
Atmos. Meas. Tech., 11, 4981–5006, 2018
https://doi.org/10.5194/amt-11-4981-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of MUSICA IASI tropospheric water vapour profiles
using theoretical error assessments and comparisons to
GRUAN Vaisala RS92 measurements
Christian Borger1,a, Matthias Schneider1, Benjamin Ertl1,2, Frank Hase1, Omaira E. García3, Michael Sommer4,
Michael Höpfner1, Stephen A. Tjemkes5, and Xavier Calbet6

1Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany
2Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology, Karlsruhe, Germany
3Izaña Atmospheric Research Center, Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, Spain
4Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg, Richard-Aßmann-Observatorium,
Am Observatorium 12, 15848 Lindenberg/Tauche, Germany
5EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt, Germany
6AEMET, C/Leonardo Prieto Castro 8, Ciudad Universitaria, 28071 Madrid, Spain
anow at: Satellite Remote Sensing Group, Max Planck Institute for Chemistry, Mainz, Germany

Correspondence: Christian Borger (christian.borger@mpic.de) and Matthias Schneider (matthias.schneider@kit.edu)

Received: 16 October 2017 – Discussion started: 26 October 2017
Revised: 10 July 2018 – Accepted: 26 July 2018 – Published: 4 September 2018

Abstract. Volume mixing ratio water vapour profiles have
been retrieved from IASI (Infrared Atmospheric Sounding
Interferometer) spectra using the MUSICA (MUlti-platform
remote Sensing of Isotopologues for investigating the Cy-
cle of Atmospheric water) processor. The retrievals are
done for IASI observations that coincide with Vaisala RS92
radiosonde measurements performed in the framework of
the GCOS (Global Climate Observing System) Reference
Upper-Air Network (GRUAN) in three different climate
zones: the tropics (Manus Island, 2◦ S), mid-latitudes (Lin-
denberg, 52◦ N), and polar regions (Sodankylä, 67◦ N).

The retrievals show good sensitivity with respect to the
vertical H2O distribution between 1 km above ground and
the upper troposphere. Typical DOFS (degrees of freedom
for signal) values are about 5.6 for the tropics, 5.1 for sum-
mertime mid-latitudes, 3.8 for wintertime mid-latitudes, and
4.4 for summertime polar regions. The errors of the MU-
SICA IASI water vapour profiles have been theoretically es-
timated considering the contribution of many different un-
certainty sources. For all three climate regions, unrecognized
cirrus clouds and uncertainties in atmospheric temperature
have been identified as the most important error sources and
they can reach about 25 %.

The MUSICA IASI water vapour profiles have been com-
pared to 100 individual coincident GRUAN water vapour
profiles. The systematic difference between the data is within
11 % below 12 km altitude; however, at higher altitudes the
MUSICA IASI data show a dry bias with respect to the
GRUAN data of up to 21 %. The scatter is largest close to the
surface (30 %), but never exceeds 21 % above 1 km altitude.
The comparison study documents that the MUSICA IASI re-
trieval processor provides H2O profiles that capture the large
variations in H2O volume mixing ratio profiles well from
1 km above ground up to altitudes close to the tropopause.
Above 5 km the observed scatter with respect to GRUAN
data is in reasonable agreement with the combined MUSICA
IASI and GRUAN random errors. The increased scatter at
lower altitudes might be explained by surface emissivity un-
certainties at the summertime continental sites of Lindenberg
and Sodankylä, and the upper tropospheric dry bias might
suggest deficits in correctly modelling the spectroscopic line
shapes of water vapour.
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1 Introduction

Atmospheric water plays a key role in the atmospheric en-
ergy balance and temperature distribution via radiative ef-
fects (clouds and vapour) and latent heat transport. Hence the
distribution and transport of atmospheric moisture is closely
linked to atmospheric dynamics on all scales, and under-
standing its spatial and temporal variations is essential for
weather and climate modelling. Also, understanding the cou-
pling between moisture transport, clouds, and atmospheric
dynamics is seen as a major challenge for improving atmo-
spheric models (Stevens and Bony, 2013). In this context
the global monitoring of the water vapour distribution is im-
portant, whereby the large inhomogeneity in time and space
(horizontally and vertically) is particularly challenging.

In the meantime, several in situ and remote sensing mea-
surement techniques for the observation of water vapour
have been established using platforms such as surface sta-
tions, balloons, aircraft, and satellites. The radiative prop-
erties of water vapour enable satellite remote sensing mea-
surements in a large range of wavelength regimes from
the visible, e.g. GOME (Grossi et al., 2015), near-infrared,
e.g. MODIS (Gao and Kaufman, 2003), thermal infrared,
e.g. AIRS (Susskind et al., 2003), TES (Worden et al., 2012),
and IASI (Herbin et al., 2009; Schneider and Hase, 2011), to
the microwave, e.g. AMSU (Rosenkranz, 2000). The instru-
ment IASI (Infrared Atmospheric Sounding Interferometer
Clerbaux et al., 2009) aboard EUMETSAT’s MetOp satel-
lites is particularly promising: it has been providing global
observations with high resolution and accuracy twice a day
on a long-term mission for more than 14 years. Furthermore,
IASI follow-up missions have already been approved, guar-
anteeing observations until the 2030s, which will offer great
opportunities for studying the atmospheric composition over
long time periods.

When using satellite data in research, it is important to un-
derstand their characteristics (sensitivity/representativeness
and errors). Theoretical error assessments can be used to
reveal the leading error sources. Ideally these error assess-
ments should be accompanied by empirical data validation
studies, in which the remote sensing data are compared to
independent high-quality reference data. Radiosonde mea-
surements are a good candidate for providing references
for validating the remote sensing profiles; however, great
care is needed for constraining the uncertainties in the ra-
diosonde data (McMillin et al., 2007). Particularly promis-
ing in this context are the temperature and humidity pro-
files produced from Vaisala RS92 radiosonde measurements
in the framework of the GCOS Reference Upper-Air Net-
work (GRUAN, http://www.gruan.org, last access: 29 Au-
gust 2018), a subnetwork of the Global Climate Observ-
ing System (GCOS, https://www.wmo.int/pages/prog/gcos/
index.php, last access: 29 August 2018). Currently GRUAN
consists of about 30 reference sites and provides humid-

ity and temperature profiles of a high and well-documented
quality (Dirksen et al., 2014).

In this paper we perform a detailed theoretical error assess-
ment and an empirical validation of the water vapour profiles
as generated by the MUSICA (MUlti-platform remote Sens-
ing of Isotopologues for investigating the Cycle of Atmo-
spheric water Schneider et al., 2016) IASI retrieval proces-
sor. The retrievals are done for three different climate regions
(tropics, mid-latitudes, polar regions) and for coincidences
with GRUAN in situ radiosonde measurements, which we
use as the reference for the empirical validation study. Our
investigations will give an overview of the retrieval’s capa-
bility of profiling atmospheric water vapour. The paper is or-
ganized as follows: Sect. 2 will give a brief overview of the
MUSICA IASI processor by describing general retrieval and
error estimation principles, by presenting the particularities
of the MUSICA retrieval set-up, and by discussing the MU-
SICA retrieval output. Section 3 presents the sites and time
periods for which the data evaluation is performed. Section 4
shows the theoretical IASI data characterization, and Sect. 5
presents and discusses the results of the comparison between
the remote sensing data and the GRUAN in situ reference
data. In Sect. 6 we summarize the outcomes of the study.

2 MUSICA IASI data

2.1 Atmospheric remote sensing retrieval principles

In this subsection we give a very brief introduction to the
principles of the optimal estimation retrieval method. It is
a standard retrieval method in atmospheric remote sensing.
For more details, please refer to Rodgers (2000), and for a
general introduction on vector and matrix algebra, dedicated
textbooks are recommended.

Atmospheric remote sensing means that the atmospheric
state is retrieved from the radiation measured after it has in-
teracted with the atmosphere. This interaction of radiation
with the atmosphere is modelled by a radiative transfer model
(also called the forward model, F ), which enables the mea-
surement vector and the atmospheric state vector to be related
by

y = F (x,b). (1)

We measure y (the measurement vector, e.g. a thermal nadir
spectrum in the case of IASI) and are interested in x (the at-
mospheric state vector). Vector b represents auxiliary param-
eters (like surface emissivity) or instrumental characteristics
(like the instrumental line shape) which are not part of the
retrieval state vector. However, a direct inversion of Eq. (1)
is generally not possible because there are many atmospheric
states x that can explain one and the same measurement y.

For solving this ill-posed problem, a cost function J is set
up that combines the information provided by the measure-
ment with a priori known characteristics of the atmospheric
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state:

J =
[
y−F (x,b)

]T S−1
y,noise

[
y−F (x,b)

]
+ [x− xa]T S−1

a [x− xa] . (2)

Here, the first term is a measure of the difference between the
measured spectrum (represented by y) and the spectrum sim-
ulated for a given atmospheric state (represented by x), while
taking into account the actual measurement noise (Sy,noise is
the measurement noise covariance matrix). The second term
of the cost function (Eq. 2) constrains the atmospheric so-
lution state (x) towards an a priori most likely state (xa),
whereby the kind and strength of the constraint are defined
by the a priori covariance matrix Sa. The constrained solution
is reached at the minimum of the cost function (Eq. 2). Due
to the non-linear behaviour of F (x,b), the minimization is
generally achieved iteratively. For the (i+ 1)th iteration it is

xi+1 = xa+Gi[y−F (xi,b)+Ki(xi − xa)]. (3)

K is the Jacobian matrix (derivatives that capture how the
measurement vector will change for changes in the atmo-
spheric state x). G is the gain matrix (derivatives that capture
how the retrieved state vector will change for changes in the
measurement vector y). G can be calculated from K, Sy,noise
and Sa as

G=
(

KT S−1
y,noiseK+S−1

a

)−1
KT S−1

y,noise. (4)

The averaging kernel is an important component of a re-
mote sensing retrieval and it is calculated as

A=GK. (5)

The averaging kernel A reveals how a small change of the
real atmospheric state vector x affects the retrieved atmo-
spheric state vector x̂:

x̂− xa = A(x− xa). (6)

The propagation of errors due to parameter uncertainties
1b can be estimated analytically with the help of the pa-
rameter Jacobian matrix Kb (derivatives that capture how the
measurement vector will change for changes in the param-
eter b). According to Eq. (3), using the parameter b+1b

(instead of the correct parameter b) for the forward model
calculations will result in an error in the atmospheric state
vector of

1x̂ =−GKb1b. (7)

The respective error covariance matrix Sx̂,b is

Sx̂,b =GKbSbKT
b GT , (8)

where Sb is the covariance matrix of the uncertainties 1b.

Noise on the measured radiances also affects the retrievals.
The error covariance matrix for noise can be analytically cal-
culated as

Sx̂,noise =GSy,noiseGT , (9)

where Sy,noise is the covariance matrix for noise on the mea-
sured radiances y.

2.2 The MUSICA retrieval set-up

The MUSICA IASI retrieval is based on a nadir version of
the retrieval code PROFFIT (PROFile FIT Hase et al., 2004)
and on the corresponding radiative transfer model PRFFWD
(PRoFit ForWarD model Hase et al., 2004; Schneider and
Hase, 2009). The nadir code has been developed in support of
the project MUSICA (MUlti-platform remote Sensing of Iso-
topologues for investigating the Cycle of Atmospheric wa-
ter; http://www.imk-asf.kit.edu/english/musica.php, last ac-
cess: 29 August 2018). The PRFFWD nadir code has been
recently updated by including water continuum calculations
according to the model MT_CKD v2.5.2 (Delamere et al.,
2010; Payne et al., 2011; Mlawer et al., 2012).

For the MUSICA IASI retrieval calculations, a single
broad spectral window from 1190 to 1400 cm−1 is used. The
spectral signatures of H2

16O, H2
18O, and H2

17O are fitted
together as a single species (from now on called H2O) and
1H2H16O (from now on called HDO) as a separate species.
Furthermore, the retrieval’s spectral window contains spec-
troscopic features of CH4 and N2O as well as weak spectro-
scopic features of HNO3 and very weak spectroscopic fea-
tures of CO2. All these trace gases are simultaneously fitted
during the retrieval process, whereby the spectroscopic pa-
rameters are taken from the HITRAN 2016 database (Gordon
et al., 2017) with small modifications for HDO parameters
(similar to Schneider et al., 2016, the line intensity parame-
ters of HDO have been increased by 10 %).

For the water isotopologues, CH4, N2O, and HNO3 pro-
file retrievals are performed on a logarithmic scale. For CO2
the a priori profiles are scaled. A single a priori profile is
used for all the retrievals for each of the different trace gases;
i.e. the a priori profiles used are the same for all locations
and time periods (Schneider et al., 2016; García et al., 2018).
For CH4, N2O, HNO3, and CO2 the a priori profiles are av-
eraged low-latitude profiles from WACCM (Whole Atmo-
sphere Community Climate Model-version 6, and are pro-
vided by NCAR (National Center for Atmospheric Research,
James W. Hannigan, private communication, 2009). The wa-
ter vapour isotopologue a priori data are averages obtained
from the isotopologue incorporated global general circula-
tion model LMDZ (Risi et al., 2012).

The retrieval also fits the surface temperature and the at-
mospheric temperature profile, whereby the a priori tempera-
tures are taken from the EUMETSAT IASI level 2 (L2) prod-
ucts. There is no constraint on the surface temperature. The
atmospheric temperature variations allowed are 1 K at the
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ground, 0.5 K in the free troposphere, and 0.75 K above the
tropopause. This altitude dependency roughly follows the al-
titude dependency of uncertainties in the EUMETSAT IASI
L2 atmospheric temperature profiles (August et al., 2012).

The MUSICA IASI water vapour retrieval only works
for pixels that are not contaminated by clouds, whereby we
rely on the IASI L2 cloud flag (we require zero for the
flag “cldfrm”). Ground elevations are from GTOPO30 de-
veloped by the US Geological Survey and provided by the
Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC). GTOPO30 is a global digital el-
evation model with a horizontal grid spacing of 30 arcsec
(approximately 1 km). The land surface emissivities are
from the global database of infrared land surface emissiv-
ity (IREMIS; http://cimss.ssec.wisc.edu/iremis/, last access:
29 August 2018; Seemann et al., 2008), and the sea surface
emissivities are calculated according to the model of Ma-
suda et al. (1988) and for an assumed surface wind speed
of 5 m s−1.

Figure 1 depicts an example of a typical radiance spectrum
in the retrieval’s spectral range as measured by IASI (upper
graph) and the corresponding differences compared to the
simulated spectra (the residuals, lower graph). The residuals
are mostly within the order of the instrument’s 1σ measure-
ment noise (Pequignot et al., 2008). However, there are also
distinctive spectral signatures that are not well understood,
specifically at 1250 and at 1280 cm−1.

For further information on the retrieval set-up and its evo-
lution, more detailed descriptions are available in Schnei-
der and Hase (2011), Wiegele et al. (2014), Schneider et al.
(2016), and García et al. (2018).

2.3 The MUSICA retrieval output

The output of the retrieval refers to the {ln [H2O] , ln [HDO]}
basis system. In this basis system the state vector x consists
of the vector for the H2O profile extended by the vector for
the HDO profile:

x =

(
xH2O
xHDO

)
. (10)

Correspondingly, the averaging kernel matrix A has 2× 2
blocks

A=
(

A11 A12
A21 A22

)
. (11)

A11 and A22 describe how the retrieved H2O and HDO states
depend on the actual atmospheric H2O and HDO variations,
respectively, and A12 and A21 reveal the cross-dependencies
of the retrieved H2O on the actual atmospheric HDO and of
the retrieved HDO on the actual atmospheric H2O, respec-
tively. Since H2O and HDO vary largely in parallel, in the
following we use the A11+A12 as the kernel for H2O (see
also Sect. 4.3 in Barthlott et al., 2017).

(b)

(a)

Figure 1. Example of an infrared spectrum measured by IASI (a)
and residuals between the satellite observation and radiative trans-
fer simulation (b) at Manus Island (15 Octover 2012 11:46:26 UT,
satellite zenith angle 10.2◦, integrated water vapour 48.0 mm). The
red lines in the bottom panel indicate the typical IASI noise mea-
surement level as given by the square root values of the diagonal el-
ements of the IASI noise covariance matrix (Pequignot et al., 2008).

Similarly, retrieval error covariance matrices consist of
2× 2 blocks, whereby the blocks in the diagonal represent
the H2O and HDO covariances. For this study only the H2O
covariance block is of interest (i.e. we are only interested in
the H2O error covariances). The outer diagonal blocks repre-
sent the error covariances between H2O and HDO.

3 Reference data and sites

The theoretical and empirical assessment studies are done for
cloud-free IASI measurements that coincide with GRUAN-
processed Vaisala RS92 radiosonde measurements. Useful
coincidences are defined in accordance to (Pougatchev et al.,
2009) and (Calbet et al., 2017).

We identified three different sites with coincidence be-
tween IASI and GRUAN measurements: Manus Island
(Papua New Guinea; 2◦5′ S, 146◦58′ E) for the tropics, Lin-
denberg (Germany; 52◦12′ N, 14◦7′ E) for the mid-latitudes,
and Sodankylä (Finland; 67◦25′ N, 26◦35′ E) for the polar re-
gion.

Figure 2 depicts all the GRUAN H2O profiles that coincide
with IASI observations made in cloud-free conditions. There
are 25 individual GRUAN profiles for Manus Island (during
different months in 2011–2013), 58 for Lindenberg (26 dur-
ing summer 2007 and 32 during different months in 2008),
and 17 for Sodankylä (during summer 2007); i.e. in total
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Figure 2. Vertical H2O profiles as measured by the 100 different GRUAN-processed Vaisala RS92 radiosondes, from Manus Island, Linden-
berg, and Sodankylä, used for our study. Black lines indicate radiosonde data ensembles that cover all seasons (Manus Island and Lindenberg
2008), and red lines indicate ensembles that cover the summer season only.

there are 100 individual GRUAN radiosonde measurements
that coincide with IASI cloud-free measurements. These four
ensembles of GRUAN profiles are well representative of the
highly varying tropospheric H2O distributions. In the free
middle/upper troposphere the data show variations of up to
2 orders of magnitude. At the tropical site of Manus Is-
land we observe up to 10000 ppmv (at 5 km a.s.l.) and up to
1000 ppmv (at 10 km a.s.l.), whereas at the mid-latitude and
polar sites of Lindenberg and Sodankylä, the H2O concentra-
tions can be as small as 100 ppmv and 10 ppmv, respectively.
In this context, using the four ensembles of GRUAN data en-
ables us to conduct an evaluation of the retrieval performance
that has a good global validity.

The coincidences at the three sites are for different time
periods, and there is not a strictly uniform data set for cre-
ating the retrieval input files: EUMETSAT L2 data are not
available for all the time periods or are generated by a differ-
ent EUMETSAT L2 product processing facility (PPF) soft-
ware version (for more details see Sect. 3.2–3.4 and the sum-
mary of Table 1).

3.1 GRUAN-processed Vaisala RS92 in situ profiles

The Vaisala RS92 radiosonde is equipped with a wire-like ca-
pacitive temperature sensor (“Thermocap”), two polymer ca-
pacitive moisture sensors (“Humicap”), a silicon-based pres-
sure sensor, and a GPS receiver to measure position, alti-
tude, and winds. Each second the RS92 transmits sensor data,
which are received, processed, and stored by the ground sta-
tion equipment.

The Humicap consists of a hydro-active polymer thin film
as the dielectric between two electrodes applied on a glass
substrate. The humidity sensors are not covered by protec-
tive caps, but they are alternately heated to prevent icing. To
prevent overheating, the heating of the humidity sensors is

switched off below −60 ◦C, or above 100 hPa, whichever is
reached first. Humicaps show good performance over a wide
range of temperatures but suffer from systematic errors such
as dry bias due to solar radiative heating and a response lag
below −40 ◦C. Known main error sources affecting the hu-
midity profile are daytime solar heating of the Humicaps in-
troducing a dry bias, sensor time lag at temperatures below
about −40 ◦C, and temperature-dependent calibration cor-
rection.

We work with Vaisala RS92 data that have been processed
by the GRUAN lead centre (http://www.gruan.org, last ac-
cess: 29 August 2018). The GRUAN data processing assures
that the humidity, pressure, and temperature profiles obtained
are well calibrated and highly accurate (Dirksen et al., 2014;
Sommer et al., 2016).

3.2 Manus Island (MI)

At Manus Island we have coincidences in 2011, 2012, and
2013 with 25 individual GRUAN radiosonde profiles. The
collocation of IASI and GRUAN measurements has been
performed by EUMETSAT in the framework of a planned
IASI retrieval comparison study (Calbet et al., 2017), allow-
ing a spatial and temporal window of 25 km and 30 min re-
spectively.

For our retrieval we use the a priori temperatures (atmo-
sphere and surface skin) as well as surface emissivities from
the EUMETSAT IASI L2 product generated with the IASI
L2 PPF software version 5. Since most of the ground scenes
are over the ocean surface, the emissivity values are mainly
according to the model of Masuda et al. (1988). The satellite
pixels have been careful examined for clouds by EUMET-
SAT according to the cloud flags as provided in the IASI L2
data and in addition by visual inspection (Calbet et al., 2017).
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Table 1. Overview of the different ensembles of GRUAN reference data and the available retrieval input data.

Manus Island Lindenberg 2008 Lindenberg 2007 Sodankylä 2007

Acronym MI LI08 LI07 SK07
Time period 2011–2013 2008 (all months) 2007 (June–August) 2007 (June–August)
Number of independent 25 32 26 17
GRUAN sondes
Ground level EUMETSAT IASI L2 EUMETSAT IASI L2 GTOPO30 GTOPO30

(GTOPO30) (GTOPO30)
Emissivity EUMETSAT IASI L2 EUMETSAT IASI L2 IREMIS IREMIS

(Masuda et al., 1988) (IREMIS)
Cloud identification EUMETSAT IASI L2 EUMETSAT IASI L2 Zhang et al. (2010) Zhang et al. (2010)

+ visual inspection
A priori values for atmospheric and EUMETSAT IASI L2 EUMETSAT IASI L2 GRUAN sonde GRUAN sonde
surface skin temperature (PPF v5) (PPF v4)

3.3 Lindenberg 2008 (LI08)

For Lindenberg there are coincidences with 32 individual
GRUAN profiles in 2008 (representative of all seasons). We
performed the collocation and required that the satellite pixel
has to be within a distance of 25 km with respect to the start-
ing position of the radiosonde and that the satellite’s pixel
sensing time has to be within the sensing time period of the
radiosonde.

As for Manus Island we rely on the IASI L2 data for our
retrieval input data (surface and atmospheric temperatures,
surface emissivity, cloud filter, etc.). However, while for the
2011–2013 time period (Manus Island) the IASI L2 data are
generated with the IASI L2 PPF software version 5, for the
2008 retrievals we work with L2 data generated by the IASI
L2 PPF software version 4. As shown in García et al. (2018),
there can be inconsistencies between the MUSCA IASI prod-
ucts that are generated using different IASI L2 PPF software
versions.

3.4 Lindenberg 2007 (LI07) and Sodankylä 2007
(SK07)

In 2007 we have 26 individual GRUAN profiles for Linden-
berg and 17 individual GRUAN profiles for Sodankylä (de-
tails on the Sodankylä campaign are available in Calbet et al.,
2011) that coincide with IASI observations. This data set is
limited to the summer observations. We performed the col-
location using the same criteria as for the Lindenberg 2008
coincidences; i.e. we required that the satellite pixel has to
be within a distance of 25 km with respect to the starting po-
sition of the radiosonde and that the satellite’s pixel sens-
ing time has to be within the sensing time period of the ra-
diosonde.

For summer 2007 IASI L2 data were not available for our
retrieval input. Thus data from the radiosonde measurements
were used as the a priori temperatures. Above the top al-
titude of the radiosonde we use zonally and monthly aver-

aged temperature climatologies (COSPAR International Ref-
erence Atmosphere Rees et al., 1990). Using the GRUAN
temperatures (and climatologies at higher altitudes) instead
of the IASI L2 temperatures as the a priori values for the at-
mospheric temperatures might cause some inconsistency be-
tween the LI07 and SK07, on the one hand, and the MI and
LI08 retrievals, on the other hand.

Surface emissivities are taken from the global database
of infrared land surface emissivity (IREMIS; http://cimss.
ssec.wisc.edu/iremis/, last access: 29 August 2018; Seemann
et al., 2008), i.e. in agreement to the retrievals for 2008 (IASI
L2 emissivities are based on IREMIS for land surfaces and
use the Masuda model for sea surfaces). Because there are
no IASI L2 cloud products for summer 2007, we use the
radiosonde measurements and the cloud detection algorithm
according to the model of Zhang et al. (2010) for identifying
cloud-free situations.

4 Theoretical MUSICA IASI data characterization

4.1 Averaging kernels

Figure 3 illustrates examples of H2O row kernels (A11+A12,
logarithmic state vector entries according to Sect. 2.3) for
the three reference sites. Grey lines show all row kernels,
and the thick coloured lines highlight the kernels for some
selected altitudes. The peaks of the row kernels for the alti-
tudes of 1.8, 3.6, 6.4, and 9.8 km are close to their nominal
altitudes, meaning that the values retrieved for these altitudes
represent the situation at the nominal altitude well. In con-
trast, the row kernel for the ground altitude peaks typically
1 km above ground altitude, meaning that data retrieved at
the ground level mainly represent the altitudes about 1 km
above the ground level. The row kernel for the 13.6 km alti-
tude only peaks close to its nominal altitude for the tropical
site of Manus Island. At Lindenberg and Sodankylä, the re-
spective kernels peak at 9–10 km altitude; i.e. at these sites
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Figure 3. Example row kernels (A11+A12; see Eq. 11) for the three reference sites. Manus Island: 28 November 2013 11:37:24 UT,
satellite zenith angle 12.4◦, precipitable water vapour 46.4 mm; Lindenberg: 8 October 2008 20:00:38 UT, 16.3◦, 14.1 mm; Sodankylä:
24 August 2007 08:31:25 UT, 27.8◦, 13.7 mm. Numbers in the upper right corners of every panel indicate the respective degrees of freedom
for signal (DOFS). Row kernels of selected altitudes are highlighted by thick coloured lines. The thick black dashed line represents the sum
along the row of the averaging kernel matrix.

variations in the 13.6 km retrieval data are mainly driven by
the actual atmospheric variations at 9–10 km.

The thick black dashed line represents the sum along the
row of the averaging kernel matrix and is a measure of the
remote sensing system’s sensitivity. This value is typically
between 0.9 and 1.1 from 1 up to 11 km at Lindenberg and
Sodankylä, and from 1 up to 13 km at Manus Island.

The seasonal dependency of the averaging kernels is indi-
cated in Fig. 4, which depicts the seasonal variations in the
degree of freedom for signal (DOFS) values. The DOFS val-
ues are calculated as the trace of the averaging kernel ma-
trix, and the higher the DOFS values are, the more profile
information is in the retrieved atmospheric state. In the trop-
ics we observe no seasonal dependency. In the mid-latitudes
the DOFS values are distinctively higher in summer than in
winter. More details on this seasonal dependency are pro-
vided in Fig. 5, which depicts typical wintertime and typi-
cal summertime row kernels for Lindenberg. It seems that
the seasonal variation is mostly a variation of the sensitiv-
ity at higher altitudes. In summer the remote sensing system
can detect the actual atmospheric variations up to 11–12 km,
whereas in winter the sensitivity is limited to altitudes below
8–9 km. This is connected to the variation of the tropopause
altitude. As shown in Schneider et al. (2017), the averaging
kernels depend strongly on the atmospheric temperature and
humidity profiles (as well as on the surface temperature and
emissivity).

In summary, at all three different sites, the MUSICA IASI
retrieval provides H2O profile information from about 1 km
above ground up to about the altitude of the tropopause.

Figure 4. Variation of the DOFS (degrees of freedom for signal)
values for the four different ensembles.

4.2 Calculation of error Jacobians

The error Jacobians (Kb from Eqs. 7 and 8) are calculated by
the forward model PRFFWD as follows: PRFFWD is exe-
cuted running on a vertical grid of 28 levels from the surface
altitude to approximately 55 km above mean sea level. For
every site reference, forward calculations are performed for
all cloud-free situations. The input (i.e. temperature, trace gas
concentrations, etc.) for the reference forward model runs is
the same as the input used in the forward calculation of the
last iteration step of the MUSICA IASI retrievals; i.e. the ref-
erence radiances are given by F (x̂,b). Then for each refer-
ence scenario we make additional forward calculations with
slightly modified parameters; i.e. we calculate F (x̂,b+1b).
For a measurement vector y with m elements and a param-
eter vector b with n elements, the Jacobian matrix Kb will
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Figure 5. Same as Fig. 3, but for a typical winter and sum-
mer observation above Lindenberg. Summer observation: 1 Au-
gust 2008 08:39:01 UT, satellite zenith angle 43.7◦, precipitable
water vapour 28.8 mm; winter observation: 15 February 2008
09:54:30 UT, 41.2◦, 3.2 mm.

have the dimension m× n. The individual matrix elements
are calculated as

Kbk,l =
Fk(x̂,b+1bl)−Fk(x̂,b)

1bl
, (12)

where k is the index for the kth element of the measurement
state vector y (simulated by vector function F ) and l is the
index for the lth element of the parameter vector b, respec-
tively.

Table 2 gives an overview of the uncertainty assumptions
1b used for calculating the Jacobians and for performing
the error estimation. The calculations of the error Jacobians
for water vapour continuum and clouds require specific treat-
ment, which is detailed in the following two subsections.

4.2.1 Water vapour continuum

We assume that calculations based on the model MT_CKD
v2.5.2 (Mlawer et al., 2012; Delamere et al., 2010; Payne
et al., 2011) only partly capture the full water vapour con-
tinuum effect. For the respective Jacobian calculation, we
perform forward calculations without considering the wa-
ter vapour continuum (F noWVC(x̂,b)). Then we calculate the
Jacobian matrix as KnoWVC = F noWVC(x̂,b)−F (x̂,b). The
spectral response for an underestimation of 10 % of the wa-
ter vapour continuum effect is then KnoWVC1bnoWVC, with
1bnoWVC = 0.1.

4.2.2 Opaque clouds (cumulus)

We estimate the influence of fractional coverage by opaque
liquid cumulus clouds with different cloud top altitudes (1.3,
3.0, and 4.9 km). The radiance at the top of the cloudy at-
mosphere F cum(x̂,b) is calculated by starting PRFFWD at

the cloud’s top height, assuring that no radiation from be-
low the cloud contributes to F cum(x̂,b). Additionally it is
assumed that the surface emissivity of the cloud is 1.0 and
that the skin temperature of the cloud’s upward-looking sur-
face is in thermal equilibrium with the surrounding air tem-
perature. The Jacobian matrix for opaque cumulus clouds
is then Kcum = F cum(x̂,b)−F (x̂,b), and the spectral re-
sponse of a 10 % fractional cloud cover is Kcum1bcum, with
1bcum = 0.1.

4.2.3 Transmitting clouds (mineral dust and cirrus)

Some clouds are not opaque and we have to consider partial
attenuation by the cloud particles. This is the case for cirrus
clouds and mineral dust clouds. We consider these clouds
by introducing them as an additional species in the forward
model calculations. The extinction of these clouds is the sum
of absorption and scattering. Since PRFFWD does not in-
clude the simulation of scattering clouds, we calculate the
attenuated radiances using forward model calculations from
KOPRA (Karlsruhe Optimized and Precise Radiative trans-
fer Algorithm; Stiller, 2000) and consider single scattering.

The frequency dependency of the extinction cross sec-
tions, the single scattering albedo, and the scattering phase
functions of the clouds are calculated from OPAC v4.0b (Op-
tical Properties of Aerosol and Clouds; Hess et al., 1998;
Koepke et al., 2015). For cirrus clouds we assume the particle
composition as given by OPAC’s “Cirrus 3” ice cloud exam-
ple (see Table 1b in Hess et al., 1998) and for mineral dust
clouds a particle composition according to OPAC’s “Desert”
aerosol composition example (see table Table 4 in Hess et al.,
1998).

We conduct cirrus cloud forward calculations F cir consid-
ering cirrus clouds with a vertical cloud layer thickness of
1 km and the cloud top at different altitudes ranging from 6
to 14 km. The Jacobians are calculated as Kcir = F cir(x̂,b)−

F (x̂,b) and for a cloud coverage of 50 %, the spectral re-
sponse is Kcir1bcir, with 1bcir = 0.5.

For the dust clouds we conduct forward calculations F dust
for homogeneous 2 km thick layers between the ground
and 6 km altitude. The Jacobians are then given as Kdust =

F dust(x̂,b)−F (x̂,b).

4.3 Spectral response to uncertainty

Figure 6 depicts the spectral responses (i.e. Kb1b) for an
example of different uncertainty sources for a typical situa-
tion at the tropical reference site. The left panel shows that
lower tropospheric temperature uncertainties mainly affect
the spectra between 1190 and 1250 cm−1 (which is also the
spectral region of an “atmospheric window”), but are negligi-
ble for higher wavenumbers. This is in contrast to upper tro-
pospheric temperature uncertainties, which have the highest
spectral responses for wavenumbers larger than 1250 cm−1.
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Table 2. List of uncertainty assumptions used for the error estimation of the MUSICA IASI water vapour product (for emissivity and
atmospheric temperature, we assume random and systematic uncertainties). The abbreviation “pdf” refers to the probability distribution
function.

Source Type Value

Instrumental noise Random (Gaussian pdf) Noise covariance according to (Pequignot et al., 2008)

Surface emissivity Random (Gaussian pdf) +
Systematic

Random: 1 % with spectral frequency correlation length of
100 cm−1; systematic: −1 % for < 1295 cm−

1
and −1 % for

> 1295 cm−
1

EUMETSAT L2 atmos. temp. Random (Gaussian pdf) +
Systematic

Random: 2 K from the ground to 2 km and 1 K above 2 km altitude,
with correlation length increasing from 2 km at the ground to 10 km
in the stratosphere; systematic: 2 K from the ground to 2 km, and
1 K for 2–5 km, 5–10 km, and 10 km–TOA

Water vapour continuum Systematic 10 % of model MT_CKD v2.5.2

Line intensity H2O and HDO Systematic 5 %

Pressure-broadening H2O and
HDO

Systematic 5 %

Opaque cumulus cloud Systematic sign, but ran-
dom amplitude (unknown
pdf)

10 % fractional cover with cloud top at 1.3, 3.0, and 4.9 km

Cirrus cloud Systematic sign, but ran-
dom amplitude (unknown
pdf)

Particle properties according to OPAC Cirrus 3, 1 km thickness,
50 % fractional cover with cloud top at 6, 8, 11, and 14 km

Mineral dust cloud Systematic sign, but ran-
dom amplitude (unknown
pdf)

Particle properties according to OPAC Desert, homogeneous cover-
age for layers: ground–2 km, 2–4 km, and 4–6 km

Temperature:
Lower troposphere (0–2 km)
Upper troposphere (5–10 km)

(a) (b)

Figure 6. Spectral responses of uncertainty sources for a typical situation at Manus Island (same situation as for the kernel in Fig. 3). Panel
(a) shows examples of the influence of uncertainties of temperatures (surface skin 1T =+2 K, lower tropospheric 1T =+2 K, and upper
tropospheric 1T =+1 K). Panel (b) illustrates examples of the influence of clouds (dust layer (4–6 km) and cirrus cloud (13–14 km and
50 % cloud fraction)) on the spectrum. Note the different y-axis scales, i.e. the positive response for positive temperature uncertainties and
the negative response for unrecognized clouds.

The right panel of Fig. 6 illustrates that uncertainties in
dust layers and uncertainties due to cirrus clouds have the
highest impact at the lower end of wavenumbers and that a
cirrus cloud has a different dependency on wavenumber than
a dust layer. Furthermore unrecognized clouds have the op-

posite effect on the spectrum than increasing the atmospheric
temperatures although affecting the spectrum in the same or-
der of magnitude.
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4.4 Estimated errors

Figure 4 shows a certain seasonal variability in the DOFS
values (in particular at the mid-latitude site), indicating vary-
ing sensitivities of the remote sensing system. This variation
is also present in the sensitivity with respect to uncertainty
sources. For this reason we present the estimated errors for
all the Manus Island and Sodankylä retrievals (MI and SK07)
and for all the Lindenberg 2008 retrievals (LI08). The Lin-
denberg 2008 error estimations are representative of all sea-
sons; hence they cover the full sensitivity variation with re-
spect to uncertainty sources well.

Table 2 gives on overview of the different uncertainty
sources we consider for our error estimation. We distinguish
between random uncertainty sources (the uncertainty affect-
ing an observation is uncorrelated with the uncertainty affect-
ing another observation), systematic uncertainty sources (the
uncertainty is the same for all observations), and uncertainty
sources that are always positive but with a random amplitude
(clouds: the sky is either cloud-free or covered by a random
amount of cloud).

4.4.1 Errors caused by random uncertainty sources

From the top to the bottom, Fig. 7 depicts the H2O error
profiles due to the random uncertainties instrumental noise,
emissivity, and atmospheric temperatures (from the left to the
right for Manus Island, Lindenberg, and Sodankylä). The er-
ror profiles shown are the square root of the diagonal ele-
ments of the error covariance matrix Sx̂,noise calculated for
the instrumental noise according to Eq. (9) and of the error
covariance matrix Sx̂,b calculated for emissivity and atmo-
spheric temperature according to Eq. (8).

For the calculations of Sx̂,noise we assume a noise covari-
ance Sy,noise of the IASI radiances according to (Pequignot
et al., 2008). The measurement noise errors vary around 2 %–
10 % near the ground, but decrease to approximately 2 %–
3 % above the boundary layer and remain there throughout
the free troposphere. Close to the tropopause, errors increase
again to values of around 10 %. For Manus Island we ob-
serve similar errors for all the different observations. For So-
dankylä and in particular for Lindenberg, the errors vary. For
instance, in the lower troposphere at Lindenberg the error is
10 % for some days, but only 1 %–3 % for other days. The
varying sensitivity with respect to the uncertainty sources is
due to the varying atmospheric conditions and is in agree-
ment with the varying DOFS values as documented by Fig. 4
(the Lindenberg data cover all mid-latitude seasons).

For calculating the error covariances Sx̂,b due to surface
emissivity uncertainties, we assume a 1 % emissivity uncer-
tainty and a spectral correlation length of this uncertainty
of 100 cm−1. The resulting errors are highest close to the
ground and for the continental sites of Lindenberg and So-
dankylä, where they can reach 30 %. Above 5 km altitude
these errors are generally below 2 %.

For calculating the error covariances Sx̂,b due to atmo-
spheric temperatures uncertainties, we assume 2 K uncer-
tainty from the ground to 2 km and 1 K uncertainty above
2 km altitude, with correlation lengths increasing from 2 km
at the ground to 10 km in the stratosphere. The errors are typ-
ically 10 %–15 %, but can occasionally reach 25 %.

4.4.2 Errors caused by systematic uncertainty sources

From the top to the bottom, Fig. 8 shows the H2O error pro-
files due to systematic uncertainties in surface emissivity, at-
mospheric temperature, and spectroscopic parameters. The
error profiles are calculated as 1x̂ according to Eq. (7).

We assume two patterns of surface emissivity uncertainty.
The first pattern means a −1 % uncertainty at the spectral
grid points 1185 and 1240 cm−1 and 0 % uncertainty at the
grid points 1295, 1350, and 1405 cm−1 (this means that be-
tween 1240 and 1295 cm−1 the uncertainty is linearly chang-
ing from −1 % to 0 %). The second pattern means a −1 %
uncertainty at the spectral grid points 1405 and 1350 cm−1

and 0 % for the rest (with a linear change −1 % to 0 % be-
tween 1350 and 1295 cm−1). The top row of panels in Fig. 8
shows that surface emissivity uncertainties are mainly impor-
tant for the wavenumber region below 1300 cm−1 (the first
uncertainty pattern). An emissivity uncertainty of −1 % has
a rather uniform response at Manus Island: a positive error
of up to 5 % close to the ground and a weak negative error
around 3 km altitude. At the continental sites of Lindenberg
and Sodankylä the response to a systematic −1 % emissivity
uncertainty can be positive or negative close to the ground (it
varies between about −25 % and +20 %). Around 3 km the
error response is generally negative and between −2 % and
−20 %.

Positive atmospheric temperature uncertainties cause large
positive errors in the retrieved tropospheric H2O profiles (we
assume a systematic uncertainty of +2 K up to 2 km altitude
and +1 K at higher altitudes). The errors can reach +30 %,
whereby these errors are largest for the atmospheric layers
where the atmospheric temperature uncertainty is assumed.
For instance, uncertainties in lower tropospheric temperature
(ground–2 km, black lines) cause maximal errors from the
ground up to 3 km and decrease rapidly with altitude up-
wards, whereas uncertainties in upper tropospheric temper-
ature (5–10 km, green lines) are negligible from the ground
up to 6 km, but then increase to values of around +20 % at
8 km.

Concerning spectroscopic parameters, we consider sys-
tematic uncertainties in the H2O line intensity and pressure-
broadening parameters and an uncertainty in the applied wa-
ter continuum model. The uncertainty in the water vapour
continuum model causes error profiles with small oscilla-
tions. For a water continuum model that underestimates the
water continuum effect by 10 % (see Sect. 4.2.1), the er-
ror is positive near the ground (about +2 %), negative at
around 3 km altitude (about −4 %), and negligible for alti-
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Figure 7. H2O error profiles derived from the random uncertainty sources: instrument noise, emissivity, and atmospheric temperatures. The
square root values of the diagonal of the matrices Sx̂,noise (for instrument noise) and Sx̂,b (for emissivity and atmospheric temperatures) are
shown according to Eqs. (9) and (8), respectively. The data are depicted for all members of the MI, LI08, and SK07 ensembles.

tudes above 5 km. A positive uncertainty of +5 % in the wa-
ter vapour (H2O and HDO) line strength parameter causes
a negative error of about −5 % in the retrieved H2O values.
The impact of+5 % uncertainties in the pressure-broadening
parameter depends on the reference site: at Manus Island the
resulting errors are negligible above 3 km, but at Lindenberg
and Sodankylä the error profiles contain strong oscillations
with maximal error of about +10 % above 10 km altitude.

This behaviour of the errors due to uncertainties in the
line shape modelling might be explained as follows: most
of the thermal nadir spectra’s information about the vertical

H2O distribution is a consequence of the vertical atmospheric
gradients of temperature and humidity. Without these gradi-
ents the spectral emission from a lower atmospheric layer is
widely cancelled out by the absorption at a higher layer. The
gradients are generally strong up to the tropopause; i.e. up
to the tropopause the remote sensing system’s sensitivity is
widely determined by these gradients. At Manus Island the
tropopause is generally above 15 km, whereas at Lindenberg
and Sodankylä it can be at much lower altitudes. This can be
observed in Fig. 2, which indicates a decrease of H2O con-
centration up to 16 km above Manus Island, but only up to
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Linestrength
Pres. board

Figure 8. H2O error profiles derived from the systematic uncertainty sources: emissivity (−1 % in two different wavenumber regions),
atmospheric temperatures (2 K between surface and 2 km a.s.l. and 1 K in the other layers), and spectroscopy (line strength, +5 %, and
pressure-broadening, +5 %) and the water vapour continuum (assuming a 10 % underestimation of the MT_CKD model). The errors in the
atmospheric state vector 1x̂ are shown according to Eq. (7). The data are depicted for all members of the MI, LI08, and SK07 ensembles.

about 13 and 12 km above Lindenberg and Sodankylä, re-
spectively. Due to the weaker gradients above Lindenberg
and Sodankylä and the relatively good spectral resolution of
the IASI spectra, the line shapes do also provide informa-
tion on the vertical distribution of H2O. This is due to the
pressure-broadening effect; i.e. the broadness of the line de-
creases with decreasing pressure. As a consequence, the H2O
profiles retrieved at Lindenberg and Sodankylä are much
more affected by uncertainties in the line shape modelling
than the profiles retrieved at Manus Island.

4.4.3 Errors due to unrecognized clouds

Figure 9 shows the influence of different cloud types on the
errors. Uncertainties due to unrecognized cirrus clouds (top
row in Fig. 9) lead to errors of −20 % from 3 to 6 km at all
sites and then decrease with altitude. However their impact
on the water vapour volume mixing ratio (WVMR) profiles
in the boundary layer shows large variation, especially at Lin-
denberg and Sodankylä, which is a result of the more variable
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Figure 9. Same as Fig. 8, but for errors due to unrecognized clouds: cirrus (50 % fractional coverage; for the location of cloud layers, see
legend), cumulus (10 % fractional coverage with cloud top altitudes as given in the legend), and mineral dust (homogeneous dust clouds
layers as give in the legend and with the composition according to OPAC “Desert”).

atmospheric conditions at these sites (compared to the tropi-
cal site of Manus Island).

The influence of a 10 % fractional cloud cover of opaque
clouds depends on the height at which the clouds are assumed
(middle row in Fig. 9): clouds at 1.3 km only show a small
impact on the humidity profiles in the boundary layer, with
error magnitudes of 5 %–10 %, but clouds at 3.0 km account
for errors of more than 10 % up to 5 km above mean sea level.
Yet similarly to cirrus clouds, their effect in the boundary
layer shows large variation at Lindenberg and Sodankylä.

The error profiles due to mineral dust layers (bottom row
in Fig. 9) show that such layers have almost no impact if
they are situated in the boundary layer; however if they are
situated in the middle troposphere the errors are more than
10 %. The effect of dust clouds is particularly large for the
mid-latitude site of Lindenberg, where we also observe the
largest variability in the calculated error profiles.
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5 Comparison of GRUAN and IASI data

We use GRUAN-processed Vaisala RS92 radiosonde mea-
surements as a reference for empirically validating the re-
trieved MUSICA IASI H2O profiles. The radiosonde ascents
are collocated temporally and spatially with MetOp over-
passes (for details see Sect. 3), which is essential for a mean-
ingful comparison.

5.1 Regridding and smoothing of the high-resolution
GRUAN in situ profiles

The in situ profiles have a high vertical resolution. This dif-
fers from the remote sensing profiles, which can only detect
the major characteristics of the vertical H2O distribution. Be-
fore comparing the data we have to account for these differ-
ent characteristics by regridding and smoothing the in situ
profiles.

While the remote sensing retrieval provides atmospheric
states and averaging kernels on a coarse atmospheric grid
(between ground level and about 55 km a.s.l., 28 grid points
are defined), the radiosonde reports data about every 5 m.
Therefore, we have to regrid the radiosonde data to the coarse
vertical grid used by the remote sensing retrieval. In order
to guarantee that the regridding does not significantly affect
the H2O partial columns, the regridding is performed in two
steps.

First, the radiosonde data points between the 28 MUSICA
retrieval grid points are averaged by using a triangle inverse-
distance-weighted function resulting in a first estimate of the
regridded radiosonde data. In the second step this first esti-
mate is corrected by requiring that the partial columns be-
tween adjacent grid levels remain almost the same in the
original high-resolution data and in the regridded data. In
the correction process a constraint is put on the smoothness
of the profile, thereby preventing the correction from pro-
ducing strongly oscillating profiles. The results are regrid-
ded data consisting of reasonably smooth profiles with prac-
tically the same partial columns as the original high-resolved
radiosonde profiles. For the high altitudes that are not de-
tected by the GRUAN radiosonde, we use the retrievals’ a
priori data (xa).

The regridded GRUAN in situ profiles g may be smoothed
according to the averaging kernels of the remote sensing re-
trieval. The regridded and smoothed GRUAN in situ profile
ĝ is then comparable to the remote sensing profile, whereby

ĝ = (A11+A12)(g− xa)+ xa. (13)

Here A11 is the H2O block of the averaging kernel matrix,
A12 the block that describes the response of the retrieved
H2O to atmospheric HDO (see Sect. 2.3), and the vector xa
is the a priori state vector. An example illustrating the effects
of the regridding and the smoothing is given in Fig. 10.

We would like to note that by using Eq. (13) we assume
that H2O and HDO variations are fully correlated. However,

Raw
Regridded
Regridded & smoothed

Figure 10. Example of the regridding and smoothing of the
GRUAN data required before validating the MUSICA IASI retrieval
of H2O profiles. Black line: raw GRUAN data. Red line: regridded
GRUAN data (g). Green line: regridded and smoothed radiosonde
data (ĝ, according to Eq. 13).

H2O and HDO do not vary fully in parallel; i.e. calculating
ĝ according to Eq. (13) implies an uncertainty that can be
estimated by the uncertainty covariance matrix Sĝ according
to (see also Sect. 4.3 of Barthlott et al., 2017)

Sĝ = A12Sa,δDAT12. (14)

Here Sa,δD describes the actual atmospheric δD covariances.
Because A12 and Sa,δD only have small entries, this uncer-
tainty is below 1 % and can be neglected for our comparison.

5.2 Metric for quantifying data agreement

For a better statistical quantification of the deviations of the
remote sensing data from the GRUAN reference data, we in-
troduce a skill score, DL, describing the difference of the
logarithmic values of the respective water vapour concentra-
tions. Because 1ln(x)≈ 1x

x
, we interpret the logarithmic-

scale difference between IASI and GRUAN as the relative
difference (and use the GRUAN data in the denominator).
DL then becomes

DL= ln([H2O]retrieval)− ln([H2O]GRUAN)

≈
[H2O]retrieval− [H2O]GRUAN

[H2O]GRUAN
, (15)

where [H2O]GRUAN is the regridded and smoothed ra-
diosonde H2O data (i.e. ĝ from Eq. 13), and [H2O]retrieval
is the retrieved IASI H2O data. The skill score DL defined
in this way is a good measure for the relative difference be-
tween the GRUAN and IASI data.

As a good measure for the mean relative difference be-
tween GRUAN and IASI, we can use the mean difference of
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Figure 11. Vertical profiles of retrieval skill scores calculated according to Eqs. (16)–(19) for the MI and LI08 ensembles. The black line and
error bars represent the mean difference and the 1σ scatter between IASI and smoothed GRUAN data (MDL and ±σMDL). The red shaded
area around MDL is the 1σ scatter expected due to MUSICA IASI and GRUAN errors (±1MDL). The grey shaded area represents the area
beyond the 1σ variability of smoothed GRUAN data (area beyond ±σĝ).

logarithmic values (MDL):

MDL=
1
N

N∑
i=1

DLi =
1
N

N∑
i=1

[
ln([H2O]retrieval)

− ln([H2O]GRUAN)
]
i

≈
1
N

N∑
i=1

(
[H2O]retrieval− [H2O]GRUAN

[H2O]GRUAN

)
i

. (16)

Similarly, we can use the standard deviation of the loga-
rithmic differences as a measure for the relative scatter be-
tween GRUAN and IASI, and introduce σMDL as

σMDL =

√√√√ 1
N

N∑
i=1

(DLi −MDL)2. (17)

For illustrating the variation of the atmospheric state, we in-
troduce σĝ as

σĝ =

√√√√ 1
N

N∑
i=1

[
ln([H2O]GRUAN)i − ln([H2O]GRUAN)

]2
. (18)

We want to document to what extent the differences be-
tween GRUAN and MUSICA IASI data can be explained
by the estimated errors. In Sect. 4 we estimate the error in
the MUSICA IASI H2O profiles in detail for three differ-
ent climate zones. Uncertainties in the GRUAN H2O profiles
also have to be considered. In general the uncertainty of the
GRUAN data increases with altitude. For the regridded and
smoothed GRUAN profiles, 1ĝ is about 3 %–5 % near the
surface and 5 %–20 % at around 10 km altitude. For further
details on the radiosonde uncertainty, we refer the reader to
Appendix A. If we assume that the MUSICA IASI and the

GRUAN errors are uncorrelated random errors, we can cal-
culate the 1σ scatter of DL around MDL as expected from
the MUSICA IASI and GRUAN errors by

1MDL =

√√√√ 1
N

N∑
i=1

(
1x̂2

i +1ĝ
2
i

)
. (19)

Here the index i stands for an individual observation and N
is the number of all observations.

5.3 Data agreement for individual ensembles

In this section we present the comparison between the regrid-
ded and smoothed GRUAN H2O profiles and the IASI H2O
profiles using the metric as described in the previous sub-
section. The statistical quantifications are done individually
for the four different ensembles as given in Table 1. The aim
is to illustrate the remote sensing data quality for the three
different climate zones.

5.3.1 MUSICA IASI standard retrieval

Figure 11 depicts the vertical distribution of the data agree-
ment for the MI and LI08 ensembles. These ensembles cor-
respond to IASI measurements with available EUMETSAT
L2 data, and we can execute the standard MUSICA IASI re-
trieval, which uses the EUMETSAT L2 temperature data as
the a priori atmospheric temperatures. For the MI ensemble
the MDL value (thick black line) oscillates between −23 %
and −7 % below 10 km altitude and is close to zero at higher
altitudes. The scatter σMDL is indicated by the black error
bars and it is generally within 20 %, except for the altitudes
around 12 km where it is slightly higher. For the LI08 ensem-
ble the MDL value oscillates between−20 % and+16 % and
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the scatter σMDL is up to 42 % below 5 km and about 15 % at
higher altitudes. For both ensembles (MI and LI08) the σMDL
values are significantly smaller than the 1σ variation in the
smoothed radiosonde data (σĝ).

The red shaded area around the MDL value represents the
1MDL values, i.e. the scatter in the MDL value we expect due
to the errors in the MUSICA IASI and GRUAN H2O data.
The 1MDL values are calculated according to Eq. (19) by
considering MUSICA IASI random errors due to measure-
ment noise, emissivity, and atmospheric temperature (actu-
ally we work with the error estimations as depicted in Fig. 7)
and the GRUAN random errors as discussed in Appendix A
and presented in Fig. A2. For the MI ensemble, the 1MDL
and σMDL show similar amplitudes and vertical behaviour,
meaning that the expected and the observed scatter agree rea-
sonably well. For the LI08 ensemble 1MDL and σMDL only
agree well above 5 km altitude. At lower altitudes the actu-
ally observed scatter is significantly larger than the scatter
expected from the estimated MUSICA IASI and GRUAN er-
rors, which might indicate an underestimation of the MU-
SICA IASI random errors at Lindenberg below 5 km altitude.

The comparison suggests a weak dry bias in the MUSICA
IASI data between 2 and 10 km at Manus Island and above
10 km at Lindenberg. The former could be explained by er-
rors in the simulated line intensities and the latter by errors
in the simulated line shapes (see discussion in the context of
Fig. 8). However, given the small number of ensemble mem-
bers, we should be careful and avoid premature conclusions.

5.3.2 Retrieval using external temperature data

During summer 2007 EUMETSAT L2 data were not avail-
able, and the retrievals for the LI07 and SK07 ensembles
were executed using the atmospheric temperatures measured
by the GRUAN radiosondes as the a priori atmospheric tem-
peratures (see discussion in Sect. 3.4). In order to avoid in-
consistencies when comparing the different ensembles, we
simulate retrievals of the MI and LI08 ensembles that also
use the GRUAN radiosonde temperatures instead of the EU-
METSAT L2 temperatures as the a priori atmospheric tem-
peratures. The simulated retrieval products are obtained by
adding GKT (T L2−T GRUAN) to the standard MUSICA IASI
retrieval products, where G is the gain matrix, KT is the
Jacobian matrix for atmospheric temperature, and T L2 and
T GRUAN are the atmospheric temperature state vectors of the
EUMETSAT L2 and GRUAN data, respectively. For the al-
titudes above the radiosonde we extend the T GRUAN vector
with a zonally and monthly mean temperature climatology
(Rees et al., 1990). For calculating the combined MUSICA
IASI and GRUAN random error (i.e. the expected scatter
1MDL) we have to consider the uncertainties in the GRUAN
temperatures instead of the uncertainties in the EUMETSAT
L2 temperatures. Appendix B gives a brief overview of the
GRUAN temperature uncertainties.

Figure 12 depicts the data agreement for all four ensem-
bles when GRUAN radiosonde temperatures are used as the
a priori atmospheric temperatures. For Manus Island and
Lindenberg (ensembles MI and LI08), the scatter in MDL
(σMDL) is significantly reduced when compared to Fig. 11
(figure showing the data agreement for MUSICA IASI re-
trievals that use EUMETSAT L2 temperatures as the a priori
atmospheric temperatures). A similar reduction is also ob-
served in the theoretically predicted scatter (1MDL) because
the GRUAN temperatures have a much smaller uncertainty
(typically 0.1–0.3 K) than the EUMETSAT L2 temperatures
(we assume 1–2 K). At Lindenberg (ensemble LI08), σMDL
and 1MDL agree much better for the retrieval products (ob-
tained by using GRUAN temperatures as a priori values) than
for the MUSICA IASI standard retrieval products (obtained
by using EUMETSAT L2 temperatures as a priori values).
This suggests that for Lindenberg and the year 2008, our un-
certainty assumptions for the EUMETSAT L2 atmospheric
temperatures (see Table 2) are probably too optimistic.

The bottom panels in Fig. 12 show the data agreement for
the LI07 and SK07 ensembles. These ensembles are exclu-
sively representative of summer observations. We observe
that the σMDL values are generally larger than the1MDL val-
ues, meaning that we probably underestimate the MUSICA
IASI random errors. In addition we find a wet bias of up to
30 % below 2 km altitude and a dry bias of about 20 % at
around 14 km.

An upper tropospheric dry bias is consistently observed in
the analysis of the LI08, LI07, and SK07 ensembles, but not
seen in the analysis of the MI ensemble. A systematic un-
certainty source that affects upper tropospheric H2O at Lin-
denberg and Sodankylä but not at Manus Island is the shape
of the water vapour lines (see discussion in the context of
Fig. 8). Therefore, deficits in simulating the line shapes might
explain this upper tropospheric dry bias. In the near-surface
atmosphere we observe a wet bias at the two continental sites,
Lindenberg and Sodankylä, but only for the ensembles that
are limited to the summer season (LI07 and SK07). Our er-
ror estimation study suggests that small uncertainties in the
emissivity can cause large errors at these continental sites.
Therefore, an uncertainty in the IREMIS emissivity used is
a candidate for explaining the near-surface wet bias; how-
ever, the H2O retrieval response for a−1 % uncertainty in the
emissivity differs between observations and can be positive
or negative (see Fig. 9). This means that emissivity uncer-
tainties can only explain the bias if the sign of the emissivity
uncertainty is correlated with the atmospheric state (e.g. the
uncertainty in the used monthly IREMIS surface emissivity
is typically positive for dry atmospheric conditions and typ-
ically negative for humid atmospheric conditions) or surface
conditions (e.g. the uncertainty in the IREMIS data is typi-
cally positive/negative for a surface with high/low emissivity
or high/low skin temperatures).
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Figure 12. Same as Fig. 11, but for MUSICA IASI retrievals that use the GRUAN temperature profiles as the a priori atmospheric tempera-
tures and all four ensembles (MI, LI08, LI07, and SO).

Figure 13. Same as Fig. 12, but considering all four ensembles as a
single data set.

5.4 Global overview of data agreement

Figure 13 depicts the vertical profiles of the data agreement
skill score parameters for all coinciding observations without
separating the different ensembles. This analysis is based on
100 individual comparisons.

Below 12 km altitude the MDL value oscillates between
−10 % and +11 % and at around 14 km altitude it reaches
−21 %. The scatter in MDL (σMDL) is almost 29 % close
to the surface but generally smaller than 20 % above 1 km
altitude. Above 5 km altitude this observed scatter is only
slightly larger than the scatter predicted from the estimated
errors (1MDL). At lower altitudes the predicted scatter is
clearly smaller than the observed scatter. An explanation of
the observed upper tropospheric bias and increased scatter at
low altitudes is given in the previous section: the dry bias
in the upper troposphere might have its origin in incorrect
modelling of the spectroscopic line shapes, and the increased
scatter near the surface might be due to uncertainties in the
IREMIS emissivities.
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Figure 14. Correlation between GRUAN (along x axes) and MUSICA IASI data (along y axes) for the six different atmospheric altitudes
that are highlighted in Figs. 3 and 5. All the presented data are for MUSICA IASI retrievals that use the GRUAN temperature profiles as the
a priori atmospheric temperatures. The retrieval altitudes are given in the individual scatter plots, together with correlation coefficient (R2),
bias (b) and scatter (s). Data belonging to the different ensembles can be identified by the symbols and colours as described in the legend
(bottom right). The yellow stars represent the a priori value (the retrieval uses the same a priori H2O values globally) and the blue error bars
indicate the typical GRAUN and IASI errors. The dotted line represents the 1–1 diagonal.

The observed scatter between GRUAN and IASI (σMDL)
is significantly smaller than the 1σ variation of the smoothed
radiosonde data (σĝ), which reaches about 50 % near the sur-
face and more than 100 % in the middle and upper tropo-
sphere. This reflects the large variation in the atmospheric
water vapour concentration data we use for our evaluation
study (see also Fig. 2). The MUSICA IASI data product
does capture most of these variations well. For demonstrat-
ing this capability, Fig. 14 illustrates correlation between the
MUSICA IASI retrieval products and the smoothed GRUAN
data for selected altitudes. The respective altitudes are high-
lighted in Figs. 3 and 5, which document that at all sites the
MUSICA IASI product for 1.8, 3.6, 6.4, and 9.8 km is in-
dependent and very sensitive to real atmospheric variations.
Near the surface, the sensitivity is generally limited, and at
13.6 km, only the Manus Island data are reasonably sensitive
to the actual atmospheric variations.

At the altitudes at which the MUSICA IASI product shows
very good sensitivity (1.8, 3.6, 6.4, and 9.8 km), we observe
a very good correlation and can demonstrate that the MU-
SICA IASI product can correctly capture the large variations
that are present in atmospheric water vapour. For instance,
at 3.6 km the mixing ratios range from below 200 to almost
20000 ppmv and at 9.8 km from 10 to more than 1000 ppmv.

Please note that these large variations are reliably repro-
duced by the MUSICA IASI processor, although the retrieval
works with a single humidity a priori value that is used at all
sites and during all seasons (indicated by the yellow stars in
Fig. 14). Near the surface the correlation is a bit weaker than
at higher altitudes, mainly due to some outliers belonging to
the LI07 and SK07 ensembles (the ensembles representing
the summer season over land). At 13.6 km altitude we ob-
serve a good correlation, which demonstrates the possibility
of detecting H2O at Manus Island. However, at Lindenberg
and Sodankylä, these variations are strongly driven by actual
atmospheric variations that take place at lower altitudes (see
magenta lines in Figs. 3 and 5).

For our theoretical error analyses in Sect. 4, we assume
that the relative errors have a component that is mostly ran-
dom (Fig. 7) and another component that is mostly system-
atic (Fig. 8). For the comparison study we proceed similarly
and examine bias and scatter, which means that we describe
the variance in the MUSICA IASI data by the variance in the
GRUAN data (σ 2

ĝ
) and the variance in the difference between

MUSICA IASI and GRUAN (σ 2
MDL). Using this description,

we can calculate the R2 value that represents the portion of
the MUSICA IASI variance that is in full agreement (fully
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Figure 15. Profiles of correlation coefficients (R2) for comparison
between GRUAN and MUSICA IASI (for retrievals that use the
GRUAN temperature profiles as the a priori atmospheric tempera-
tures). Different line colours and symbols show the different ensem-
bles and thick black solid line for considering all four ensembles as
a single data set (the R2 values for the latter are also written in the
panels of Fig. 14).

correlated) with the GRUAN variance:

R2
=

σ 2
ĝ

σ 2
ĝ
+ σ 2

MDL
. (20)

Each panel of Fig. 14 contains the R2 value calculated for
the respective altitude.

The error blue bars on the diagonal of the plots of Fig. 14
indicate the typical GRUAN errors (1ĝ as detailed in Ap-
pendix A) and the root square sum of the typical leading
MUSICA IASI random errors (1x̂), whereby we have con-
sidered measurement noise, uncertainties in surface emissiv-
ity, and uncertainties in the GRUAN temperatures. The MDL
and σMDL values are also written in each panel as bias (b) and
scatter (s) values, respectively. They are the same as shown
in Fig. 13.

Figure 15 resumes the capability of the MUSICA IASI
retrieval product for capturing real atmospheric H2O varia-
tions at different altitudes by showing vertical profiles of the
R2 values calculated according to Eq. (20) for the different
ensembles individually and when considering all 100 indi-
vidual comparisons together. Between 1 and 12.5 km altitude
(and when considering all comparisons of the MUSICA IASI
products together), the retrieval detects more than 90 % of the
atmospheric variations in agreement with GRUAN.

6 Summary and outlook

In this paper, we compare water vapour profiles retrieved
from IASI spectra by the MUSICA IASI retrieval with in

situ measurements from GRUAN radiosondes at three dif-
ferent reference sites representative of three different climate
zones (tropics, mid-latitudes, and polar regions). In addition,
we provide an extensive theoretical error estimation of the
retrieval’s water vapour product for the respective reference
sites considering many different uncertainty sources.

The error estimations of the MUSICA IASI water vapour
profiles at the different reference sites reveal that for the low-
ermost 3 km, the errors can be as large as 30 %. The most
important uncertainty sources are unrecognized clouds, and
uncertainties in lower tropospheric temperature and in sur-
face emissivity. Between 3 and 6 km the error can be as large
as 20 %, mainly due to middle atmospheric temperature un-
certainties and unrecognized high cirrus clouds. Above 6 km
the errors are typically smaller than 20 % and mainly caused
by uncertainties in upper tropospheric temperatures and un-
certainties in spectroscopic pressure-broadening parameters.

For the empirical validation study the remote sensing MU-
SICA IASI H2O profiles have been compared to 100 differ-
ent Vaisala RS92 radiosonde measurements that have been
processed by the GRUAN lead centre. The scatter found for
the difference between GRUAN and IASI is smaller than
21 % above 1.8 km altitude. It is slightly higher near the
ground. This is in good agreement with errors as given for the
GRUAN data and the errors as estimated for the MUSICA
IASI product. It is important to note that the coincidences
correspond to 5 different years and represent three different
climate zones, giving the study presented here a good global
representativeness. We demonstrate that the MUSICA IASI
retrieval is able to correctly capture variations in H2O pro-
files between 1 km above ground and the upper troposphere.

The comparison indicates a dry bias of the remote sens-
ing data of 20 % in the upper troposphere of the middle-
and high-latitude sites, but not at the tropical site. We find
that deficits in spectroscopic line shape modelling could ex-
plain such behaviour. For the current MUSICA IASI re-
trieval, a Voigt line shape model is assumed and HITRAN
2016 pressure-broadening parameters are used. It would be
interesting to investigate if the usage of more sophisticated
line shape models (e.g. a speed-dependent Voigt line shape
model) could reduce the upper tropospheric bias and improve
the agreement between the MUSICA IASI remote sensing
and GRUAN in situ data. For the continental sites (Linden-
berg and Sodankylä) during summer, we observe a wet bias
in the MUSICA IASI data with respect to GRUAN. Uncer-
tainties in land surface emissivity being correlated to atmo-
spheric or surface conditions (e.g. negative/positive emissiv-
ity uncertainties occurring in line with very dry/humid at-
mospheric conditions or hot/cold skin temperatures) could
explain this behaviour. It would be interesting to test if the
usage of a daily surface emissivity product instead of the
monthly mean IREMIS data (which have been used for the
retrievals presented here) improves the agreement between
MUSICA IASI and GRUAN.
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Data availability. The MUSICA IASI data presented here are
available on the MUSICA website at http://www.imk-asf.kit.
edu/english/musica.php (last access: July 2018). Please contact
Matthias Schneider for more details.

The GRUAN data are available on the GRUAN website at https:
//www.gruan.org/data/data-products/gdp/rs92-gdp-2/ (Sommer et
al., 2012).
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Appendix A: Uncertainties of GRUAN water vapour
volume mixing ratios

In order to perform a valid comparison between remote sens-
ing data and in situ measurements, the uncertainties of the in
situ data have to be considered.

GRUAN provides uncertainties for the relative humidity
(1%), for the temperature (1T ), and for the pressure (1p).
The water vapour volume mixing ratio (WVMR) is defined
as

WVMR=
%E(T )

p− %E(T )
≈
%E(T )

p
, (A1)

where E is the water vapour saturation pressure. The
GRUAN WVMR error for each individual radiosonde can
be calculated as

WVMRe =

√(
1E(T )

E(T )

)2

+

(
1%

%

)2

×WVMR. (A2)

Uncertainties in atmospheric pressure p can be neglected
when compared to the uncertainties of E(T ) and %. For
the calculation of the water vapour saturation pressure, we
use the same formula as GRUAN from Hyland and Wexler
(1983). Since E(T ) is a highly non-linear function, we esti-
mate the uncertainty of E by

1E =max {|E(T +1T )−E(T )| ;
|E(T −1T )−E(T )|} . (A3)

According to Dirksen et al. (2014) there are correlated
and uncorrelated errors. We investigate both separately. Fig-
ure A1 depicts the correlated and uncorrelated GRUAN
WVMR errors (WVMRe) in the top and bottom panels, re-
spectively. Black lines indicate the data ensembles that cover
all seasons (Manus Island and Lindenberg 2008), and red
lines the ensembles that are only representative of the sum-
mer season (Lindenberg 2007 and Sodankylä).

For a reasonable comparison, the vertically highly re-
solved GRUAN profiles have to be adjusted to the verti-
cal resolution of the remote sensing profiles (see Sect. 5.1).
This means a significant reduction of the vertical resolution
and cancelling out of the uncorrelated errors. The regrid-
ding and smoothing of the correlated errors is accomplished
as follows: first, the errors WVMRe are added to the mea-
sured WVMR data. Second, for WVMR+WVMRe we per-
form the regridding as described in Sect. 5.1; i.e. we calcu-
late the regridded version of the erroneous GRUAN WVMR
profile. The difference between the erroneous and the orig-
inal profiles (of the regridded versions) give the regridded
GRUAN WVMR uncertainty profile (1g). Above the ra-
diosonde (where we set g equal to the retrievals a priori)
we set the uncertainty to 100 %. Then we calculate an un-
certainty covariance matrix Sg using the values from the un-
certainty profile 1g and a large correlation length of 30 km
individually for the two blocks representing the data mea-
sured by the radiosonde and the data above the radiosonde.
Third, in analogy to Eq. (13) we apply the averaging kernels
to Sg and obtain the error covariance for the regridded and
smoothed GRUAN profiles as

Sĝ = (A11+A12)Sg(A11+A12)
T . (A4)

Figure A2 depicts the square root values of the diagonal
of Sĝ for the different ensembles. The uncertainties typically
increase from 5 % near the ground to 5 %–20 % at around
10 km altitude. For higher altitudes they decrease again due
to the decaying sensitivity (see averaging kernel plots of
Fig. 3).

www.atmos-meas-tech.net/11/4981/2018/ Atmos. Meas. Tech., 11, 4981–5006, 2018



5002 C. Borger et al.: Comparison of MUSICA IASI and GRUAN water vapour profiles

(a)

(b)

Figure A1. Profiles of the WVMR errors of the GRUAN radiosondes: panel (a) represents the correlated errors and panel (b) the uncorrelated
errors. The colours distinguish between the different ensembles of the retrieval set-up: black for MI and LI08, and red for LI07 and SK07.

Figure A2. Same as top panels of Fig. A1, but for the correlated errors in the regridded and smoothed GRUAN radiosonde data.
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Figure A3. Profiles of the correlated temperature errors of the GRUAN radiosondes. Above the radiosonde’s top height, we use a zonally
and monthly mean temperature climatology and assume an uncertainty of 5 K.

Appendix B: Uncertainties of GRUAN temperatures

The MUSICA IASI retrieval uses the EUMETSAT L2 tem-
peratures as the a priori atmospheric temperatures. However,
in summer 2007 EUMETSAT L2 data are not available, and
instead we use the GRUAN temperatures for the LI07 and
SK07 retrievals. In addition, for the MI and LI08 ensembles
we simulate retrievals that use the GRUAN temperatures in-
stead of the EUMETSAT L2 temperatures as the a priori at-
mospheric temperatures. For all these retrievals the uncer-
tainty in the GRUAN temperatures and not the uncertainty
in the EUMETSAT L2 temperatures has to be considered for
the error estimation.

Figure A3 depicts the correlated GRUAN temperature un-
certainty profiles after regridding the data to the MUSICA
retrieval grid points by using a triangle inverse-distance-
weighted averaging function (as for the first H2O regridding
step, see Sect. 5.1). We assume that the uncorrelated uncer-
tainties are cancelled out by this averaging. Below 20 km al-
titude the GRUAN temperature uncertainties are well within
0.3 K; i.e. they are much smaller than the uncertainties of 1–
2 K we assume for the EUMETSAT L2 temperatures. The
GRUAN nighttime temperature data have an uncertainty that
is rather constant with altitude, whereas for the daytime data
the uncertainty monotonically increases with altitude. Above
the top altitude of the radiosonde, we use a monthly and zon-
ally averaged temperature climatology (COSPAR Interna-
tional Reference Atmosphere; Rees et al., 1990) and assume
a temperature uncertainty of 5 K (this explains the instan-
taneous uncertainty increase that can be observed for some
Manus Island and Lindenberg radiosondes).
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