size
variables variables

ered from the instrument are measured on different respec-
tive scales. For example, fluorescent intensity values range
from 0 to 2047 ADCs, size ranges from 0 to∼ 20 µm, and AF
ranges from 0 to 100 arbitrary units. Crawford et al. (2015)
performed an analysis on polystyrene latex spheres (PSLs)
using several different normalization techniques, concluding
that z-score normalization was the best technique when look-
ing at cluster performance using Ward’s linkage for the sep-
aration of PSLs. As a result, we utilize the z-score normal-
ization of Ward’s linkage HAC for the presented study. By
this type of normalization, the mean value of all data points
is subtracted from each individual data point, and then each
data point is divided by the standard deviation of all points.
Standardization using the z-score method compares results
to a normal (Gaussian) population, and we have chosen to
standardize our variables to a mean of 0 and a variance of 1
so that the output variables would be on comparable scales.

3.3 HAC scenarios

Hierarchical agglomerative clustering performs optimally if
all variables (1) are independent of one another and (2) can
be described well by a normal (Gaussian) distribution (Noru-
sis, 2011). To achieve meaningful results from the cluster-
ing analysis, data values must, therefore, be input into the
clustering algorithm with an understanding of how specific
preparatory conditions can significantly impact results. To
investigate optimal input conditions, a total of six cluster-
ing scenarios was explored, with conditions summarized in
Table 1. The impact of two separate variables was explored
within these scenarios by varying (i) whether fluorescence in-
tensity was pre-normalized by particle size and (ii) whether
the data values were input after logarithmic transformation
to produce a normal distribution.

Ambient particle number vs. size distributions can often be
well approximated by lognormal distributions, although spe-
cific groups of particles, including some bacteria, spores, and
pollen, may not always exhibit a lognormal distribution. Fur-
ther, fluorescence intensity has been shown to scale with par-

ticle size (e.g., Hill et al., 2001; Sivaprakasam et al., 2011).
Several previous studies attempted to utilize HAC for am-
bient lognormally distributed particle size data (Crawford et
al., 2014, 2015; Robinson et al., 2013) but applied the as-
sumption that particle fluorescence is normally distributed in
a group of particles. If this assumption is not correct, how-
ever, weakly fluorescing particles are likely to be grouped
into a single cluster based on the high abundance of these
particles (Robinson et al., 2013). Scenarios C, D, and E (Ta-
ble 1) utilize data input to the clustering algorithm after flu-
orescence intensity was normalized to particle size (by di-
viding fluorescence intensity value by light scattering signal
when a particle interacts with the diode laser beam) in or-
der to explore the assumption that laboratory data should be
treated like previously explored ambient data sets and not
logged. Scenarios B and D take into account the logging
of all parameters, producing normal distributions of all vari-
ables (AF, particle size, three channels of fluorescence). By
this process, data values were input into the algorithm as a
log(value) without separately binning the points. For com-
parison, scenarios E and F explore log-spaced distributions of
size and AF, while retaining the assumption that the fluores-
cence output is normally distributed. Scenario A data are nei-
ther logged nor normalized. For comparison, scenario F rep-
resents the input conditions that have been used frequently
(e.g., Crawford et al., 2015; Ruske et al., 2017).

3.4 Cluster validation

An important feature of HAC is that it provides clusters in
an unsupervised manner, and the user must determine the
number of clusters that makes physical sense. One useful
tool to systematically determine the optimal number of fi-
nal clusters is the Calinski–Harabasz (CH) index, which uses
the interclass–intraclass distance ratio (Liu et al., 2010). For
each clustering output the CH index was calculated for clus-
ter solutions with 1 through 10 clusters, and the solution with
the highest CH value was generally determined to be the opti-
mal number of clusters. Figure 2 shows an example CH value
versus cluster number plot for a mixture of Aspergillus niger
fungal spores mixed with diesel soot particles. The curve
suggests the optimal result to be a two-cluster solution for
this trial, as was generally the case for investigations where
two particle types were mixed before clustering. In order to
reduce the length and complexity of discussion, the analy-
sis of results in Sects. 4.1–4.3 was limited to using cluster
products only from the two-cluster solution. In some cases, a
three-cluster solution may have produced higher-quality re-
sults, but these cases were not investigated.
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Figure 2. Example of a Calinski–Harabasz index plot for the clus-
ter experiment with input from Aspergillus niger and diesel soot
(50 : 50 ratio). The optimal number of clusters is determined by
the highest CH value. For Sects. 4.1–4.3 only two-cluster solutions
were analyzed.

4 Results and discussion

The analysis of clustering quality was performed systemat-
ically and with increasing complexity. Section 4.1 utilizes
three pairs of particles types to explore the effect of parti-
cle ratio and normalization strategies on cluster performance.
Using conclusions from this section, Sect. 4.2 then expands
the exploration to 20 additional pairs of particle types. Sec-
tion 4.3 explores the effect of three different fluorescence
thresholding strategies on cluster output. Finally, Sect. 4.4
investigates the ability of HAC analysis to separate particle
types from mixed populations of particle types.

4.1 Investigating pre-normalization scenarios and
particle input ratio

To explore the ability to separate two distinct populations
of particles from one another, three different clustering trials
are presented in this section as one-to-one matchups: (1) As-
pergillus niger (fungal spores, F2) vs. standard diesel soot
(S4), (2) Pseudomonas stutzeri (bacteria, B3) vs. standard
diesel soot (S4), and (3) Aspergillus niger (fungal spores,
F2) vs. California sand (mineral dust, D12). These four par-
ticle materials were chosen to represent key classes of coarse
particles observed in ambient air. For each trial, a subset of
particles from each material type was selected randomly for
HAC analysis. The clustering process includes (i) the eval-
uation of cluster performance based on particle assignment
and cluster composition and (ii) the visual representations
of cluster outputs using the particle type classification in-
troduced by Perring et al. (2015). For each of these three
trials, the clustering process was run separately using each
of the six scenarios A–F described in Table 1. Additionally,
while exploring the optimal data preprocessing scenario, the
influence that different concentration ratios of particle types
could play in the clustering output was also explored. The
cluster process for each trial was performed using four dif-

ferent ratios of particles in each particle set including situa-
tions with an equal ratio and where the concentration of each
particle type was significantly mismatched. In total, this sec-
tion represents 57 individual clustering experiments (3 tri-
als×6 scenarios×3 particle ratios +3 additional ratio trials)
exploring three independent input variables. The results will
be utilized to explore many more individual particle type
matchups in the following sections.

The first two trials include diesel soot particles because
light-absorbing carbon aerosol is commonly observed in
aerosol samples with anthropogenic influence (Bond et al.,
2013) and because it can have fluorescence characteristics
difficult to distinguish from small biological particles (e.g.,
Huffman et al., 2010; Pan et al., 2012; Savage et al., 2017;
Yu et al., 2016). For example, when excited by photons with
a wavelength of 280 nm, diesel soot can be misinterpreted as
single bacterial cells using the WIBS, and so we explored
here whether the two particle types could be clustered sep-
arately (Pöhlker et al., 2012). The three trials include two
examples of biological particles, both exhibiting fluorescent
properties but with different excitation–emission characteris-
tics and with a different average particle size.

The output of the algorithm reports the particle type from
which each particle was input in order to evaluate the ac-
curacy of the clustering. The resulting output of each par-
ticle with an assigned cluster number is then compared to
the originating particle type to determine classification ac-
curacy. Figure 3 summarizes the relative accuracy of indi-
vidual clustering experiments by representing the percent
of particles misclassified with respect to known input iden-
tities (blue bar corresponding to correct classification, red
bar and overlaid value corresponding to incorrect classifi-
cation). The clustering process was generally effective for
separating particles correctly when two particle types were
considered, but results vary widely across the six scenarios.
Several previous studies that used HAC to separate parti-
cles within an ambient data set assumed that particle flu-
orescence is already normally distributed (Crawford et al.,
2014, 2015; Robinson et al., 2013). As a result, these pre-
vious studies did not normalize fluorescence data and thus
used data preparation scenario F in their clustering analy-
sis. For comparison, scenarios B and D were explored to
test whether the clustering efficiency would be improved or
hindered by fluorescence normalization. Scenarios A and F
produced inconsistent results, with some experiments (i.e., a
50 : 50 ratio of fungal spores : diesel) producing a misclas-
sification < 1.1 %, whereas other experiments (i.e., a 20 : 80
ratio of bacterial : diesel) produced a misclassification of up
to 80 %. In contrast, scenarios B and D produced consistently
more accurate results. Scenario B, in particular, consistently
exhibited the most accurate classification of particles for al-
most every individual experiment. No experiment involving
scenario B produced a greater than 9 % misclassification of
particles, regardless of the particle input ratio, and most ex-
periments produced results with 0.1 %–3 % error. These ob-
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A B C D E F
Fungi : diesel

50:50 ratio 1.1 0.9 7.2 4.5 3.6 0.8
80:20 ratio 64.8 4.1 4.5 2.9 3.8 76.5
20:80 ratio 2.1 3.8 68.5 6.0 19.5 2.1

Bacteria : diesel
50:50 ratio 50.0 1.2 6.8 4.5 31.6 50.0
80:20 ratio 0.2 0.2 0.7 1.0 0.9 0.2
20:80 ratio 80.0 0.3 68.2 0.3 43.7 80.0

Fungi : dust
50:50 ratio 12.7 2.6 24.3 23.5 18.4 30.6
80:20 ratio 76.6 9.0 20.0 25.4 25.4 29.3
20:80 ratio 35.9 1.5 55.7 23.4 44.6 58.6

Figure 3. Cluster misclassification shown for three computational
combinations of fungal spores (F2), bacteria (B3), diesel soot (S4),
and mineral dust (D12). Each combination explored with respect to
the ratio of input particle number using scenario B and a two-cluster
solution for each experiment. Scenario letters A–F refers to the sce-
narios summarized in Table 1. Red shaded regions (and values) in-
dicate the percent of particles misclassified. Blue shaded regions
represent the percentage of particles correctly classified.

servations taken together suggest that particle fluorescence
properties may not be well described by normal distributions
and that normalizing fluorescence data prior to analysis may
be more effective.

The results of these experiments also highlight how impor-
tant the ratio of input particles can be. While scenario B was
relatively consistent, varying only between 0.1 % and 3.8 %
error for different ratios of the fungal spore versus diesel
matchup, other experiments depended strongly on particle
ratio. It is clear that the input ratio of particle types cannot
be controlled during an ambient study, and so these results
suggest that it is important to keep the possibility of vary-
ing concentration ratios in mind when interpreting time- or
air-mass-associated changes in cluster composition or when
relaying the relative confidence in clustering results. For the
remainder of the discussion, experiments will be limited to
a 50 : 50 ratio following scenario B. In each case the input
particles are a random subset taken from the pool of parti-
cles in the experimental data. As a result, individual sam-
ples selected from the same experiments (i.e., Fig. 4a, e)
can show slightly different average properties. In some cases
(i.e., diesel soot; Fig. 4d) the number of particles originally
analyzed was small, and so to keep the input particle ratio at
50 : 50, the corresponding particle type was also limited to
small numbers.

To extend the investigation of the particle input ratio, the
three matchups presented in Fig. 3 were investigated using
scenario B with 1 % bioparticles and 99 % non-bioparticles
in each case. In these experiments the bacteria : diesel soot
and fungal spores : dust particles separated relatively well
(6.6 % and 13.5 % misclassification, respectively). The fun-
gal spores : diesel soot separation was poor, however, because
the diesel soot particles were nearly evenly split into both

clusters, and the fungal spore particles were too low in con-
centration to influence the cluster properties. More investiga-
tion is needed to explore how extreme disparities in particle
ratio could negatively influence cluster quality in real-world
settings.

An important tool readily applied to the analysis of am-
bient data is the categorization of particles into eight fluo-
rescent particle types (Perring et al., 2015). Thus, to further
investigate the quality of cluster accuracy, Fig. 4 shows in-
puts and cluster outputs from three clustering experiments
stacked as a function of fluorescence particle type and par-
ticle size. Figure 4a, b, g, and h show the input data for
Aspergillus niger and diesel soot (Fig. 4a–b) paired with
the outputs of the two-cluster solution (Fig. 4g–h). It can be
seen that both particle materials have predominantly particle
type A characteristics, meaning that they are fluorescent only
in channel FL1. The fungal material also presents roughly
one-third of AB (green) and a small minority of nonfluores-
cent (gray) characteristics. The size distribution of the fungal
spores peaks at ∼ 3 µm, whereas diesel soot peaks at ∼ 1 µm
in size. While not shown in this plot style, the spores exhibit
moderately higher FL1 channel fluorescence, with a median
of 543 ADCs, whereas diesel soot exhibits a median of 751
ADCs in this channel (see Savage et al., 2017; Table 2). Both
particle types show almost no fluorescent characteristics in
either FL2 or FL3. In summary, the particle distributions are
relatively similar in fluorescence particle type and their dif-
ferences are largely related to particle size, so separation of
these particles through Trial 1 was hypothesized to repre-
sent a relatively challenging initial exercise. The clustering
outputs presented in Fig. 4g–h, however, visually highlight
the conclusion represented by Fig. 3, which is that the par-
ticles in this trial separated very well. Cluster 1 was com-
prised predominantly of fungal particles and presented fluo-
rescence and size traits qualitatively similar to the input fun-
gal particles, whereas cluster 2 was comprised predominantly
of diesel soot particles.

Results from the 50 : 50 ratio of the scenario B experi-
ments for the other two trials are also shown in Fig. 4c, d,
i, and j and Fig. 4e, f, k, and l. In each case, the qualita-
tive properties of the input particles are extremely well repre-
sented by the corresponding output cluster, corroborating the
conclusion from Fig. 3 that the scenario B cases accurately
separated the particle groups investigated through these ex-
periments. It is also important to note here that the method of
aerosolization for each particle type plays an important role
in the observed size distribution, and so results involving lab-
oratory particles should be interpreted with this in mind. Ob-
served fluorescence properties, in contrast, are expected to be
conserved at a given particle size and are intrinsically related
to particle composition.
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Figure 4. Particle type stacked-category size distributions for input and output clustering results, using FT+3σ threshold definition. Each
experiment (row) shows matchups of two particle types computationally mixed using 50 : 50 ratios, scenario B, and two-cluster solutions.
Panels (a)–(f) show the properties of input particles; (g)–(l) show the properties of cluster outputs.

Table 2. Misclassification of two-cluster solutions for 23 matchups of two individual particle types (equal ratio of particle number, B
scenario, no fluorescence threshold applied) computationally combined before clustering analysis. Misclassification calculated as the sum
percentage of particles misclassified in each cluster divided by the total number of particles. Three biological particle types (F2, B3, P9)
compared separately to (a) nonbiological particle materials and (b) biological particle materials. Particle number input was a subset of the
total population of particles experimentally analyzed. Bold values show a misclassification > 15 %.

(a) Nonbiological particle materials

Diesel California Arizona Suwannee Methyl- Glyoxal White Wood
soot sand Test Dust River glyoxal + + amm. t-shirt smoke

(Soot 4) (Dust 2) (Dust 12) Humic glycine sulfate (Misc. 2) (Soot 6)
Acid aerosol aerosol

(HULIS 2) (Brown (Brown
carbon 1) carbon 3)

S4 D2 D12 H2 BC1 BC3 WT WS

Aspergillus niger (1) (3) (4) (5) (6) (7) (8) (9)
(Fungi 2) 0.1 % 2.6 % 6.1 % 4.8 % 2.5 % 23.0 % 40.5 % 7.2 %

P. stutzeri (2) (10) (11) (12) (13) (14) (15)
(Bacteria 3) 1.2 % 1.9 % 1.2 % 1.3 % 6.1 % 41.7 % 4.7 %

Phleum pratense (16) (17)
(Pollen 9) 22.7 % 23.2 %

(b) Biological particle materials

S. cerevisiae Phleum pratense P. stutzeri Taxus baccata B. atrophaeus
(Fungi 4) (Pollen 9) (Bacteria 3) (Pollen 5) (Bacteria 1)

F4 P9 B3 P5 B1

Aspergillus niger (18) (19) (20)
(Fungi 2) 27.9 % 36.4 % 10.3 %

P. stutzeri (21) (22)
(Bacteria 3) 18.3 % 65.4 %

Phelum pratense (23)
(Pollen 9) 46.8 %
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4.2 Investigating cluster quality without fluorescence
threshold

After concluding that scenario B exhibited the most consis-
tently accurate clustering results using two-cluster solutions
from mixtures comprised of two particle type inputs, the
analysis was expanded to include a broader range of parti-
cle types. Using 50 : 50 ratios of two types of input particles,
prepared using scenario B (leaving fluorescence data un-
normalized and logarithmically transforming data vaules), 20
new individual experiments were performed. The results of
all 23 experiments (3 from Sect. 4.1 and 20 introduced in
Sect. 4.2) are summarized in Table 2 as the percentage of par-
ticle misclassification. These trials were chosen to represent
a broad range of individual matchups that might be expected
in ambient air. Of the original 69 types of particles analyzed
by Savage et al. (2017), 14 were used in experiments here: 8
types of nonbiological particles and 6 types of biological par-
ticles (2 each of fungal spores, bacteria, and pollen species).
Supplement Fig. S4 from Savage et al. (2017) shows size
distributions stacked by fluorescence particle type for each
of the particle species discussed.

Table 2a organizes clustering results into three rows,
showing the misclassification of F2 (Aspergillus niger fun-
gal spores), B3 (Pseudomonas stutzeri bacteria), and P9
(Phelum pratense pollen) particles with respect to a vari-
ety of other particle types represented by table column. Of
the 15 cluster experiments between fungal spores or bacte-
ria and nonbiological material, only 3 showed a misclassi-
fication greater than 7.5 % (bold text) and 7 were less than
3 %. The three outliers were experiment 7 (F2 vs. BC3; gly-
oxal+ ammonium sulfate brown carbon aerosol), 8 (F2 vs.
WT; white t-shirt particles), and 14 (B3 vs. WT). Looking
first at experiment 7, F2 particles show A-type fluorescence
characteristics and are dominated by a mode between 1.5 and
4 µm. BC3 particles are primarily nonfluorescent < 1.5 µm
but are primarily A-type between 1.5 and 3 µm, suggesting
similar size and fluorescence properties. The white t-shirt
particles separated poorly (∼ 41 % misclassification) from
both the fungal spore and bacterial particles. All three par-
ticle types (WT, F2, and B3) exhibit medium fluorescent in-
tensity in the FL1 channel. The poor ability to separate WT
from both F2 and B3 was surprising, however, given that WT
exhibited significantly higher mean fluorescence in each of
the FL2 and FL3 channels. As first mentioned by Savage et
al. (2017), great care should be taken when interpreting flu-
orescent particle results from indoor environments where in-
creased concentrations of bleached fibers from clothing, bed-
ding, paper, and cleaning products may be present.

While the results show that the fungal spores and bacterial
particles investigated could generally be well separated from
most potentially interfering nonbiological species, the results
were much less successful for differentiation from pollen.
P9 pollen particles separated poorly in all experiments (ver-
sus D12, H2, or P5), with a rate of misclassification ranging

from 22 to 47 %. It is important to keep in mind, however,
that the WIBS was operated using a standard gain setting
that limits analysis of particle size to below approximately
20 µm. As a result, the WIBS is insensitive to whole pollen
grains, and so most of the particles observed during pollen
experiments are small pollen fragments. Any intact pollen
grains that navigate the flow system to be detected are likely
to be binned together in the channel representing the largest
particles. Clustering results including pollen should be in-
terpreted accordingly. Pollen grains can fragment in ambient
air as a function of increased relative humidity (Miguel et
al., 2006; Suphioglu et al., 1992; Taylor et al., 2004), but the
relative ratio of whole / fragmented particles is hard to pre-
dict under ambient conditions. Smaller fragments can also
exhibit different fluorescent properties to whole grains (Pöh-
lker et al., 2013). O’Connor et al. (2014) operated a WIBS-4
(Univ. Hertfordshire) at a lower gain in order to improve the
pollen detection efficiency, but these results are not explored
directly here.

The WIBS instrument is frequently used to differentiate
between airborne biological particles and material of non-
biological origin. A secondary goal of differentiating more
finely between types of biological aerosols is also frequently
pursued. To investigate this goal, six additional experiments
were conducted by pairing two different types of nonbiologi-
cal particles (Table 2b). In contrast to the results shown in Ta-
ble 2a, the clustering algorithm showed a generally poor abil-
ity to separate between two biological particle types. Only
one of the six experiments resulted in an error < 15 % (F2
vs. B3, 10.3 % error), whereas error for the other five exper-
iments ranged from 18 % to 65 %. The worst accuracy was
demonstrated by experiment 22 (B1 vs. B3) and experiment
23 (P5 vs. P9). Both of these experiments attempted to sep-
arate between different species of a single particle type (i.e.,
between two bacteria or two pollen). Overall, these results
suggest that the clustering strategy may be quite useful at
aiding the differentiation of biological material from nonbi-
ological material but that separating more finely to quantify
differences between types of individual biological particles is
significantly more challenging and not likely to be possible
in most situations.

4.3 Investigating the impact of fluorescence
thresholding strategy on cluster quality

In previously published studies, removing particles from
clustering analysis that exhibited a particle fluorescence in-
tensity below the threshold (i.e., nonfluorescent) or at the sat-
urating point improved the efficiency of clustering (Crawford
et al., 2015; Ruske et al., 2017). In Sects. 4.1–4.2, particles
with either of these characteristics were left in the analy-
sis to prevent the underestimation of the particles clustered.
In this section, however, we investigated whether removing
nonfluorescent particles could improve cluster accuracy for
the experiments that performed poorly in Sect. 4.2. Of the
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Table 3. Further exploration of two-cluster solutions for the 10 matchups of two individual particle types shown in Table 2 with a mis-
classification > 15 %. Each matchup is shown using three separate fluorescence threshold strategies in advance of particle input into the
cluster algorithm: (I) all particles included (no fluorescence threshold), (II) particles with fluorescence intensity < FT+3σ removed, and
(III) particles with fluorescence intensity < FT+9σ removed. (a) Particle misclassification. (b) Total particle number used for clustering
experiment.

(a)
Pe

rc
en

tm
is

cl
as

si
fie

d

B
io
+

N
on

bi
o Input (7) (8) (14) (16) (17)

F2 + BC3 F2 +WT B3 +WT P9 + D12 P9 + H2
(I) All particles 23.0 % 40.5 % 41.7 % 22.7 % 23.2 %
(II) Fluor. > FT + 3σ 10.3 % 36.2 % 24.3 % 19.3 % 3.4 %
(III) Fluor. > FT + 9σ 41.4 % 32.6 % 31.8 % 45.3 % 14.0 %

B
io
+

B
io

Input (18) (19) (21) (22) (23)
F2 + F4 F2 + P9 B3 + P9 B1 + B3 P9 + P5
(I) All particles 27.9 % 36.4 % 18.8 % 65.4 % 46.8 %
(II) Fluor. > FT + 3σ 13.3 % 31.0 % 20.0 % 77.5 % 24.9 %
(III) Fluor. > FT + 9σ 29.0 % 28.6 % 29.0 % 66.7 % 33.9 %

(b)

N
um

be
ro

fp
ar

tic
le

s

B
io
+

N
on

bi
o Input (7) (8) (14) (16) (17)

F2 + BC3 F2 +WT B3 +WT P9 + D12 P9 + H2
(I) All particles 1959 565 565 10 359 8902
(II) Fluor. > FT + 3σ 1000 393 393 171 207
(III) Fluor. > FT + 9σ 471 319 319 38 37

B
io
+

B
io

Input (18) (19) (21) (22) (23)
F2 + F4 F2 + P9 B3 + P9 B1 + B3 P9 + P5
(I) All particles 10 000 8900 10 000 10 000 10 000
(II) Fluor. > FT + 3σ 9600 8500 9800 10 000 10 000
(III) Fluor. > FT + 9σ 9200 8100 9700 10 000 7895

23 trials represented in Table 2, 10 experiments exhibited a
15 % or greater misclassification and were subjected to fur-
ther analysis in order to investigate whether using a more
discriminating fluorescence thresholding strategy could im-
prove cluster results. In all 10 cases, fluorescence saturating
particles were retained, and three separate thresholding con-
ditions were compared by (i) keeping all nonfluorescent and
saturating particles, (ii) removing nonfluorescent particles by
applying a fluorescence threshold of FT baseline +3σ , and
(iii) removing nonfluorescent particles by applying a fluores-
cence threshold of FT baseline +9σ . Savage et al. (2017)
showed evidence that applying a FT+9σ improved WIBS
results by removing a higher fraction of nonbiological ma-
terial from analysis than the more commonly used FT+3σ ,
without negatively impacting observations of biological par-
ticles. Table 3 shows the percentage of particles misclassified
in each of the three scenarios investigated here (Table 3a) as
well as the number of particles subjected to the clustering
algorithm (Table 3b).

Each scenario, with exception of the B3 vs. B9 experi-
ment 21, shows a decrease in particle misclassification from
scenario I (no fluorescence threshold applied) to scenario II
(FT+3σ). In contrast, 8 of the 10 scenarios increase in parti-
cle misclassification when raising the fluorescence threshold

from 3σ (II) to 9σ (III). The exceptions to this trend are ex-
periments 8 (F2 vs. WT) and 19 (F2 vs. P9), which show
a nominal improvement in error (2 %–4 % reduction) with
an increased threshold. We hypothesize that the 9σ results
degrade, in most cases, because the threshold becomes high
enough that most weakly fluorescing particles have been re-
moved from analysis. This reduces the ability of the cluster
to group into low- and high-fluorescence categories, and so
remaining particles are separated less efficiently. Secondly,
removing particles at higher fluorescence thresholds leads to
increasingly poor counting statistics, as represented in Ta-
ble 3b by the number of particles included in each experi-
ment. Overall, these results suggest that inputting particles
into the clustering analysis with at least a nominal fluores-
cence threshold (i.e., FT+3σ) can improve the clustering re-
sults in many cases; however, increasing the threshold further
may decrease cluster quality.

4.4 Investigating the capability to separate particles in
simulations of complex mixtures

To this point, our investigation has focused on a variety
of individual matchups between two distinct particle types.
To better simulate real-world scenarios, we computationally
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Table 4. Particle fraction for each type and total particle number used as inputs for simulated mixtures. PBAP: primary biological aerosol
particle.

F2 B3 P9 S4 D12 H2 BC1 WS WT

Mixture Mixture Asp. niger P. stutzeri Phleum Diesel AZ Test Suwannee Brown Wood White Total
number name (fungi) (bacteria) pratense soot Dust River carbon 1 smoke t-shirt particle

(pollen) Humic number
Acid

1 Four-comp. A 25 % 25 % 25 % 25 % 680
2 Four-comp. B 25 % 25 % 25 % 25 % 680
3 High PBAP 25 % 25 % 20 % 20 % 10 % 850
4 Low PBAP 12.5 % 12.5 % 15 % 15 % 15 % 15 % 15 % 1134
5 Pollen 30 % 10 % 20 % 20 % 10 % 10 % 850
6 Indoor air 20 % 20 % 20 % 20 % 20 % 850

simulated six mixtures of particles by pooling existing WIBS
data from selected particle types at prescribed ratios. Each
simulated mixture was assembled to roughly represent a dif-
ferent hypothetical mixture of particles that might be ex-
pected. Also, the particles in each simulated mixture are as-
sumed to be so diluted that any agglomeration is negligible.
Table 4 provides an overview of the percentage of each par-
ticle type included as well as the total number of particles
in the mixture. Mixtures 1 and 2 were simulated arbitrar-
ily to test if a minority (25 %) of one type of fungal spores
(F2) could be separated from a majority (75 %) of a mixture
of three different nonbiological materials. Mixtures 3 and
4 synthesized arbitrary mixtures of two types of bioaerosol
(F2 and B3) with three or five types of nonbiological parti-
cles, respectively. Mixture 5 was simulated to examine the
separation of pollen (P9) from a set of five nonbiological
particles. Mixture 6 was simulated to be similar to an in-
door environment that might have a mixture of biological
particles (F2 and B3) with nonbiological materials, includ-
ing bleached fibers (WT). These mixtures are not intended
to closely mimic any set of individual ambient conditions
but are rather used as very rough simulations for discussion
and to prompt discussion related to future experiments within
the community. In a real-world sampling environment, one
would also expect a high concentration of nonfluorescent
particles (e.g., most organic aerosols, sea salt, dusts), but
these were generally not sampled as a part of the Savage et
al. (2017) study, which focused on fluorescent particles. As
a result, relatively nonfluorescent particles like D12 and H2
were included here as “fillers” in most mixtures as surrogates
for other types of nonfluorescent particles. Clustering analy-
sis was performed using the ratios listed in Table 4, the B
scenario of pre-normalization conditions, and the filtering of
nonfluorescent particles below the FT+3σ threshold. In all
cases, the number of clusters retrieved after HAC was pre-
defined to be the same as the number of particle types input.

Cluster results from all six mixtures are summarized in
Fig. 5. Figure 5a shows the number of particles from each
type assigned to each cluster, and panels (b) and (c) show

results grouped by general particle classification (brown for
nonbiological and dark green for biological). Overall, the
ability of the HAC analysis to separate the biological par-
ticles from the nonbiological particles was high. In some
cases, the quality of separation of one or two biological
species from a mixture of nonbiological materials was even
higher than the two-material matchups shown in Sects. 4.1–
4.3. The two four-component mixtures showed a 22.4 % and
14.8 % misclassification of fungal spores. In both cases, a
small fraction of each of the nonbiological materials was
mixed into the spore cluster, whereas almost none (1.5 % and
0.6 %) of the spores were incorrectly mixed into the sum of
the nonbiological clusters.

Mixtures 3 and 4 showed a similar misclassification for
fungal spores (11.9 % and 13.8 %, respectively), whereas
the bacterial particles clustered with amazing quality. For
Mixture 3, no particles other than bacterial particles were
grouped into Cluster 1, and only 16 of 213 bacterial parti-
cles were assigned to other clusters. For Mixture 4, 135 of
137 particles in Cluster 6 were bacterial in origin and 135 of
142 bacterial particles were assigned to the cluster. The com-
bination of fungal and bacterial particles in mixtures 3 and 4
resulted in a total of 5.0 % and 5.3 % misclassification of all
biological particles.

In contrast to the poor separation of pollen from other par-
ticle types discussed in Sect. 4.2, Mixture 5 showed a higher
quality of separation between pollen (9.4 % misclassified)
and the sum of five other nonbiological particle types. Lastly,
the mixture designed to roughly mimic an indoor environ-
ment included white t-shirt particles. In this mixture the WT
particles confounded the spore separation, but the bacterial
separation was nearly flawless.

Another surprising observation from the analysis of these
simulated mixtures was that the diesel soot particles (mix-
tures 1, 2, 4, and 5) separated into their own cluster in al-
most all cases with very high quality (1.8 %, 2.9 %, 0.6 %,
and 9.4 %, respectively, of diesel soot particles misclassified
into a different cluster). The quality of the separation of bac-
terial particles and diesel soot (Mixture 4) was especially
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 In dividual clusters  Gr ouped clusters  Su mmary(particle number) (particle number) (cluster quality)

Mixture 1
Cluster F2 S4 D12 H2 Cluster Fungi Nonbio Total p. Miscl. Cat.

1 163 2 22 23 1 163 47 210 22.4 % Fungi
2 7 1 123 67 2-4 7 463 470 1.5 % Nonbio
3 0 0 21 80
4 0 167 4 0

Mixture  2
Cluster F2 S4 D12 WS Cluster Fungi Nonbio Total p. Miscl. Cat.

1 167 2 23 4 1 167 29 196 14.8 % Fungi
2 2 3 88 10 2-4 3 481 484 0.6 % Nonbio
3 1 0 55 156
4 0 165 4 0

Mixture  3
Cluster F2 B3 D12 H2 BC1 Cluster Fungi Bacteria Bio Nonbio Total p. Miscl. Cat.

1 0 197 0 0 0 1 0 197 0 227 11.9 % Fungi
3 200 6 13 2 6 3 200 6 21 197 0.0 % Bacteria
2 9 10 133 79 6 2,4,5 13 10 403 424 5.0 % Bio
4 4 0 21 88 25 1,3 403 21 426 5.4 % Nonbio
5 0 0 3 1 47

Mixture 4
Cluster F2 B3 S4 D12 H2 BC1 WS Cluster Fungi Bacteria Bio Nonbio Total p. Miscl. Cat.

1 0 0 0 10 15 20 0 7 112 5 13 130 13.8 % Fungi
2 23 2 0 125 77 6 165 6 0 135 1 136 0.7 % Bacteria
3 0 0 0 3 1 128 1 1-5 30 2 836 266 5.3 % Bio
4 4 0 0 18 68 11 2 6,7 252 14 868 3.7 % Nonbio
5 3 0 169 8 9 0 0
6 0 135 1 0 0 0 1
7 112 5 0 6 0 6 1

Mixture  5
Cluster P9 S4 D12 H2 BC1 WS Cluster Pollen Nonbio Total p. Miscl. Cat.

1 0 0 13 16 13 0 5 242 25 267 9.4 % Pollen
2 2 0 28 83 15 1 1-4,6 13 570 583 2.2 % Nonbio
3 0 0 4 1 51 1
4 6 2 113 70 0 79
6 5 77 3 0 0 0
5 242 6 9 0 6 4

Mixture  6
Cluster F2 B3 D12 H2 WT Cluster Fungi Bacteria Bio Nonbio Total p. Miscl. Cat.

1 160 7 13 0 31 1 160 7 44 211 24.2 % Fungi
4 0 154 0 0 0 4 0 154 0 154 0.0 % Bacteria
2 4 0 32 95 35 2,3,5 10 9 466 365 12.1 % Bio
3 6 9 125 75 62 1,4 321 44 485 3.9 % Nonbio
5 0 0 0 0 42
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Figure 5. Overview of computationally simulated mixtures. Six mixtures shown as groups of rows, with input particle fractions defined in
Table 4. Panel (a) shows the particle number retrieved by each individual cluster (horizontal rows) categorized by each input particle type
(vertical columns). Panel (b) shows the particle number categorized and grouped by particle classes (i.e., nonbiological and biological). Panel
(c) shows the misclassification of groups of particles. Colors: light green – fungal spores; blue – bacteria; pink – pollen; dark green – grouped
biologically; brown – all nonbiological.

good, given the qualitative similarity of the two particle pop-
ulations. For example, size distributions of each particle type
show primarily A-type particles with similar mean fluores-
cent intensity values in FL1, FL2, and FL3 (Savage et al.,
2017).

5 Conclusions

The application of results from a recent set of systematic lab-
oratory experiments (Savage et al., 2017) by the commonly
used hierarchical agglomerative clustering analysis helps to
reveal areas where the tool can be used well and other ar-
eas where it struggles. First (Sect. 4.1) it was observed that
differing ratios of particle input into the clustering algorithm

can produce dramatically different results. It will be impor-
tant for anyone applying HAC to ambient particle sets, where
particle ratios are not independently verified, to interpret re-
sults somewhat loosely. In Sect. 4.1 the clustering quality
of scenario B, where fluorescence intensity was not normal-
ized to particle size and where all variables were input in
logarithmic space as log(value), was determined to consis-
tently demonstrate the highest-quality results. Further, the
ability of the HAC analysis to separate between two groups
of individual particle types using no fluorescence threshold
(Sect. 4.2) and comparing three separate threshold strategies
(Sect. 4.3) was shown to be relatively high in many cases but
confounded in others. Lastly, Sect. 4.4 explored the ability of
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HAC analysis to separate biological components from more
complex mixtures of four to seven types of input particles.

A standard fluorescence threshold of FT+3σ has been
commonly applied during WIBS analysis to separate be-
tween fluorescent and nonfluorescent particles. Savage et
al. (2017) concluded that the application of a more ag-
gressive threshold strategy (FT+9σ) could help discrimi-
nate between biological and nonbiological particles more
successfully in many circumstances; however, certain types
of interfering, nonbiological particle species can still con-
found WIBS analysis, irrespective of the threshold. Here we
have investigated an orthogonal strategy to separate particle
types by subjecting particles to HAC computer analysis. By
comparing the results of the HAC analysis with raw sepa-
ration based on fluorescence thresholding alone, the HAC
analysis can clearly increase the quality of differentiation.
Interestingly, while Savage et al. (2017) reported that the
FT+9σ strategy helped improved differentiation, using the
same threshold in conjunction with HAC analysis actually
degraded results. We therefore conclude that if HAC analysis
is to be performed, the standard FT+3σ threshold is likely to
produce the highest-quality results; however, if HAC is not to
be applied, the FT+9σ threshold is probably a better choice
to enable the investigation of biological particles while com-
putationally filtering nonbiological particles.

The overall message here is that HAC can be applied suc-
cessfully to differentiate particle types sampled by WIBS in-
struments and that it is most successful at separating biologi-
cal species (i.e., fungal spores and bacteria) from nonbiolog-
ical particles. In all cases the HAC method allows the sep-
aration of particles at least at the order-of-magnitude level
and often with a misclassification of < 5 %. As mentioned by
Savage et al. (2017), however, it should always be kept in
mind that different instruments may produce slightly differ-
ent signals due to physical differences between instruments
(i.e., fluorescence calibration, tuning, and detector gain sen-
sitivity) and between calibration strategies (Könemann et al.,
2018; Robinson et al., 2017). Results here are also generally
extendable to other UV-LIF instruments, whether they offer
single or many channels of emission spectral resolution, in
that the methods of particle pre-preparation and the impact
of the particle number ratio are likely to relay similar effects
to the clustering strategy. Subtle differences in particles ob-
served in a real-world environment will also complicate HAC
analysis or the extension of results presented here. The UV-
LIF community is encouraged to continue laboratory investi-
gations, including a detailed interrogation of clustering ana-
lytical techniques, to further understand limitations to better
differentiating between particles.
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