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Abstract. Automatic cloud type recognition of ground-based
infrared images is still a challenging task. A novel cloud
classification method is proposed to group images into five
cloud types based on manifold and texture features. Com-
pared with statistical features in Euclidean space, manifold
features extracted on symmetric positive definite (SPD) ma-
trix space can describe the non-Euclidean geometric charac-
teristics of the infrared image more effectively. The proposed
method comprises three stages: pre-processing, feature ex-
traction and classification. Cloud classification is performed
by a support vector machine (SVM). The datasets are com-
prised of the zenithal and whole-sky images taken by the
Whole-Sky Infrared Cloud-Measuring System (WSIRCMS).
Benefiting from the joint features, compared to the recent two
models of cloud type recognition, the experimental results il-
lustrate that the proposed method acquires a higher recogni-
tion rate with an increase of 2 %–10 % on the ground-based
infrared datasets.

1 Introduction

Cloud has an essential impact on the absorption, scatter-
ing, emission of atmosphere, the vertical transport of heat,
moisture and momentum (Hartmann et al., 1992; Chen et
al., 2000). Cloud cover and cloud type can affect the daily
weather and climate change through its radiation and hydro-
logical effects (Isaac and Stuart, 1996; Liu et al., 2008; Naud
et al., 2016). Therefore, accurate cloud detection and classi-
fication is necessary for meteorological observation. Nowa-
days, cloud cover changes and cloud type determination have
been available through ground-based sky imaging systems
(Souzaecher et al., 2006; Shields et al., 2003; Illingworth

et al., 2007). Different from traditional manual observation,
ground-based sky-imaging devices can obtain continuous in-
formation of sky conditions at a local scale with a high spatial
resolution.

However, due to subject factors and a rough ground-based
measuring system, the estimation of cloud cover and type
may weaken their credibility (Tzoumanikas et al., 2012).
Some attempts have been made to develop algorithms for
cloud classification of ground-based images (Buch et al.,
1995; Singh and Glennen, 2005; Cazorla et al., 2008; Heinle
et al., 2010; Ghonima et al., 2012; Taravat et al., 2014; Zhuo
et al., 2014). Wang and Sassen (2001) developed a cloud
detection algorithm by combining ground-based active and
passive remote sensing data to illustrate how extended-time
remote sensing datasets can be converted to cloud proper-
ties of concern for climate research. Li et al. (2003) pro-
posed a method for automatic classification of surface and
cloud type using Moderate Resolution Imaging Spectro-
radiometer (MODIS) radiance measurements, whose advan-
tage lied in its independence of radiance or brightness tem-
perature threshold criteria, and its interpretation of each class
was based on the radiative spectral characteristics of differ-
ent classes. Singh and Glennen (2005) adopted the k-nearest
neighbour (KNN) and neural network classifiers to identify
cloud types with texture features, including autocorrelation,
co-occurrence matrices, edge frequency, Law’s features and
primitive length. Calbó and Sabburg (2008) extracted statis-
tical texture features based on the greyscale images, pattern
features based on the spectral power function of images and
other features based on the thresholded images for recogniz-
ing the cloud type with the supervised parallelepiped clas-
sifier. Heinle et al. (2010) chose 12 dimensional features,
mainly describing the colour and the texture of images for
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automatic cloud classification, based on the KNN classifier.
Besides the statistical feature like the mean grey value of the
infrared image, Liu et al. (2011) explored another six struc-
ture features to characterize the cloud structure for classi-
fication. Zhuo et al. (2014) validated that cloud classifica-
tion may not perform well if the texture or structure fea-
tures were employed alone. As a result, texture and struc-
ture features were captured from the colour image and then
fed into a trained support vector machine (SVM) (Cristian-
ini and Shawe-Taylor, 2000) to obtain the cloud type. Dif-
ferent from traditional feature extraction, Shi et al. (2017)
proposed adopting the deep convolutional activations-based
features and provided a promising cloud type recognition re-
sult with a multi-label linear SVM model.

Automatic cloud classification has made certain achieve-
ments; however, the cloud classification of ground-based in-
frared images poses a great challenge to us. So far, little
research on cloud classification have been dedicated to the
ground-based infrared images (Sun et al., 2009; Liu et al.,
2011). Most recent methods conducted on the RGB visi-
ble images (Heinle et al., 2010; Zhuo et al., 2014; Li et al.,
2016; Gan et al., 2017) cannot directly be exploited on the
cloud type classification of infrared images due to the lack
of colour information. Compared to colour images, infrared
images can be obtained day and night continuously, which is
important for practical application and analysis.

Nowadays, the symmetric positive definite (SPD) matrix
manifold has achieved success in many aspects, such as ac-
tion recognition, material classification and image segmenta-
tion (Faraki et al., 2015; Jayasumana et al., 2015). As a repre-
sentative of SPD matrix, the Covariance Descriptor (CovD)
is a powerful tool to extract the feature of the image. It
has several advantages. Firstly, it calculates the first-order
and second-order statistics of the local patch. Secondly, it
straightforwardly fuses various features. Thirdly, it is inde-
pendent of the region size and has low dimensions. Fourthly,
by subtracting the mean feature vector, the effect of the noisy
samples is reduced to some degree. Finally, it is able to
speed up the computation in images and videos using effi-
cient methods (Tuzel et al., 2008; Sanin et al., 2013). Covari-
ance matrices naturally form a connected Riemannian mani-
fold. Although it proves effective, few investigations are pur-
sued for the task of cloud classification with manifold fea-
tures. The manifold feature vector can maintain these advan-
tages of non-Euclidean geometric space and describe the im-
age features comprehensively, so it is chosen for an attempt
on the cloud classification. In this paper, a novel cloud clas-
sification method is proposed for ground-based infrared im-
ages. Manifold features, representing the non-Euclidean ge-
ometric structure of the image features, and texture features,
expressing the image texture, are integrated for the feature
extraction.

To exhibit the classification performance, we have com-
pared the results with the other two models (Liu et al., 2015;
Cheng and Yu, 2015), which are adapted for the classifica-

tion task of infrared images. To make up for the weakness of
the local binary patterns (LBP) that cannot describe the lo-
cal contrast well, Liu et al. (2015) proposed a new descriptor
called weighted local binary patterns (WLBP) for the fea-
ture extraction. And then the KNN classifier based on the
chi-square distance was employed for cloud type recognition.
Cheng and Yu (2015) incorporated statistical features and lo-
cal texture features for block-based cloud classification. As
Cheng and Yu (2015) reported, the method combining the
statistical and uniform LBP features with the Bayesian clas-
sifier (Bensmail and Celeux, 1996) displayed the best perfor-
mance in the 10-fold cross validation (Ripley, 2005) overall.

In this paper, the data and methodology of the method are
described in Sect. 2. Section 3 focuses on the experimental
results. Conclusions are summarized in Sect. 4.

2 Data and methodology

In this section, the datasets and the methodology for cloud
classification are introduced. The proposed method contains
three main steps: pre-processing, feature extraction and clas-
sification. The framework is illustrated in Fig. 1.

2.1 Dataset and pre-processing

The datasets include the zenithal images and whole-sky im-
ages, which are gathered by the Whole-Sky Infrared Cloud
Measuring System (WSIRCMS) (Liu et al., 2013). The
WSIRCMS is a ground-based passive system that uses an
uncooled microbolometer detector array of 320× 240 pixels
to measure downwelling atmospheric radiance in 8–14 µm
(Liu et al., 2011). A whole-sky image is obtained after com-
bining the zenithal image and other images at eight differ-
ent orientations. As a result, the zenithal image has a size of
320× 240 pixels while the whole-sky image is of 650× 650
pixels. The datasets are provided by National University of
Defense Technology in Nanjing, China.

It is true that the clear sky background radiance in 8–
14 µm varies with time and zenith angle. The images of the
datasets have been pre-processed in the consideration of this
important factor. The clear sky radiance threshold in each
image is calculated using the radiation transfer model (Liu
et al., 2013). The real radiance R at each pixel in each im-
age is converted to the grey value Gpixel between [0,255]
with Gpixel = R/(Rtemp−Rclear)× 255, where Rclear is the
corresponding clear sky radiance threshold and Rtemp is the
radiance corresponding to the real-time environment temper-
ature. As a result, the effects of the clear sky background
brightness temperature can be ignored, which means that this
factor has little influence on the feature extraction of the im-
ages.

The cloud images used in the experiment are selected
with the help of two professional meteorological observers
with many years of observation experiences. The selection
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Table 1. The sky condition classes and corresponding description.

Sky condition classes Description Cloud types

Stratiform clouds Horizontal, layered clouds that stretch out across the sky like a blanket St, As, Cs
(Sc, Ac, Cb, Ns)

Cumuliform clouds Thick clouds that are puffy in appearance, like large cotton balls Cu, Cb
Waveform clouds Thin or thick clouds occurring in sheets or patches with wavy, Sc, Ac, Cc

rounded masses or rolls
Cirriform clouds Thin clouds; very wispy and feathery looking Ci
Clear sky Clear No clouds

Figure 1. System framework.

premise is that the chosen images should hold high visual
quality and can be recognized by visual inspection. If an im-
age is vague, it is hard for experts to justify its type. For the
algorithm, it is difficult to extract effective features of a vague
image, not to mention recognizing its cloud type. All infrared
cloud images are labelled to construct the training set and
testing set. To guarantee confidence in the golden-standard
method, only images labelled as the same by two meteoro-
logical observers are finally chosen as the dataset used in this
study. Different from traditional cloud classification by ob-
servers, automatic cloud classification by the devices needs a
new criterion for recognition. According to the morphology
and generating mechanism of the cloud, the sky condition is
classified into five categories in this study (Sun et al., 2009):
stratiform clouds, cumuliform clouds, waveform clouds, cir-
riform clouds and clear sky. The sky conditions and their cor-
responding descriptions are as shown in Table 1.

The zenithal dataset used in this study is selected from
the historical dataset to assess the performance of the al-
gorithm. To guarantee the reliability of true label of each
image, the images without mixed cloud types are selected.
The typical samples from each category are demonstrated in
Fig. 2. As listed in Table 2, the zenithal dataset is comprised
of 100 cloud images in each category.

The whole-sky dataset is obtained during July to October
in 2014 at Changsha, China. As the whole-sky image is ob-
tained by combining the nine sub-images at different orien-
tations, the division rules of the whole-sky dataset remain
the same as that of the zenithal dataset. The whole-sky sam-
ples from each category are exhibited in Fig. 3. As listed in

Table 2. The numbers of each class on two datasets.

Sky condition classes Zenithal Whole-sky

Stratiform clouds 100 246
Cumuliform clouds 100 240
Waveform clouds 100 239
Cirriform clouds 100 46
Clear sky 100 88
Total 500 859

Table 2, the number of cases with stratiform clouds, cumuli-
form clouds, waveform clouds, cirriform clouds and clear sky
is 246, 240, 239, 46 and 88, respectively.

As Fig. 4 shows, a pre-processing mask is provided on
the whole-sky images, which is used to extract the region
of interest (ROI) from the images, which are the areas of the
clouds within the circle rather than those parts outside of the
circle. Different from the whole-sky images, all parts of the
zenithal images are ROI. Thus, we implement the feature ex-
traction directly on the original zenithal images.

2.2 Feature extraction

In addition to the manifold features proposed in this work,
the texture features are also combined. The manifold features
of the ground-based infrared image are extracted on the SPD
matrix manifolds, and after that, they are mapped into the
tangent space to form a feature vector in Euclidean space.
The texture features represent the statistical information in
Euclidean space; on the contrary, the manifold features de-
scribe the non-Euclidean geometric characteristics of the in-
frared image.

2.2.1 Texture features

In this paper, the Grey Level Co-occurrence Matrix (GLCM)
is used to extract the texture features, including energy, en-
tropy, contrast and homogeneity (Haralick et al., 1973). Each
matrix element in the GLCM represents the joint probability
occurrence p(i,j) of pixel pairs with a defined direction θ
and a pixel distance d , having grey level values i and j in the
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Figure 2. Cloud samples from the zenithal dataset: (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) cirriform clouds
and (e) clear sky.

Figure 3. Cloud samples from the whole-sky dataset: (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) cirriform clouds
and (e) clear sky.

Figure 4. The mask of the whole-sky images. The area within the
circle is the ROI, and the area outside the circle is not the ROI.

image.

GLCM= (1)
p(0,0) p(0,1) p(0,2) . . . p(0,k− 1)
p(1,0) p(1,1) p(1,2) . . . p(1,k− 1)
.
.
.

.

.

.
.
.
. . . .

.

.

.
p(k− 1,0) p(k− 1,1) p(k− 1,2) . . . p(k− 1,k− 1)


k×k

The energy measures the uniformity and texture roughness
of the grey level distribution:

energy=
k−1∑
i=0

k−1∑
j=0

p(i,j)2. (2)

The entropy is a measure of randomness of grey level distri-
bution:

entropy=−
k−1∑
i=0

k−1∑
j=0

p(i,j)log2p(i,j). (3)

The contrast is a measure of local variation of grey level dis-
tribution:

contrast=
k−1∑
i=0

k−1∑
j=0
(i− j)2p(i,j)2. (4)

The homogeneity measures the closeness of the distribution
of elements in the GLCM to the GLCM diagonal:

homogeneity=
k−1∑
i=0

k−1∑
j=0

p(i,j)

1+ |i− j |
. (5)

As the number of intensity levels k increases, the computa-
tion of the GLCM increases strongly. In this work, k is set
as 16 and then the texture features are obtained by calcu-
lating four GLCMs with d = 1 and θ = 0, 45, 90 and 135◦,
respectively. To alleviate the complexity, reduce the dimen-
sion and keep rotation invariance, four mean features of four
GLCMs with θ = 0, 45, 90 and 135◦ are obtained as the final
texture features. In the experiments, we find that these tex-
ture features are significant for the cloud classification of the
ground-based infrared image.

2.2.2 Manifold features

The manifold features are attained by two steps: computing
the regional CovD and mapping the CovD into its tangent
space to form a feature vector.
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Step 1: Computing the regional CovD

Suppose the image I is of the size W ×H , its d-dimensional
features containing greyscale and gradient at each pixel are
computed, which compose the feature image F , whose size
is W ×H × d:

F (x,y)= f (I,x,y), (6)

where the feature mapping f is defined as follows:

f =

[
I(x,y) |Ix |

∣∣Iy∣∣√|Ix |2+ ∣∣Iy∣∣2 |Ixx | ∣∣Iyy∣∣]T . (7)

In which (x,y) denotes the location, I(x,y) denotes the
greyscale. |Ix |,

∣∣Iy∣∣, |Ixx | and
∣∣Iyy∣∣ represent the first and sec-

ond order derivative in the direction of x and y at each pixel,

respectively.
√
|Ix |2+

∣∣Iy∣∣2 denotes the modulus of gradient.
For the feature image F , supposing it contains n=W ×

H points of d-dimensional features {fk,k = 1,2, . . .,n}. Its
CovD is a d × d covariance matrix, computed by Eq. (8):

C =
1

n− 1

∑n

k=1
(fk −µ)(fk −µ)

T , (8)

where µ= 1
n

∑n
k=1fk , which represents the feature mean

vector.
The CovD can fuse multiple dimensional features of the

image and express the correlations between different fea-
tures. Besides, as the CovD is symmetric, it is only d(d+1)/2
dimensional. If we convert the CovD into a feature vector to
describe the image, its dimension is n×d , which needs a high
computation cost for cloud classification.

Step 2: Obtaining the feature vector by mapping the
CovD into its tangent space

Generally speaking, the manifold is a topological space that
is locally equivalent to a Euclidean space. The differential
manifold has a globally defined differential structure. Its tan-
gent space TXM is a space formed by all possible tangent
vectors at a given point X on the differential manifold. For
the Riemannian manifold M , an inner product is defined in
its tangent space. The shortest curve between two points on
the manifold is called the geodesic and the length of the
geodesic is the distance between two points.

All SPD matrices form a Riemannian manifold. Sup-
pose Sd is a set of all n× n real symmetric matrices: Sd

={
A ∈M(d) : AT = A

}
, where M(d) represents the set of all

d × d matrices, so that Sd
++ =

{
A ∈ Sd

: A> 0
}

is the set of
all d×d SPD matrices, which construct a d(d+1)/2 dimen-
sional SPD manifold. According to the operation rules of the
matrix, the set of the real symmetric matrix is a vector space
while the real SPD matrix space is a non-Euclidean space. A
Riemannian metric should be given to describe the geomet-
ric structure of the SPD matrix and to measure the distance
of two points on Sd

++.

Geodesics on the manifold are related to the tangent
vectors in the tangent space. Two operators, exponential
map expX (·) : TXM→M and the logarithm map logX (·)=
exp−1

X (·) :M→ TXM , are defined over differentiable man-
ifolds to switch between the manifold and its tangent space
at X. As illustrated in Fig. 5, the tangent vector v is mapped
to the point Y on the manifold through the exponential map.
The length of v is equivalent to the geodesic distance be-
tween X and Y , due to the property of the exponential map.
Conversely, a point on the manifold is mapped to the tangent
space TXM through the logarithm map. As point X moves
along the manifold, the exponential and logarithm maps
change. The details can be referred in Harandi et al. (2012).

For Sd
++, the logarithm and exponential maps are given by:

logX (Y )=X
1
2 log

(
X−

1
2 YX−

1
2

)
X

1
2 , (9)

expX (y)=X
1
2 exp

(
X−

1
2 yX−

1
2

)
X

1
2 , (10)

where log(·) and exp(·) are the matrix logarithm and expo-
nential operators, respectively. For SPD matrices, they can
be computed through singular-value decomposition (SVD).
If we let diag(λ1,λ2, . . .,λd) be a diagonal matrix formed
from real values λ1,λ2, . . .,λd on diagonal elements and
A= Udiag(λi)UT be the SVD of the symmetric matrix A,
then

log(A)=
∞∑
r=1

(−1)r−1

r
(A− I)r = Udiag(ln(λi))UT , (11)

exp(A)=
∞∑
r=0

1
r!

Ar = Udiag(exp(λi))UT , (12)

where I is an identity matrix on manifolds.
The manifold can be embedded into its tangent space at

identity matrix I. Thus, based on the bi-invariant Rieman-
nian metric (Arsigny et al., 2008), the distance between two
SPD matrices A, B is d (A,B)= ‖log(A)− log(B)‖2, where
log(·) denotes the matrix logarithm operator. As symmetric
matrices (equivalently tangent spaces) form a vector space,
the classification tools in Euclidean space (SVM, KNN, etc.)
can be seamlessly employed to deal with the recognition
problem.

The logarithmic operator is valid only if the eigenvalues
of the symmetric matrix are positive. When no cloud is ob-
served in the clear sky, the CovD of the image features could
be non-negative definite, and in this case it needs to be con-
verted to a SPD matrix. We can formulate it as an optimiza-
tion problem (Harandi et al., 2015):

A∗ = argminA‖C−A‖F , s.t.A+AT > 0, (13)

where C is a CovD and A∗ is the closest SPD matrix to C.
For a SPD matrix A, its log-Euclidean vector representa-

tion, a ∈ Rm, m= d(d + 1)/2, is unique and can be repre-
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Figure 5. Illustration of the tangent space TXM at point X on a
Riemannian manifold. A SPD matrix can be interpreted as point X
in the space of SPD matrices. The tangent vector v can be obtained
through the logarithm map, i.e. v = logX(Y ). Every tangent vector
in TXM can be mapped to the manifold through the exponential
map, i.e. expX(v)= Y . The dotted line shows the geodesic starting
at X and ending at Y .

sented as a = Vec(log(A)). Let B= log(A), B ∈ Sd and

B=


b1,1 b1,2 b1,3 . . . b1,d
b2,1 b2,2 b2,3 . . . b2,d
...

...
... . . .

...

bd,1 bd,2 bd,3 . . . bd,d


d×d

, (14)

which lies in Euclidean space. As B is symmetric, we can
rearrange it into a vector by vectorizing its upper triangular
matrix:

a = Vec(B) (15)

=

[
b1,1,
√

2b1,2, · · ·,
√

2b1,d ,b2,2,
√

2b2,3, · · ·,bd,d

]T
.

Vector a is defined as the manifold features. As f is the 6-
dimensional feature mapping in the experiment, the mani-
fold feature vector a to represent the cloud image is 6×
(6+ 1)/2= 21 dimensions. The mapped feature vector can
reflect the characteristics of its corresponding SPD matrix
on matrix manifolds. Thus, manifold features can describe
the non-Euclidean property of the infrared image features to
some degree.

2.2.3 Combining manifold and texture features

As described in Sect. 2.2.1 and 2.2.2, manifold and tex-
ture features can be extracted and integrated to represent the
ground-based infrared images. For an image, its four features
including energy, entropy, contrast and homogeneity from
GLCM, express its texture, while 21-dimensional manifold
features describe the non-Euclidean geometric characteris-
tics. The manifold and texture features are combined to form
a feature vector to represent the image. Thus, the joint fea-
tures of the infrared image have a total of 25 dimensions.

2.3 Classification

2.3.1 Support vector machine

The classifier used in this paper is the SVM (Cristianini and
Shawe-Taylor, 2000), which exhibits prominent classifica-
tion performance in the cloud type recognition experiments
(Zhuo et al., 2014; Li et al., 2016; Shi et al., 2017). In ma-
chine learning, SVMs are supervised learning models. An
SVM model is a representation of the examples as points in
the reproducing kernel Hilbert space, mapped so that the ex-
amples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped
into that same space and predicted to belong to a category
based on which side of the gap they fall. As Fig. 6 shows,
given a set of two-class training examples (denoted by× and
o), the key problem is to find the optimal hyperplane to do
the separation: wT x+b = 0, where w is a weight vector and
b is a bias, and an SVM training model with the largest mar-
gin 2/

√
wTw is built. The support vectors are the samples on

the dotted lines. The optimization classification hyperplane is
determined by the solid line. The test examples are assigned
to one category or the other based on this model, making it
a non-probabilistic binary linear classifier. In this work, we
apply a simple linear function as the mapping kernel, which
is validated by the cloud classification experiments.

2.3.2 Multi-class support vector machine method

For a multi-class task, one binary SVM classifier is con-
structed for every pair of distinct classes, and so, all together
c(c− 1)/2 binary SVM classifiers are constructed. For an
unknown-type sample, it will be input into these binary clas-
sifiers and each classifier makes its vote, thus c(c−1)/2 inde-
pendent output labels are obtained. The most frequent label
is the sample’s type. The variable c is 5 in this paper and the
final result is determined by the voting policy.

3 Experiments and discussions

In this section, we validate which features are chosen and
report experimental results to assess the performance of the
proposed cloud classification method. Different from a de-
terministic case, the training samples of the experiments are
chosen randomly. The effects of the proposed features are
first tested by conducting the 10-fold cross validation (Li et
al., 2016; Gan et al., 2017) 50 times on two datasets, with
average values taken as the final results. In the 10-fold cross
validation, each dataset is divided into 10 subsets with the
same size at random. One single subset is used for validation
in turn and the other nine parts are taken as the training set.
The results of 10-fold cross validation with different features
are given in Table 3. As Table 3 illustrates, the overall ac-
curacy of texture, manifold and combined features achieves
83.49 %, 96.46 % and 96.50 % on the zenithal dataset, and
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Figure 6. The decision boundary of support vector machine with
the largest margin. × and o denote two-class training examples.
wT x+ b = 0 is the optimal hyperplane to do the separation, where
w is a weight vector and b is a bias, and an SVM training model
with the largest margin 2/

√

wTw is built. The support vectors are
the samples on the dotted lines. The optimization classification hy-
perplane is determined by the solid line.

78.01 %, 82.38 % and 85.12 % on the whole-sky dataset, re-
spectively. It can be seen that the texture or manifold fea-
tures alone do not achieve a better performance than the joint
features, which not only inherit the advantage of the texture
features, but also own the characteristic of manifold features.
On the whole, the method using the joint features performs
best in the cross validation.

Naturally, combined features are used for the cloud type
recognition. In the experiment, each dataset is grouped into
the training set and testing set. The training set is selected
randomly from each category in accordance with a certain
proportion, 1/10, 1/2 or 9/10, and the remaining part forms
the testing set. Each experiment is repeated 50 times to re-
duce the accidental bias and the average accuracy is regarded
as the final results of classification to evaluate the perfor-
mance of the method.

To exhibit the recognition performance of the proposed
method, we also compare with the other two models (Liu
et al., 2015; Cheng and Yu, 2015) to assess its performance
in this experiment. Liu’s model employs the WLBP feature
with the KNN classifier based on the chi-square distance
while Cheng’s method adopts the statistical and uniform LBP
features with the Bayesian classifier. Note that we extract
the statistical features from the greyscale images rather than
from the RGB images so that the statistical features only have
8 dimensions, as a result, without extra colour information
provided, both of the two methods are adaptable to the in-
frared images.

Table 3. The 10-fold cross validated classification accuracy (%) on
two datasets. The best results are labelled in bold font.

Zenithal Whole-sky

Texture features 83.49 78.01
Manifold features 96.46 82.38
Combined features 96.50 85.12

3.1 Results of the zenithal dataset

The first experiment is performed on the zenithal dataset. Ta-
ble 4 reports the overall recognition rates of the proposed
method and the other methods. The proposed method at-
tains the best results, with at least 2.5 % improvement over
Liu’s method and over 9.5 % higher than Cheng’s method.
Meanwhile, the proposed method demonstrates a more sta-
ble and more superior performance than the other two meth-
ods, even when 1/10 of the dataset is treated as the train-
ing set. In this case, the proposed method is up to 90.85 %
on the overall accuracy while the other two methods achieve
81.30 % and 81.64 %, respectively. That means discrimina-
tive features used for classification can be gained even with
what would normally be regarded as limited training data.
Although only three cases are given when the fractions of
training set are 1/10, 1/2 and 9/10, they can represent most
cases. In general, with the increase in the number of train-
ing samples, the overall accuracy of testing samples will in-
crease until it holds stable, which is in line with the results in
Table 4. As a result, as more representative images are used
for training, there is no doubt that the recognition rate will be
improved.

In Fig. 7, the classification results of the proposed method
are demonstrated in the form of the confusion matrix (Zhuo
et al., 2014; Liu et al., 2015; Li et al., 2016) when 1/2 of
the dataset constructs the training set while the rest 1/2 is
used for testing. In the confusion matrix, each row of the
matrix represents an actual class while each column repre-
sents the predicted class given by SVM. For example, the
element in the second row and third column is the percent-
age of cumuliform clouds misclassified as waveform clouds.
Therefore, the recognition rate for each class is in the di-
agonal of the matrix. The discrimination rate of stratiform
clouds is up to 100 %, which indicates that stratiform clouds
have the most significant features to be distinguished among
five cloud types. Likewise, the results of the other four cloud
types achieve over 93 %. It is shown that a rather high ac-
curacy of each cloud type is reached, which means the pro-
posed method performs well in classifying the ground-based
infrared zenithal images on the whole when compared to the
analysis of meteorological experts.
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Table 4. The overall classification accuracy (%) on the zenithal
dataset. 1/10, 1/2 and 9/10 are the certain proportions of the train-
ing set selected randomly from each category, and the rest corre-
spondingly forms the testing set. The best results are labelled in
bold font.

1/10 1/2 9/10

Liu’s method 81.64 92.24 93.48
Cheng’s method 81.30 81.92 81.32
Proposed method 90.85 95.98 96.36

Figure 7. Confusion matrix (%) on the zenithal dataset. (1/2 for
training and the overall accuracy is 95.98 %.)

3.2 Results of the whole-sky dataset

The second experiment is performed on the whole-sky
dataset, which is more challenging because a larger inner-
class difference exists than that of the zenithal dataset. The
experimental configuration retains the same in Sect. 3.1.
Table 5 lists the results of different methods. It is illus-
trated that the proposed method gains the overall accu-
racy of 78.27 %, 83.54 % and 85.01 % as the proportion
of the training set varies. In comparison, Liu’s method
achieves 73.58 %, 80.55 % and 81.31 % while Cheng’s
method achieves 66.99 %, 67.36 % and 68.18 %, correspond-
ingly. Comparing to the other two methods, the experimental
results indicate the effectiveness of the proposed method with
an obvious improvement in the accuracy. Similarly, the cases
where the fractions of data reserved for training constitute
1/10, 1/2 and 9/10 of the total, can represent most cases of
classification and are chosen to represent a wide range of pos-
sible training scenarios. Generally, the rise in the number of
training samples makes the overall accuracy improve, which
is in line with the results in Table 5. In a nutshell, a training
set with more representative images can further promote the
classification accuracy.

Table 5. The overall classification accuracy (%) on the whole-sky
dataset. 1/10, 1/2 and 9/10 are the certain proportions of the train-
ing set selected randomly from each category, and the rest corre-
spondingly forms the testing set. The best results are labelled in
bold font.

1/10 1/2 9/10

Liu’s method 73.58 80.55 81.31
Cheng’s method 66.99 67.36 68.18
Proposed method 78.27 83.54 85.01

Figure 8. Confusion matrix (%) on the whole-sky dataset. (1/2 for
training and the overall accuracy is 83.54 %.)

Figure 8 displays the confusion matrix of the whole-sky
dataset when 1/2 for training is used. The number of each
category in the training set is 123, 120, 120, 23 and 44, re-
spectively and the remaining part is treated as the testing set.
It is demonstrated that stratiform clouds and clear sky pos-
sess obvious characteristics for classification while cumuli-
form, waveform and cirriform clouds pose a great challenge
for a high accuracy of classification. Cirriform clouds are
likely to be confused with the clear sky and about 15.22 %
of cirriform cloud images are misclassified as the clear sky
in the experiment. In the whole-sky image, when it is on the
condition of cirriform clouds, the area of cirriform clouds
may be just a fraction of the whole sky, making it hard to
be distinguished correctly. Furthermore, multiple cloud types
could exist in the whole-sky condition, which may result in a
relatively low accuracy of the single-type classification, like
cumuliform, waveform and cirriform clouds.

There are some misclassifications, just as demonstrated in
Fig. 9. Figure 9a shows that stratiform clouds are recognized
as waveform clouds. It can be seen that the cloud base has
low fluctuation and makes it similar to the waveform cloud.
Figure 9b shows that cumuliform clouds are recognized as
waveform clouds. We can distinguish it as waveform clouds
by the shape but the strong vertical motion of cumuliform
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Figure 9. Selected misclassified whole-sky images: (a) stratiform clouds to waveform clouds, (b) cumuliform clouds to waveform clouds,
(c) cumuliform clouds to cirriform clouds, (d) waveform clouds to cumuliform clouds and (e) cirriform clouds to cumuliform clouds.

clouds makes it hard to differ from waveform clouds. Fig-
ure 9c shows that cumuliform clouds are recognized as cirri-
form clouds. In this image, besides cumuliform clouds,few
cirriform clouds can also be found. Figure 9d shows that
waveform clouds are recognized as cumuliform clouds. It can
be seen that both waveform and cumuliform clouds coexist
in the sky. Figure 9e shows that cirriform clouds are recog-
nized as cumuliform clouds. It is concluded that the whole-
sky dataset is more complicated than the zenithal dataset as
the weather conditions change.

4 Conclusions

In this paper, a novel cloud classification method of the
ground-based infrared images, including the zenithal and
whole-sky datasets, is proposed. Besides the texture features
computed from the GLCM, manifold features obtained from
the SPD matrix manifold are combined together. With the
joint features, the proposed method can improve the recog-
nition rate of the cloud types. On one hand, the joint fea-
tures can inherit the advantages of the statistical features,
which represent texture information in Euclidean space; on
the other hand, the manifold features on the matrix mani-
fold can describe the non-Euclidean geometric structure of
the image features and thus the proposed method can ben-
efit from it for a high classification precision. The CovD
is calculated by extracting 6-dimensional features including
greyscale, first-order and second-order gradient information,
and the mean values are subtracted from the feature vectors,
which may improve the recognition performance to some ex-
tent, as it can remove the noises of the infrared images. The
manifold feature vector is produced by mapping the SPD ma-
trix into its tangent space and afterwards the combined fea-
ture vector is adopted for cloud type recognition with SVM.
With different fractions that the training set occupies, it is
validated that in most cases the proposed method outper-
forms the other two methods (Liu et al., 2015; Cheng and Yu,
2015). As a whole, the improvement of the proposed method
is between 2 % and 10 %. To some degree, it may not be a
great improvement, but we have validated that the introduc-
tion of manifold features is effective and can achieve some

success, it is worthy doing more work in this field to promote
its development.

In future work, more suitable image features like Gabor or
wavelet coefficients (Liu and Wechsler, 2002) can be incor-
porated into the SPD matrix and the classification would be
performed directly on the manifolds to improve the recog-
nition rate further. Besides, feature extraction using a deep
learning method such as convolutional neural networks can
be taken into account to increase the classification accu-
racy. Furthermore, the addition of the brightness temperature,
or the height information obtained from the laser ceilome-
ter, might be helpful for the improvement of the cloud type
recognition accuracy. It is found that the proposed method is
effective to satisfy the requirement of the cloud classification
task on both zenithal and whole-sky datasets. The complex
sky condition with multiple cloud types should be our main
concern in the next work.
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