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Abstract. This paper describes the latest version of the al-
gorithm MAIAC used for processing the MODIS Collection
6 data record. Since initial publication in 2011-2012, MA-
IAC has changed considerably to adapt to global processing
and improve cloud/snow detection, aerosol retrievals and at-
mospheric correction of MODIS data. The main changes in-
clude (1) transition from a 25 to 1 km scale for retrieval of the
spectral regression coefficient (SRC) which helped to remove
occasional blockiness at 25 km scale in the aerosol optical
depth (AOD) and in the surface reflectance, (2) continuous
improvements of cloud detection, (3) introduction of smoke
and dust tests to discriminate absorbing fine- and coarse-
mode aerosols, (4) adding over-water processing, (5) gen-
eral optimization of the LUT-based radiative transfer for the
global processing, and others. MAIAC provides an inter-
disciplinary suite of atmospheric and land products, includ-
ing cloud mask (CM), column water vapor (CWV), AOD
at 0.47 and 0.55 um, aerosol type (background, smoke or
dust) and fine-mode fraction over water; spectral bidirec-
tional reflectance factors (BRF), parameters of Ross-thick Li-
sparse (RTLS) bidirectional reflectance distribution function
(BRDF) model and instantaneous albedo. For snow-covered
surfaces, we provide subpixel snow fraction and snow grain
size. All products come in standard HDF4 format at 1km
resolution, except for BRF, which is also provided at 500 m
resolution on a sinusoidal grid adopted by the MODIS Land
team. All products are provided on per-observation basis in
daily files except for the BRDF/Albedo product, which is re-
ported every 8 days. Because MAIAC uses a time series ap-
proach, BRDF/Albedo is naturally gap-filled over land where
missing values are filled-in with results from the previous re-
trieval. While the BRDF model is reported for MODIS Land

bands 1-7 and ocean band 8, BRF is reported for both land
and ocean bands 1-12. This paper focuses on MAIAC cloud
detection, aerosol retrievals and atmospheric correction and
describes MCD19 data products and quality assurance (QA)
flags.

1 Introduction

Simple and fast swath-based processing with a Lambertian
surface model is the basis of the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Dark Target (DT) (Levy et
al., 2013) and VIIRS (Visible Infrared Imaging Radiome-
ter Suite; Jackson et al., 2013) aerosol retrievals and atmo-
spheric correction (AC) (Vermote and Kotchenova, 2008). In
swath data, the satellite footprint and its location are orbit
dependent and change with scan angle, making it difficult to
characterize the surface BRDF. The above algorithms rely on
prescribed spectral surface reflectance (SR) ratios to make
aerosol retrievals. The SR ratios represent statistically av-
erage relationships with relatively large variance. When the
surface brightness increases and sensitivity of the top of at-
mosphere (TOA) radiance to aerosols decreases, this lack of
accurate knowledge of surface reflectance becomes a major
issue.

The Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) algorithm uses a physical atmosphere—surface
model where the model parameters are defined from mea-
surements (Lyapustin et al., 2011a, b, 2012a, b) with mini-
mal assumptions. Instead of swath-based processing, we start
with gridding MODIS L1B measurements to a fixed 1 km
grid and with accumulating a time series of data for up to
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16 days using a sliding window technique. This allows us
to observe the same grid cell over time, helping to separate
atmospheric and surface contributions with the time series
analysis and characterize surface bidirectional reflectance
distribution function (BRDF) using multi-angle observations
from different orbits. Besides BRDF retrieval, the fixed sur-
face representation (grid) allows us to characterize and store
unique surface spectral, spatial, thermal, etc. signatures for
each 1km grid cell, helping to increase the accuracy of the
entire processing, from cloud and snow detection to aerosol
retrievals and atmospheric correction (AC).

Since its introduction in 2011-2012, we have significantly
changed and improved several key parts of MAIAC, namely
cloud and snow detection, characterization of the spectral re-
gression coefficient (SRC) and aerosol retrieval, and trans-
formed the algorithm from regional to global. The inter-
mediate versions of MAIAC were continuously tested by
the land and air quality communities using our processing
of MODIS data with the NASA Center for Climate Sim-
ulations (NCCS) and product release via NCCS ftp portal
(ftp://maiac @dataportal.nccs.nasa.gov/DataRelease, last ac-
cess 9 October 2018). Analysis by Hilker et al. (2012, 2014,
2015), Maeda et al. (2016) and others showed a dramatic
(up to a factor of 3-5) increase in the accuracy of MAIAC
surface reflectance compared to MODIS standard products
MOD09, MODO035 over the tropical Amazon. Since 2014,
all major studies of Amazon tropical forests, which used
MODIS data, relied on MAIAC processing (e.g., Saleska et
al., 2016; Lopes et al., 2016; Alden et al., 2016; Guan et al.,
2015; Bi et al., 2015, 2016; Jones et al., 2014; Maeda et al.,
2017; Wagner et al., 2017). Recently, Chen et al. (2017) re-
ported an improvement in the leaf area index (LAI) retrievals
with the MODIS LAI/FPAR algorithm when using MAIAC
instead of standard MODIS MODO9 input. A high accuracy,
high 1 km spatial resolution and high retrieval coverage made
MAIAC aerosol optical depth (AOD) a focus of numerous air
quality studies, e.g., Chudnovsky et al. (2013), Kloog et al.
(2014), Just et al. (2015), Di et al. (2016), Stafoggia et al.
(2016), Tang et al. (2017) and Xiao et al. (2017) to name a
few. Currently published validation studies (Martins et al.,
2017; Superczynski et al., 2017) show a high MAIAC AOD
accuracy over American continents and an improved accu-
racy and coverage over North America compared to the op-
erational VIIRS algorithm (Superczynski et al., 2017). An
emerging comparative aerosol validation analysis over North
America (Jethva et al., 2018) and southern Asia (Mhawish
et al., 2018) shows that MAIAC has a comparable or better
accuracy than the DT algorithm over dark surfaces and gen-
erally improves accuracy over the Deep Blue (DB) algorithm
(Hsu et al., 2013) over bright surfaces.

The MAIAC MODIS Collection 6 (with enhanced calibra-
tion (C6+), which added polarization correction of MODIS
Terra, removed residual trends of both Terra and Aqua, and
cross-calibrated Terra to Aqua (Lyapustin et al., 2014b) pro-
cessing is ongoing on the MODIS Adaptive Processing Sys-
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tem (MODAPS). It is expected to be completed in the spring
of 2018, creating a new MODIS product MCD19 accessible
via the Land Product Distributed Active Archive Center (LP
DAAC). MAIAC offers an interdisciplinary suite of prod-
ucts for the Land, Atmosphere, Cryosphere and Applications
communities including cloud/snow mask over land, high spa-
tial resolution (1 km), aerosol optical depth and type, surface
bidirectional reflectance factors (BRF) and BRDF, and snow
grain size and subpixel snow fraction for the snow-covered
regions.

The goal of this paper is to give a systematic description
of the MAIAC Collection 6 algorithm and its products, along
with current limitations, and provide quality assurance dis-
cussion and recommendations for use. For practical reasons,
here we focus on MAIAC cloud detection, aerosol retrieval
and atmospheric correction over land; snow detection, over-
water processing and smoke plume height retrieval will be
described elsewhere. This paper is structured as follows: an
overview of MAIAC processing is given in Sect. 2; Sect. 3
describes the MATAC radiative transfer model and lookup ta-
bles followed by MAIAC processing components, including
cloud/snow detection and aerosol-type selection (Sect. 4),
determination of SRC (Sect. 5) and aerosol retrieval pro-
cedures (Sects. 6-7), shadow detection (Sect. 8) and atmo-
spheric correction (Sect. 9). Sect. 10 describes the MAIAC
(MCD19) product and its quality assurance (QA) specifica-
tion.

2 Overview of MAIAC processing

The block diagram of MAIAC processing over land, which
implements a sliding window algorithm, is shown in Fig. 1:

1. The received L1B data are gridded (Wolfe et al., 1998),
split into 1200 km tiles and placed in a queue with the
previous data. We are using the area-weighted grid-
ding method, which achieves better agreement with
the ground tower data over heterogeneous surfaces
compared to the nearest-neighbor resampling method
(Zhang et al., 2014). The 1 km MODIS bands are grid-
ded to 1km resolution, the 500 m bands (B1-B7) are
gridded to 1km and 500 m and 250 m bands (B1-B2)
are gridded to 250 m. The 500 and 250 m bands are
nested in the 1km grid. For convenience, here is the
list of MODIS bands B1-B12, where MAIAC reports
BRF at 1 km: 0.645 (B1), 0.856 (B2), 0.465 (B3), 0.554
(B4), 1.242 (BS), 1.629 (B6), 2.113 (B7), 0.412 (BY),
0.442 (B9), 0.487 (B10), 0.530 (B11), 0.547 (B12).

MAIAC uses different spatial scales for processing, e.g.,
1 km grid cells (or pixels), 25km blocks and 150km
mesoscale areas. Specialized C++ classes and struc-
tures handle processing in different time—space scales.
The queue (Q) (Lyapustin et al., 2012a) holds between
4 (at the poles) and 16 (at the equator) days of imagery.

www.atmos-meas-tech.net/11/5741/2018/
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Figure 1. Block diagram of MAIAC algorithm.

For every observation, MODIS data are stored as layers
for the required bands along with the retrieval results. A
dedicated Q memory accumulates ancillary information
for each 1 km grid cell for cloud/snow detection, aerosol
retrieval and AC. Q memory stores the following data at
1 km resolution: the reference clear-sky image for bands
B1, B3, B7 (see Lyapustin et al., 2008); spectral BRDF
for bands B1-B8; BRDF-normalized (to nadir view and
solar zenith angle, SZA = 45 °) bidirectional reflectance
factors BRF,, for bands B1, B2, B7; 2 x 2standard devi-
ation of 500 m pixels for B1, B3; normalized difference
vegetation index (NDVI); 11 pm brightness temperature
(Tbyy, band 31); 4pum (B22)-11um (B31) (Tbs_1; =
Tbs —Tby1) and 11-12pum (B32) (Tbyj_12 = Tbyy —
Tbi;) spectral thermal contrasts. Below, we will use no-
tation q.Tby; for the queue brightness temperature as an
example.

Prior to processing, we compute the covariance of the
latest measurements with the reference clear-sky image
(Lyapustin et al., 2008) in bands B3, B1 and BS5 for
25 x25km? blocks. When covariance is high, indicating
high probability for the confidently clear conditions, we
later set the corresponding flag q.iFlag_HighCov =1
used in the cloud detection (see test C4, Sect. 4.1).

. The column water vapor is computed for the last tile
using MODIS near-IR channels B17-B19 located in the
water vapor absorption band 0.94 um (Lyapustin et al.,
2014a). This algorithm is a modified version of Gao and
Kaufman (2003). It is fast, unbiased and has an average
accuracy of £(5-15) % over the land surface (ATBD;
Martins et al., 2017), whereas the standard NIR CWV
product (MODO5) has a known wet bias of 5 %—-20 %
(e.g., Albert et al., 2005; Prasad and Singh, 2009; Liu et
al., 2013).
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Column water vapor is retrieved over cloud-free land
pixels and over clouds. In the latter case, it represents
water vapor above the cloud.

. The cloud mask box includes dynamic land-water—

snow classification, determination of aerosol type
(background vs. smoke or dust) and cloud detection.
The smoke/dust test is based on the enhanced short-
wave absorption and effective particle size (Lyapustin
et al., 2012c) and requires knowledge of spectral surface
BRDF. At 1km resolution, brightness and spatial con-
trasts of smoke plumes can be high, leading to competi-
tion between smoke and cloud detection. With optimal
combination of different cloud tests and smoke detec-
tion, which was found experimentally based on large-
scale MODIS data processing, MAIAC provides aerosol
retrievals for most smoke plumes with minimal cloud
leak.

. When snow is detected, MAIAC derives surface re-

flectance using regional climatology AOD and com-
putes snow grain size (SGS) and subpixel snow fraction
(SF) as best fit to obtained spectral reflectance. The re-
flectance is modeled as a linear mixture of snow BRDF
and land BRDF, which is stored in the queue from re-
trievals prior to snow detection. Snow reflectance is
modeled with a semi-analytical model (Kokhanovsky
and Zege, 2004), with consideration for surface rough-
ness (Lyapustin et al., 2010). Assuming a background
soot concentration, the snow reflectance depends only
on SGS, which is computed from measured spectrum
along with SF. The algorithm is analytical, fast and ro-
bust due to a large difference between spectra of reg-
ular land types and snow. The derived SGS may have
a large uncertainty because of rapid metamorphism of
aging snow and pollution from the atmosphere, which
reduce snow reflectance. We validated SGS retrievals
over pure snow (Lyapustin et al., 2009). The algorithm
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description and validation of snow fraction using high-
resolution Landsat data will be given elsewhere.

5-6. Using knowledge of spectral BRDF and SRC at 1 km,
MAIAC retrieves AOD at 1 km resolution. The follow-
ing post-processing uses several filters to detect resid-
ual clouds and smooth the noise from gridding uncer-
tainties. This step significantly increases the quality of
AOD and the atmospheric correction.

7. The combination of MAIAC cloud mask and AOD fil-
ters (6) detects majority of clouds. The next step (7) de-
tects cloud shadows using a geometric approach and our
knowledge of BRDF.

8. The spectral regression coefficient (SRC) required for
aerosol retrieval is determined.

9. In cloud-free and clean-to-moderately-hazy
(AODg 47 < 1.5) conditions, MAIAC atmospheric
correction computes spectral BRF at 1km resolution
(bands B1-B12) and at 500 m resolution (bands B1-—
B7). By combining BRF from the latest observation
with previous values stored in the queue, MAIAC per-
forms a BRDF inversion in 1 km bands 1-8, providing
three parameters of the Ross-thick Li-sparse (RTLS)
BRDF model (Lucht et al., 2000).

10. Aerosol layer height for detected smoke pixels is evalu-
ated using a thermal technique (Lyapustin et al., 2018d).

11. At the end of the processing, the Q memory is updated
for cloud-free pixels under clean atmospheric condi-
tions.

As ancillary data, MAIAC uses static DEM, a 1 km land—
water mask for deep and static water, and 6 h NCEP ozone
and wind speed.

3 Radiative transfer model and lookup tables

MAIAC radiative transfer (RT) model uses a semi-empirical
Ross-thick Li-sparse (RTLS) BRDF model (Lucht et al.,
2000) used in the operational MODIS BRDF/Albedo
(MOD35) algorithm (Schaaf et al., 2002). This is a lin-
ear model, represented as a sum of Lambertian, geometric-
optical and volume scattering components:

o (1o, 1ty ) = kX +kC fo (o, i, @) + kY fu(uo, i, ¢). (1)

It uses predefined geometric functions (kernels), fg and fv,
to describe different shapes as a function of view geometry
(o, i, ¢ — cosines of solar and view zenith angles, and rela-
tive azimuth). The kernels are independent of the land condi-
tions. The BRDF of a pixel is characterized by a combination
of three kernel weights, K = {kL, kO, kV}T.
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MAIAC RT model is based on the semi-analytical Green’s
function (GF) solution for the TOA reflectance (Lyapustin
and Knyazikhin, 2001). When combined with the linear
RTLS model, the GF solution provides an explicit expression
for the TOA reflectance as a function of the RTLS model pa-
rameters (Lyapustin et al., 2011a):

R(po, i, ¢) = R™(wo, i1, @) + k5 FE (o, 1)
+kOFC (o, w, @) + kY FY (1o, 11, $)
+ R" (o, ). 2)

Here, R” is atmospheric path reflectance. Functions
FL FV, FG R™ depend on view geometry and aerosol
properties. They are also weakly nonlinear functions of K
parameters, which account for multiple reflections of sun-
light between the land surface and the atmosphere. This de-
pendence is analytical and is conveniently handled by the
second iteration during the atmospheric correction. The de-
tails for computing functions F/, R™ are given by Eqs. (1)—
(25) in Lyapustin et al. (2011a). In brief, they are expressed
via eight basic functions which represent different hemi-
spheric integrals from downward path radiance, atmospheric
Green’s function (or bidirectional upward diffuse transmit-
tance) and RTLS kernels (1, fv, fg). These functions, along
with path reflectance, are precomputed and stored in the
lookup table (LUT). Throughout this paper, AOD refers to
the blue wavelength (AODg 47).

Equation (2) is used in MAIAC cloud detection, selection
of aerosol type and in the atmospheric correction. For SRC
and aerosol retrieval, we also use Lambertian equivalent re-
flector (LER) approximation,

R (110,14, ¢) = R (peo, 14, ) + p (o, it )T (o) T (1)
/ (L =sp (1o, 1, P)) 3)

where T is the total downward (d) and upward (u) transmit-
tance, and s is spherical albedo of atmosphere. Over the wa-
ter, Eq. (3) is modified to account for the diffuse reflectance
pY of underlight, representing water-leaving radiance:

R(10, 14, #) = R (1o, i1, @) + % (1o, i1, @)
T (o) T (), )

where RA*S contains Fresnel reflectance from wind-ruffled
ocean surface and a whitecap contribution (Koepke, 1984) in
addition to the atmospheric path reflectance.

Since Lyapustin et al. (2011a), MAIAC aerosol models
and LUTs were simplified considerably. We abandoned ap-
proach of mixing fine- and coarse-aerosol fractions in favor
of using regional aerosol models based on AERONET clima-
tology (Holben et al., 1998) (e.g., Dubovik et al., 2002; Eck
et al., 2013). C6 MAIAC uses eight regional aerosol models
and the respective LUTs (see Sect. 6) over land, including a
separate dust model. Since MAIAC processing is tile-based
and inherently regional, it only reads the required regional

www.atmos-meas-tech.net/11/5741/2018/
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LUT or LUTs without overloading operational memory. This
allows us to discretize the world map in sufficient detail to
account for the regional aerosol variability.

Each LUT is computed with full multiple scattering: all
functions are first computed using LUT-generation software
based on scalar code SHARM (Lyapustin, 2005), and the at-
mospheric path reflectance is then replaced with vector so-
lution from code IPOL. The discrete ordinates code IPOL
was recognized as the best overall among 10 different vector
codes which participated in the recent intercomparison study
(Emde et al., 2015).

Each LUT is generated for the standard P = 1 and reduced
(P =0.7) pressure levels (normalized to the standard pres-
sure 1013.25 mB) in order to account for surface height vari-
ations using linear interpolation. Because Rayleigh optical
depth rapidly decreases with wavelength, computations with
P = 0.7 are done for wavelengths shorter than 0.66 um.

As before, the spectral gaseous absorption used in the LUT
radiative transfer was obtained based on the line-by-line cal-
culations (Lyapustin, 2003) for MODIS spectral response
functions. The computations include absorption of six major
atmospheric gases (H,O, CO;, CHy, NO;, CO, N,>0) calcu-
lated for the HITRAN 2008 (Rothman et al., 2009) database
using the Voigt vertical profile and the Atmospheric En-
vironmental Research (AER) continuum absorption model
(Clough et al., 2005). The LUT is generated for a fixed
value of column water vapor, Wo = 0.5 cm. In the MODIS
red band, where WV absorption is maximal, the atmospheric
path reflectance is also generated for WV = 6 cm, and linear
interpolation is used to account for the WV variations.

For the pressure and WV correction, the surface-reflected
signal is multiplied by the two-way direct transmittance of
the well-mixed gases and water vapor t2(P)t(Wy, W):

18(P) =exp(—(1 = P)yt®m), m = ||~ + uq, )
t(h, W) = exp (—a(k, W)mb()"w)) 1 (Wo, W)
=t(A, W)/t(x, Wp). (6)

Above, m is an atmospheric air mass, and parameters a and
b are obtained by fitting the angular dependence of the wa-
ter vapor in-band transmittance. Expression (5) is a modified
form of equation for the broadband transmittance of water
vapor (Schmid et al., 2001).

Finally, LUTs are computed for a relatively sparse angular
grid (Apg = Ap = 0.05 for the range u = 0.4-1 (0-66.42°),
o =0.15-1 (0-81.37°) and A¢ =9°) and 12 AOD values,
{0.05,0.1,0.2,0.3,0.4,0.55,0.75,1.,1.4,2.0,2.8, 4.0}, giv-
ing the size of 45.7 MB per regional aerosol model. Rayleigh
LUT (AOD =0) is generated separately.

Ordinarily, generating LUT-based TOA reflectance for
shortwave channels requires two 3-D interpolations in angles
at P =1, 0.7, with the following linear interpolation in pres-
sure for a number of required functions per pixel. To opti-
mize MAIAC processing, we introduced intermediate-scale

www.atmos-meas-tech.net/11/5741/2018/
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radiative transfer RT containers for 5km boxes. Each box
is characterized by an average view geometry, mean water
vapor and surface pressure, representing the average height.
For each box, we compute the required functions for 13 AOD
LUT nodes. After that, specific MAIAC processing for any
1km pixel within a given 5km box only requires an ad-
ditional linear interpolation in AOD using functions from
the RT container and an analytical WV correction for the
surface-reflected signal. The 5Skm RT containers (RTs) are
generated for boxes with cloud-free pixels and are stored as
a layer in the queue. This approach allows us to use the same
RT container repeatedly at different stages of MAIAC pro-
cessing, which reduces computational cost by at least a factor
of 25. While theoretically such approach may create biases
at short wavelengths (B3 (0.47 um) and B8 (0.412 um)) on
the boundaries of boxes with a sharp height gradient, a very
extensive near-global testing did not reveal any noticeable
difference in AOD or surface BRF compared to the accurate
1 km pixel-level interpolation in view geometry and pressure.

Prior to processing of a new MODIS observation, we com-
pute a spectral deviation of measurements (M) from the ex-
pected theoretical (T) clear-sky (AOD = 0) TOA reflectance:

8, =RM - Rl (z* =0). (7

3, is computed for five bands (B1, B3, B8, B5, B7) and
is indicative of atmospheric perturbations from clouds and
aerosols as illustrated in Fig. 2 for band B3. Because MAIAC
freezes BRDF retrievals when snow is detected such that the
queue BRDF always represents snow-free land reflectance,
3, also contains spectral signatures of snow and is used in
snow detection.

Using an estimate of Jacobian in the blue band (B3),
dR/3t% ~ (RT(0.05) — RT(0))/0.05, it is easy to obtain an
initial assessment of AOD,

w8 =8047(AR/BTY) !, (8)

which appears quite accurate except over bright surfaces.
To guide aerosol retrievals, we also evaluate a theoreti-
cal uncertainty of AOD in response to uncertainty in the
surface reflectance at 0.47 um which is assumed as ép =
max{0.002; 0.04RTLS (g, i, ¢)}. This estimate is based on
the extensive evaluation of MAIAC retrieval accuracy, al-
though it may overestimate the uncertainty over bright sur-
faces. Given §p and neglecting other contributions, e.g., from
variation in the aerosol model, the AOD uncertainty is as fol-
lows:

st =8R(OR/dT%) !, )

where R = RT(0; RTLS + 8p) — RT(0; RTLS) is computed
for the perturbed BRDF. As the surface becomes brighter, the
sensitivity of measurements to aerosol (d R/d7t“) decreases
and AOD uncertainty grows (Eq. 9). This uncertainty is used
in MAIAC as a measure of the surface brightness guiding the
aerosol retrieval algorithm (see Sect. 6.2 and 6.3).

Atmos. Meas. Tech., 11, 5741-5765, 2018
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Figure 2. Illustration of MAIAC time series processing for the mid-
Atlantic USA 250 km region with New York City in the lower-left
corner. The rows show MODIS observations for different days of
the year (DOY) for 2012. The two bottom rows show DOY 314 from
Terra and Aqua. The columns present the MODIS TOA RGB im-
age, MAIAC products (cloud mask, AODg 47, RGB BRF, column
water vapor) and some of the internal fields used in the process-
ing (deviation from clear-sky 8 47, cirrus band reflectance Rj 3g,
thermal contrast, dTby_1; and its atmospheric part, dTb4A_H).
Columns 3, 5-9 are displayed using the rainbow palette with the
(min—max) values shown in the heading in parentheses. The cloud
mask uses the following legend: cloud (red), possibly cloudy (yel-
low), cloud shadow (dark red), clear land (blue), clear snow (white),
clear water (light blue), clear water, detected sediments (grey), glint
over water (dark grey).

For optimization, the RT5 container is initially filled every-
where for AOD =0, 0.05 in order to compute deviation from
the clear-sky (Eq. 7) and evaluate initial AOD and its uncer-
tainty (Eqs. 8-9). The rest of the RT5 container (AOD > 0.1)
is filled only for the boxes containing cloud-free pixels after
the detection of reliable clouds (tests C1-C4).

4 Cloud mask

The cloud mask box in Fig. 1 consists of dynamic land—
water—snow (LWS) classification and cloud mask tests com-
bined with the aerosol-type selection. MAIAC uses both lo-
cal (pixel-level) and contextual information from the sur-
rounding area. The latter comes from the 150 km mesoscale
boxes where we evaluate minimum and maximum values of
brightness temperature (Tby), reflectance in MODIS cirrus
band (B26) r 33, column water vapor, number of (internally)
detected fire hotspots and the number of previously detected
snow pixels based on the Q information. This nonlocal infor-
mation appears very useful, for instance, for choosing more
or less conservative pixel-level snow or smoke detection al-
gorithm, etc.

Atmos. Meas. Tech., 11, 5741-5765, 2018
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MAIAC needs to know the state of the surface
(land/water/snow/ice) to select the proper processing path.
For this purpose we developed the dynamic land-water—
snow classification (LWSC) from daily observations. It uses
several tests and a decision tree. The LWSC logic and details
of snow processing will be described separately.

The conventional cloud mask algorithms (e.g., Ackerman
et al., 1998, 2010) make cloud detection and classification
based on groups of tests identifying cloud types. As MAIAC
does not require cloud typing, its tests are applied sequen-
tially, and processing terminates as cloud is detected. The
MAIAC cloud mask algorithm is only the beginning of cloud
detection, which is consecutively enhanced by filters follow-
ing aerosol retrieval and then by the atmospheric correction
component of MAIAC.

4.1 Reliable clouds

The first group of tests, which have low interference with
the smoke/dust detection, includes the bright, cold/high and
spatial variability tests. Cloud detection tests are numbered

©).

1. Bright cloud test. Measured reflectance exceeds theo-
retical value at maximal LUT AOD =4 with a certain
threshold:

RM >R1

max

+ thresh, where thresh = 0.1 for the
Sahara region and 0.03 otherwise. (C1)

The test uses the shortest wavelength MODIS channel
B8 (0.412 um), where reduction of TOA reflectance by
absorbing aerosols (smoke/dust) and the difference in
reflectance with nonabsorbing clouds is maximal.

2. Cold (high) cloud test. Measured brightness tempera-
ture Tby; is lower by 30° or more than the expected
value for this pixel (either q.Tb or a maximal mesoscale

value TbMe) combined with high cirrus band re-

flectance or high thermal contrast dTbs_11:

Tby; < 283 AND Tby; + 30 < min(q.Tb, Tb}es0)

max

AND (RM > 0.03 OR dTby_;; > 10). (C2)

The 30° difference corresponds to an altitude difference
of ~ 4.5 km for an average lapse rate of 6.5° km™!.

3. High cloud test. This is for pixels with elevation below
2.5km.

H <2.5km AND RM.¢ > 0.035 AND dTbs_1;
— q.dTb4_11 > 5. (C3)

4. Spatial variability test. 2 x 2 standard deviation of 500 m
pixels nested in a 1 km grid cell significantly exceeds the
clear-sky threshold (q.o") stored in the queue (Lyapustin
et al., 2012c):

o > q.0/i + thresh, where thresh = (q.0)™. (C4)
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Here, the multiplier /i approximately accounts for the pixel
growth and higher overlap between scan lines with scan an-
gle and the resulting reduction of contrast. The threshold
(thresh) depends on the surface variability and represents
maximal contrast over a given pixel and its nearest neigh-
bors. If a fire hotspot is detected in the mesoscale range
of given pixel, the threshold is increased by a factor of 2—
3.5 depending on the pixel’s proximity to the hotspot. Also,
the threshold is increased in confidently clear conditions
(q.iFlag_HighCov = 1) by a factor of 2 to avoid false cloud
detection over high-contrast areas, e.g., urban areas.

Test (C4) is applied globally over land using MODIS red
band B1. It works well over darker soils and vegetated sur-
faces, and is successful at capturing many small popcorn cu-
mulus clouds, which is a major issue and source of error in
remote sensing. Over deserts, the surface is bright in the red
band, and the contrast with clouds is significantly reduced.
In these cases, being selected as .NDVI < 0.2, the test (C4)
is repeated for the blue (B3) band using the fixed threshold
thresh = 0.012.

Finally, to “clean” the cloud boundaries where the contrast
is often reduced due to lower subpixel cloud fraction, we re-
peat the above procedure using the reduced threshold (0.6).
This second iteration is applied to pixels which are direct
neighbors of the detected clouds.

4.2 Smoke/dust detection

The smoke test described in Lyapustin et al. (2012b, c) uses
MODIS red, blue and deep blue (DB) bands B1 (0.646 pm),
B3 (0.47 um) and B8 (0.412 um). The developed test (1) iso-
lates atmospheric aerosol reflectance and (2) compares the
measured reflectance at shortest wavelength (0.412 um) with
that predicted from the red-blue region using the back-
ground aerosol model. For absorbing aerosol containing both
black and brown carbon, the measured aerosol reflectance
at 0.412pm is lower than predicted due to both (1) more
absorption caused by more multiple scattering at 0.412 um
and (2) increased shortwave absorption (by brown carbon
for smoke and by iron compounds for dust) from increas-
ing imaginary refractive index at 0.412 um compared to the
red-blue region.

The smoke test first computes an aerosol reflectance in the
red, blue and DB channels by subtracting the Rayleigh (path)
reflectance and the full surface-reflected signal at TOA from
the measurement:

R)/\\er — Rl}}/leas _ R}\L/Iolec _ Rfurf(l,a). (S1)

The smoke/dust tests are numbered (S). The last term is
computed using 75 (Eq. 8) evaluated with the background
aerosol model and known spectral surface BRDF. Assuming
a power-law spgctral dependence, R?er ~ 17", we compute
the equivalent Angstrom exponent b, or the size parameter
(SP) using the red and blue channels,

SP = R{'ehe/ RbSes: (52)
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and the absorption parameter (AP) as a ratio of measured and
predicted aerosol reflectance,

Aer, Meas Aer, Pred Aer, Pred
AP =R, /Ry, -~ where Ry,

0.466\°”
= Réirsa(m) : (S3)

The idea behind this test is similar to the OMI aerosol in-
dex (AI) detection (Torres et al., 1998, 2007): to the first-
order approximation, the clouds, which have spectrally neu-
tral behavior or nonabsorbing aerosols, would give AP val-
ues close to unity, whereas the absorbing aerosols would re-
sult in lower AP values. Theoretical simulations (Lyapustin
et al., 2012b, ¢) show a robust aerosol-cloud separation at
AODg 47 > 0.5 based on AP-SP indices.

As specific aerosol absorption is a function of many
parameters, including the type of burning material and
smoldering-to-flaming-fraction ratio for smoke or mineral
composition including hematite content for mineral dust, we
first define the approximate parameterized cloud properties
based on theoretical simulations:

APcloud = 0.97 — 0.06(2 — v — o) and SPcioud
=Z1.154+0.152 — . — o). (84)

Then the smoke/dust tests are implemented based on sep-
aration from the clouds as follows:

If AP;; < APcjoud — 0.03 AND SP;; < SPcioud

AND dTbs—_1; —q.dTbs—1; < THs — Smoke; (S5)
If AP;; < APcioud — 0.03 AND dTbg_11 —q.dTbs—_11

> THp — Dust. (S6)

As smoke generally does not exhibit thermal contrast, the
thermal threshold is low, THg = 1.5 K. This is not true near
the fire hotspots: based on extensive analysis of MODIS data,
we parameterized the threshold in this case as a function of
AOD, THg = 2.5+ 0.5A0D.

To detect most dust for the Sahara region where dust is
the dominant aerosol type, the threshold is set to be low
THp = 1.5; for other dust regions, the threshold is increased
to THp = 3.

The dust test (S6) often misclassifies thin cloud edges as
dust. For this reason, we avoid the 2-pixel zone adjacent to
the detected clouds and limit the dust test to the dust regions
only (see Sect. 6.1).

4.3 Final cloud mask

The final cloud test combines analysis of cirrus band re-
flectance Rll\gs (B26) and thermal contrast dTb4_ ;. This test
has evolved during several years of development. Initially,
we followed MODIS cloud detection (Ackerman et al., 2006)
and used the cirrus test alone. Contrary to MODIS, which
uses a single global threshold Rg‘gg > (0.035 except in win-
ter and at high elevations, we set a dynamic threshold as a
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function of the retrieved column water vapor. This way, we
could decrease the cloud detection threshold down to 0.008,
still well above the noise level in band 26, and detect either
very thin cirrus or lower clouds with partial absorption by
water vapor above the cloud. Figure 2 gives an illustration of
the cirrus band reflectance showing both high and weak but
spatially coherent signal from lower clouds, which may not
be easily detectable in the RGB bands.

Figure 2 also shows the atmospheric thermal contrast
dTb4A_11 =dTbs_11 —q.dTbs—11. Ackerman et al. (2006)
mentions the high information content of dTbs_1; for cloud
detection, but also states that it is hard to use globally due
to its significant variability from the land surface. By char-
acterizing surface component q.dTbs_1; on clear days, MA-
IAC can separate an atmospheric variation dTb4A_11, which
significantly raises information content of this spectral ther-
mal signature for the cloud detection. Analysis of near-global
MODIS data showed that R%S and dTbj?_11 usually carry
similar information for cloud detection, but sometimes it is
complementary to that of the cirrus channel (see Fig. 2), so
the joint test gives a better cloud detection.

The C6 MAIAC R%S — dTb4A—11 test works as follows.

1. Detect clouds with high dTb' ,:

dTb4A_“ > thresh, where thresh = 10. (C5)

The threshold is increased to 14 in two cases. (1) A
snow-covered surface usually has a very low ther-
mal contrast (q.dTbs—11). When snow melts, exposed
bare soil may exhibit a much higher contrast; thus,
the threshold increase helps to avoid a commission
error of cloud detection. Snow ablation is identified
when R%3 > Rg{lm and snow have been detected pre-
viously for a given pixel, but was not detected currently.
(2) It is increased under confidently clear conditions
(q.iFlag_HighCov =1).

2. Detect clouds with high product:
dTb} | (RY4/0.005) > thresh, (C6)

where 0.005 is close to the noise level of B26, and thresh
is set to 25 for the Sahara region, 15 for bright surfaces
(Rlz\fl13 > 0.3 OR q.dTbs_1; > 5) and 6 otherwise. This
test is designed for conditions in which neither the cir-
rus band reflectance nor the thermal contrast are high
enough to reliably detect clouds, but their product can
do it.

3. 11-12um difference dTby, ,, test (dTb}_,,=
dTby1—-12 —q.dTbj1_12). This test is only applied
within 2-pixels on the border of detected clouds.
According to Ackerman et al. (2006), the dTbjj_12
difference is positive and increases for clouds and
decreases for dust, but not universally. The dTb?l_12
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test is set as follows:
dTb?, _;, > 0.5 AND dTbj |, > 2. (C7)

This concludes the tests within the cloud mask block.
The following test is applied during the atmospheric
correction routine.

4. Over dark dense vegetation (DDV), defined as
q.NDVI > 0.75, the low B1 reflectance of the surface,
often associated with a high degree of homogeneity on
a 1 km scale, allows for enhanced subpixel cloud detec-
tion during stable surface conditions. This filter consists
of two tests: (a) comparison of geometrically normal-
ized B1 reflectance with the queue value at 1 km:

BRF,, B1/9.BRF,, g1 > 1.35. (C8)

Over dense vegetation with the red-band reflectance as
low as 0.02—0.03, this test can detect clouds with a re-
flectance difference of ~ 0.007-0.01.

Over homogeneous 1km DDV pixels defined as
g.0B1 < 0.006, the nested 500 m pixels should have a
similar reflectance to that of the 1 km grid cell. The sec-
ond test (b) checks measured subgrid variability and de-
tects subpixel clouds based on high ratio of 500 m BRF
in B1 to the 1 km value computed from the RTLS model,

0500, B1/RTLSg1 > 1.8. (C9)

The thresholds in tests 8—-9 were selected based on extensive
processing of MODIS data and have a low commission error.

5 Spectral regression coefficient

Retrieval of spectral regression coefficient (SRC, box 8), or
spectral SR ratios b37 = B3/B7 and b34 = B3/B4, is a cen-
tral component of MAIAC required for aerosol retrievals. It
runs independently and provides separation between atmo-
spheric and surface contributions.

The C6 MAIAC SRC retrieval has changed completely.
The early version (Lyapustin et al., 2011b) used a multiday
minimization for all cloud-free pixels in the 25 x 25 km? area.
While this approach was successful overall, it could generate
an occasional random SRC bias for the whole block, creating
AOD “blockiness” at 25 km scale, which further propagated
into the surface reflectance. To resolve this instability, we de-
veloped a new pixel-based approach which is much simpler
and gives more accurate AOD. The new approach uses the
minimum reflectance method: SRC (b37) is found as a min-
imal ratio of surface reflectance, e.g., ,05‘.47 / p;_m, over the
2-month period. For each observation, an apparent LER p*
is computed from TOA measurements using Eq. (3), assum-
ing some regional background aerosol level, e.g., AODg 47 ~
0.05. As the uncompensated aerosol increases pg,; in the
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Figure 3. Schematic illustration of MAIAC dynamic SRC retrievals
featuring two independent lines of update, b| and b;.

blue band, where most surfaces are dark, selection of the
minimal value over time provides a reliable SRC estimate.
This technique is cloud-resistant as residual clouds increase
the ratio pg 47/ 13; however, it is sensitive to undetected
shadows, and therefore SRC retrieval is preceded by shadow
detection (box 7, Fig. 1).

While the minimum reflectance method is a powerful
generic technique, it should be used with caution. For in-
stance, the described algorithm can only reduce SRC over
time; it is also prone to accumulating very low erroneous val-
ues. In reality, seasonal surface change and annual variation
of the sun zenith angle create both upward and downward
patterns. As one of the measures addressing these issues,
MAIAC uses two independent lines of the SRC retrieval (b
and by, Fig. 3) starting on odd and even months and each
taking 2 months to re-initialize. This way SRC is updated
monthly and can both decrease and increase over time. The 2-
month initialization period was selected for the MODIS ob-
servation frequency to empirically account for possible pe-
riods of high cloudiness and/or high aerosol concentration.
Under favorable conditions, the SRC is updated as soon as
the new minimum is found, along with the update of both
lines by and b;. This way, the SRC used in aerosol retrievals
can be updated more frequently than once per month with the
new low value and once a month in the case of an increasing
SRC trend.

The land surface is considerably brighter at 2.13 pm com-
pared to the blue wavelength. This results in spectral de-
pendence of the BRDF shape: when the surface is dark,
the BRDF is well defined by the first order of scattering,
whereas in case of a bright surface, the photon can experi-
ence several scatterings on microfacets of the surface rough-
ness before escaping into the atmosphere, which results in
relative flattening of the BRDF shape. For this reason, SRC
depends on the view geometry. To account for that, MA-
IAC SRC is computed for three angular bins carefully se-
lected to optimize aerosol retrievals over bright deserts where
the AOD error sensitivity is maximal. Current bins repre-
sent forward scattering (¢ < 90°), backscattering (i < 0.95,
¢ > 90°) and nadir direction (0.95 < u <1, ¢ > 90°). The
latter is introduced to represent regions of the land hotspot for
tropics/subtropics and near-nadir views when the sun is near
zenith. A linear interpolation between bins is used within
Ap < £0.01 of bin boundaries.

Before using the LER model, we studied the full radiative
transfer with anisotropic surface model where SRC is used to
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predict the blue-band BRDF from the BRDF at 2.13 pm. That
approach was computationally more expensive and still re-
quired angular binning of SRC. Besides, we found that it was
also sensitive to the B7 BRDF errors over bright surfaces,
occasionally producing AOD outliers. Over bright surfaces,
small errors in the BRDF shape at 2.1 ym can result in rela-
tively large errors in the surface-reflected diffuse radiance be-
cause of high values of the BRDF shape parameters (ky, k).
The BRDF errors can arise from uncertainties of gridding,
limitations of the RTLS model (not exactly matching the
real distribution), or rarely, unstable RTLS inversions. Using
only TOA measurements at two wavelengths, the LER ap-
proach eliminates uncertainty from the BRDF model-based
sources and provides a more stable AOD retrieval with bet-
ter AERONET comparison. The current C6 MAIAC uses the
LER surface model for both SRC and aerosol retrievals.

6 Aerosol retrievals
6.1 Aerosol models

The geographic distribution of regional background aerosol
models over land used in MAIAC processing is shown in
Fig. 4. MAIAC uses eight different models listed in Ta-
ble 1. Model properties are given in terms of volumetric
size distribution (e.g., Dubovik and King, 2000) with ra-
dius (Ry) and standard deviation (o) for the fine and coarse
modes, their ratio of concentrations (CS / Cf ), real (m) and
imaginary (k) refractive index, absorption ;\ngstrijm expo-
nent (AAE) defined with respect to spectral dependence of k
and spherical (Mie) aerosol fraction. The imaginary refrac-
tive index is assumed to be spectrally dependent at A < Ao =
0.66 um, k(1) =k(k0)(k/ko)’AAE and constant for longer
wavelengths. The aerosol models can be either static with
fixed parameters, typical of an arid environment, or dynamic
(Remer and Kaufman, 1998) with parameters depending on
AOD. Growth of volumetric radius with AOD represents hy-
groscopic growth of aerosol particles associated with AOD
increase. It is typical for regions with moderate-to-high hu-
midity. Model parameters (size distribution, ratio of volumet-
ric concentrations, refractive index) are generally representa-
tive of the AERONET regional climatology (e.g., Dubovik
et al., 2002) with empirical adjustments aimed at achiev-
ing a better match of retrieved AOD to AERONET sun-
photometer data.

Dynamic Model 1, based on the GSFC AERONET site,
represents east coast USA with high summertime humidity.
The more arid climate of the western USA is represented by
Model 2, with some contribution of dust particles and larger
coarse fraction. Model 3, which has high absorption, was de-
veloped to model the polluted environment of Mexico City.
The European Model 4 has a higher absorption, but otherwise
is the same as the east coast USA model, Model 1. Model 5,
representing industrial-world China, was developed based on
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Table 1. Microphysical properties of MAIAC aerosol models: radius and standard deviation of fine and coarse fractions of bi-lognormal
volume size distribution; ratio of volume concentrations (coarse to fine) as functions of AOD (7); real and imaginary refractive index (n = m-
ik); Angstrtim (AAE) parameter for k (k(A) = k(Xg) (A /AO)_b , for A < Ap = 0.66 um and k(X)) = k(Ag) for A > Xq). Finally, the last column
shows the fraction of spherical particles where 1 represents spheres and 0 represent spheroids from the DLS model (Dubovik et al., 2006).

Model Rg , um af , um Rg, um G’VC, um CS / C‘l,: M koes AAE  Mie fraction

1 0.1240.05¢  0.35+0.05t 2.840.2t 0.6+0.17 0.6 142 0.0045 0 1
<0.2 <0.45 <32 <0.8

2 0.16 0.4 2.4 0.6 0.5 148 0.0035 0 0.8

3 0.13 0.5 2.8 0.7 1 148 0.012 0 0.6

4 0.1240.05¢  0.35+0.05t 2.840.2t 0.6+0.17 0.6 142 0.0065 0 1
<0.2 <045 <32 <0.8

5 0.1540.057 0.4540.1r 254037t 0.6+0.1t 1.4 1.44 0.005, 0.5 0.9
<02 <0.55 <28 <0.8 0.67u

6 0.12 0.5 1.9 0.6 0.02(1+7) 1.56 0.001, 2.0 0

/0.9t 0.67p  (cur)

7 0.12+40.0257t 04 324027 0.7 0.7 1.51 0.009 0 1
<0.2 <338

8 0.15+0.057 045+0.1t 254037t 0.640.1t 1.4 1.44 0.0065, 0.5 0.9
<0.2 <0.55 <28 <0.8 0.67u

Figure 4. Map of background regional aerosol models specified in
Table 1. The transparent yellow shape approximates the dust re-
gions.

the Beijing AERONET model with an adjustment for absorp-
tion. The India model, Model 8 is similar to 5 but with higher
absorption coming from agricultural biomass burning (sea-
sonal), cooking and transportation (e.g., Singh et al., 2017).
The biomass-burning cerrado model (Model 7) of subequa-
torial Africa was developed based on a AERONET Mongu
site. Finally, the desert dust model (Model 6) was based on
Dubovik et al. (2002) climatological model for the Solar Vil-
lage site.

The transparent yellow shape in Fig. 4 maps the world
region in which the dust test is conducted and AOD is re-
trieved with the background or the dust model depending on
the dust test outcome. In the MAIAC C6 version, we still use
the regional background model for aerosol retrieval and at-
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mospheric correction even if smoke was detected. The next
version will use a joint AOD-SSA (single-scattering albedo)
retrieval algorithm for areas with detected smoke. This algo-
rithm has already been developed and is in the testing/tuning
phase.

Lack of seasonal dependence of aerosol models and LUTs
is one of the limitations of MAIAC C6. It does not ac-
count for regional aerosol seasonality, for instance periods
of biomass burning and variations in humidity. As a result,
current AOD product may show seasonal biases, for instance
over India during post-monsoon biomass burning (Mhawish
et al., 2018). This issue will be fixed in the next version of
MAIAC.

6.2 Aerosol algorithm

The aerosol algorithm depends on the brightness of surface,
which is characterized using the uncertainty parameter §7¢.
Over dark surfaces (0 < §7¢ < 0.05), the AOD retrieval rou-
tine first evaluates LER in B3 (0.47 um):

£0.47 = b3702.13, (10)

and then computes AOD by matching the LUT-based theo-
retical reflectance to the measurement,

Rj47(t") = RYlys. (11)

The LER p» 13 is obtained by atmospheric correction from
the measurement R% 5 with current AOD used in the aerosol
retrieval loop. However, when smoke/dust is detected, or
LER p7.13 is significantly different from the BRDF model
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value, .13 < 0.5RTLS; 13 or p2.13 > 2RTLS, 13(02.13 >
1.5RTLS, .13 for bright surfaces when k| > 0.25), which
usually indicates undetected clouds or cloud shadows, we use
the BRDF model as LER, p; 13 = RTLS> 13.

The dark target algorithm (Levy et al., 2013) is prone to
overestimating AOD as surface brightness increases. A typ-
ical example of high bias in the VIIRS aerosol algorithm is
given by Fig. 7d from Superczinsky et al. (2017). While MA-
IAC implementation is different from the VIIRS (Jackson et
al., 2013), it faces the same general issue. Over brighter sur-
faces, as sensitivity of measurements to AOD decreases, the
effect of the surface-related errors increases. The surface-
related errors include those from gridding, from the lagged
SRC characterization with the time series method, etc. Over
bright land, the SRC error, essentially related to the change
in the average sun angle during the 2-month lag period, be-
comes more important over mountainous regions with ter-
rain slope variations. Statistically, most surface-related er-
rors, including those from gridding, should be symmetric
about zero. However, because we do not accept negative
AQD, the net effect is a positive bias.

One more error source is characterization of the angular
dependence of SRC. As surface brightness increases, the dif-
ference in the BRDF shape between darker 0.47 and much
brighter 2.13 um channels (angular dependence of SRC) in-
creases. To reduce this effect, we added minimization of
the blue/green band ratio where the surface brightness and
BRDF shapes are much closer. The resulting AOD retrieval
is based on minimization of the following function:

F(z%) =wi(l — R} ;3(z")/RY)? + wa (1 — [po.47 (%)
/P0.55(t")1/b34)?, (12)

where the weights of B3/B7 0.47-2.13 um (w) and of B3/B4
0.47-0.55 um (wy = 1 — wy) are functions of surface bright-
ness expressed via uncertainty 6t¢ (Eq. 6) as follows: w; = 1
if 0 < 814 < 0.05 (dark surface), w; =0if 8¢ < Qor st >
0.5 (bright surface) and a linear function in between, w; =
(67 —0.05)/0.45. The reflectance p, (t¢) in Eq. (12) is LER
(result of atmospheric correction) with AOD t¢. The min-
imization algorithm (Eq. 12) incrementally increases AOD
from the LUT until F(t“) reaches minimum, computes co-
efficients of quadratic polynomial based on three points en-
compassing the minimum and analytically computes AOD in
the minimum of quadratic function.

Our study of independent AOD retrievals using 0.47—
0.55 pum ratio (second term of Eq. 12) shows that it (1) has
reasonable accuracy over dark surfaces albeit somewhat
lower than the standard algorithm (Eqgs. 10-11), (2) is more
stable over bright surfaces with zero or much lower positive
AQOD bias when atmospheric AOD is low and (3) underes-
timates AOD at high aerosol loading over all surfaces by as
much as 20 %-50 %. Given these properties, it is clear that
the second term of Eq. (12), having lower sensitivity to AOD,
mostly serves to stabilize the solution over brighter surfaces
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under clean (low AOD) atmospheric conditions by minimiz-
ing high AOD bias from the first term.

When smoke is detected, meaning that AOD is usually suf-
ficiently high and effect of surface errors is reduced, we give
more weight (if w; < 0.8 then w = 0.8) to the standard re-
trieval (bands B3—B7) with much higher sensitivity to AOD.

Finally, when dust is detected, the aerosol retrieval adds an
additional term for the MODIS red band B1 and uses equal
weights for all three terms:

F(z%) = (1= R )/ RY) + (1= [po.ar ()
Jp0ss (@] /b3a)> + (1 — RL g, () /RM,)%. (13)

The theoretical B1 TOA reflectance in the last term is com-
puted using the accurate GF solution (Eq. 2) with the Bl
BRDF model. As one can see from Table 1, properties of
the dynamic dust model are such that the concentration of
the coarse mode rapidly grows with AOD, increasing the
anisotropy of the phase function and reducing backscattering.
This reduction counteracts and slows down the respective in-
crease of TOA reflectance. In effect, the dynamic Model 6 re-
quires a significantly higher AOD to match the measured re-
flectance at 0.47 pm. We found experimentally that algorithm
(Eq. 12) significantly overestimates dust AOD by up to a fac-
tor of 2. However, adding the red-band term (Eq. 13) reduces
AOD and significantly improves its accuracy. The mentioned
spectral imbalance of the dust Model 6 may be caused by
our use of the spheroidal model (Dubovik et al., 2006) to
approximate dust particles. A similar spectral-angular mis-
match from the use of spheroids to describe optics of the dust
scattering was observed in the analysis of MISR data (Ralph
Kahn, personal communication, 2018).

Lastly, at high altitudes (H > 4.2km, e.g., Tibetan
plateau), AOD is not retrieved unless smoke/dust was de-
tected. Our study shows that in conditions of very low
AOD, nonflat terrain and a generally bright surface, MAIAC
aerosol retrievals at high altitudes are unreliable. Instead of
retrievals, we assume a fixed climatology AODpin = 0.02 for
the atmospheric correction.

6.3 Bright surface bias correction

Regardless of the specific AOD retrieval algorithm, solutions
over bright surfaces can be unstable and can easily develop
a positive bias. It should be mentioned that the term “bright
surface” in MAIAC is understood in terms of low sensitivity
(0R/3t* ~ 0) or high uncertainty (§t%) of aerosol retrievals.
The same surface can be bright in the backscattering direc-
tions, in particular close to the hotspot because of an increase
in the surface reflectance, and dark for the forward-scattering
geometries where the surface is considerably darker due to
shadowing, in combination with higher aerosol phase func-
tion and the single-scattering radiance. MAIAC retrievals
show that AOD is systematically overestimated over some
bright surfaces in the backscattering view directions, corre-
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lating with the surface features, which is apparent in the time
series of gridded AOD. These artifacts are generic and one
can easily find them in the MODIS DT, DB and in the VI-
IRS aerosol products. As MAIAC deals with the time se-
ries analysis of gridded data directly, we developed a spe-
cial statistical correction procedure. It is designed to detect
and minimize spatially persistent biases and is only applied
in clear low-AOD conditions to prevent canceling the real
aerosol signal. The idea is to look at the large area, evaluate
an average AOD using the darkest pixels for which the solu-
tion can be trusted and correct biased AOD over bright pixels
with a known history of bias using the area-average value.

The bright surface correction procedure is applied to
mesoscale areas (150 x 150km?), denoted by below, and
works as follows:

1. Compute average AOD for pixels in four bins of uncer-
tainty: 8t <0.05f,0.05 <8t? <0.12f,0.12<4t? <
0.22f and 0.22<§t? <0.4f. The AOD retrieval is
trustworthy in the first bin and usually trustworthy in the
second bin. The first two bins cover densely vegetated
surfaces and dark soils, but extend to considerably (vi-
sually) brighter surfaces at low sun/view zenith angles
and/or high atmospheric turbidity.

2. The AOD bias generally manifests itself as an increase
in the average AOD with the bin number (uncertainty).
In such a case, we define the area-average value Ty
based on the first bin or the first two bins depending
on the statistics (the number of pixels in these bins) and
set the high AOD threshold as thresh = 7,y + 0.1.

3. Mask the pixel in the high bins 24 if its AOD (z;;)
exceeds the threshold. When a pixel is masked, its cu-
mulative bias counter (q.indexHighBias) is increased
by 1, and the bias index for the current observation
(q.indexCurrentBias) is set to 1.

4. For pixel (i, j) with current and persistent high bias
(q.indexCurrentBias = 1 and q.indexHighBias > 2), re-
place AOD with the value 7;;w + tay(1 —w), where
the weight increases along with the deviation of pixel’s
AOD from the average, w = (r,-j/rav)_2 <l1.

The above procedure is not applied when absorbing
aerosols (smoke/dust) are detected or when 7,y > 0.3,
indicating the possibility of generally higher aerosol
levels.

5. Finally, it should be mentioned that the bias detec-
tion can be triggered randomly for almost any pixel,
leading to the accumulation of noise in the cumulative
counter. For this reason, and to avoid canceling the real
aerosol signal over regular pixels, we compute the aver-
age bias detection noise over area and subtract it from
g.indexHighBias monthly, effectively zeroing it for the
regular pixels.
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It should be mentioned that the described algorithm is largely
an empirical summary of numerous trials and errors using
AERONET validation and minimization of systematic spatial
and temporal artifacts as our main criteria.

7 Spatial AOD filtering and smoothing

Cloud tests (Sect. 4) were designed to capture reliable bright,
cold, high, or spatially/spectrally contrasting clouds. Because
the natural transition from clear to cloudy is on a contin-
uum, we use two additional AOD-based filters to detect thin
or subpixel clouds at 1km resolution, all based on an as-
sumption that aerosols have some degree of spatial homo-
geneity. The filters below were not used if absorbing aerosols
(smoke/dust) were detected.

1. The first filter uses a histogram-based technique follow-
ing the DT algorithm (Levy et al., 2007), which applies
it to the TOA reflectance in 20 x 20 500 m pixels’ boxes,
filtering the lower 20 % and upper 50 % of data as po-
tentially affected by either shadows or clouds. The av-
erage reflectance of the remaining pixels is used for the
DT AOD retrieval. In MAIAC, we apply a similar tech-
nique to 25 x 25km? blocks by using retrieved AOD
and by filtering high values only. The upper threshold is
a function of the cloud fraction (CF) in the block, H =
0.65 — 0.6CF/0.9, decreasing from 65 % in cloud-free
conditions to 5 % when CF = 0.9. The AOD threshold
is defined as thresh = AODy + 8, where § = (0.2 when
covariance is high (q.iFlag_HighCov=1), and § =0.1
otherwise. For pixels with AOD > thresh, the cloud
mask value is set to possibly cloud, CM_PCLOUD.

This filter is mnot applied when absorbing
aerosols (smoke/dust) were detected, as well
as in clear (AODp,x < 0.35) or homogeneous
(AODpax — AODpin < 0.2) conditions. Overall,

this filter rather significantly improves the quality of
the final AOD product.

In earlier versions, AOD for the filtered pixels was set
to the FILL_VALUE. The current C6 version reports re-
trieved AOD for these pixels for possible applications
as a research quality. The main impetus came from the
air quality research groups: in particular, I. Kloog and
A. Just showed that the histogram filter often cancels
AOD retrievals over urban regions with high aerosol
spatial variability from human activity, e.g., the south-
western part of Mexico City. AERONET validation for
Mexico City shows an improvement from added high
AOD pixels which were previously mostly filtered as
CM_PCLOUD. A similar improvement was observed
at the Ispra (Italy) AERONET site, located on western
edge of the Po Valley, Italy, where topography and prox-
imity of aerosol emission sources create conditions for
high spatial aerosol variability.
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Most of the CM_PCLOUD pixels are located in the
transition zone from clear to confidently cloudy. The
high 1 km resolution AOD in this twilight region (Ko-
ren et al.,, 2007) may be useful for studying the
aerosol—cloud interactions. However, we should empha-
size that for most applications, the user should only use
the highest quality AOD with QA cloud mask value
CM_CLEAR.

2. The second spatial homogeneity filter based on the anal-
ysis of 3 x 3 pixels was proposed by Emili et al. (2011).
We use it in the following form:

— find pixel with maximum AOD over 3 x 3 pixels
(AODmax),

— compute average AODyy in 3 x 3 area without this
pixel,

— filter the maximum value (CM_PCLOUD) if
AODpax > AOD,y + 0.2.

After detection of residual clouds with filters 1-2, a
3 x 3 running averaging window is applied to 1km
AOQOD, except when smoke/dust were detected. The av-
eraging serves to ameliorate residual errors of gridding,
which create noise in the surface SRC, BRDF and AOD.
As this noise is local and spatially coherent (due to
the systematic nature of MODIS orbits and footprint
size/location with the scan angle), it is effectively re-
duced by the 3 x 3 smoothing filter.

8 Cloud shadow detection

With cloud detection completed, the next step (7) detects
cloud shadows using geometric analysis (Simpson et al.,
2000) and a BRDF reduction test. Based on the view geom-
etry, we generate the line of shadow for each cloudy pixel,
which is a function of the cloud top height (H;). Param-
eter H. is evaluated based on the Tbj; contrast between
the cloud-free background (q.Tbs) and a cloudy pixel, as-
suming an average adiabatic lapse rate of 6.5° K/km (H, =
(Tby; —q.Tby)/6.5). If the background brightness temper-
ature cannot be reliably evaluated, we assume a maximal
cloud height of 12 km (Stubenrauch et al., 2010). The shadow
is detected along the line of shadow if surface reflectance in
the bright channels B2 (0.87 um) or BS (1.24 um) falls be-
low the BRDF-predicted value by a certain threshold. Based
on visual evaluation, the developed approach captures up to
80 %90 % of cloud shadows.

9 Atmospheric correction

Following cloud detection and aerosol retrieval, the atmo-
spheric correction derives surface spectral BRF and BRDF
models, and computes instantaneous albedo. The spectral
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BRF is derived for cloud-free and clear to moderately hazy
(AODg 47 < 1.5) pixels by scaling a pixel’s BRDF in order to
match the TOA reflectance (Lyapustin et al., 2012a). It uses
Eq. (2) modified as follows:

R(t0, i, @) = R™ (120, 14, §) + cRS™ (no, 1., #), (14)

where RS"T is a surface-reflected term computed using the
current RTLS parameters and retrieved aerosol data, and ¢
is the spectrally dependent scaling factor. Then, the BRF is
given by the following:

r.(o, 1, @) = ¢ 0. (o, 1, @), (15)

where p; is computed from the RTLS model for a given ge-
ometry. Because RS"! is a nonlinear function of the surface
reflectance, solving Eqs. (14) and (15) takes two iterations.
On the second iteration, the surface term RSUT is computed
with scaled BRDF from the first iteration, c&l)pk (o, L, @),
and the final scaling coefficient in Eq. (15) is a product
L= cil)ciz). Because the nonlinearity is small, the second
iteration has a very small effect on the final result Eq. (15).

In addition to 1km spectral BRF in MODIS bands 1-7
is also computed at 500 m resolution nested in a 1km grid.
While MAIAC performs atmospheric correction of MODIS
250 m bands (B1-B2) as well, these results are not currently
included in the output files.

The RTLS model parameters are retrieved for bands B1-
B8 only. Therefore, BRF in MODIS ocean bands B9-B12 is
computed with the same approach (Egs. 14-15) using BRDF
from the nearest bands; for instance, B4 BRDF is used for
B11-B12. The red band B1 BRDF (instead of B3) is used for
AC of B9-B10 in the blue part of the spectrum. Over dense
vegetation, the red-band reflectance is nearly as low as that in
the blue but it is significantly less affected by the aerosol re-
trieval errors. So, while the shapes of BRDF are very similar,
the BRDF is somewhat more stable in the red. At the same
time, the difference in the magnitude of reflectance does not
matter for the scaling approach (Egs. 14-15) as long as the
general BRDF shape is right and correctly models the surface
reflection and upward propagation for the direct solar beam
and diffuse (sky) irradiance.

A Lambertian assumption is used during the algorithm ini-
tialization period, which may last from just 4 days (observa-
tions) in cloud-free low-AOD conditions to over a month de-
pending on cloudiness and snow cover. During this period of
time, MAIAC performance is suboptimal with a higher rate
of undetected clouds and reflectance biases from the Lam-
bertian assumption. In the ongoing C6 MODAPS processing
of MODIS Terra and Aqua, MAIAC was initialized globally
using the second half of 2002, and then the processing started
from the beginning of 2000. In parallel, a separate forward-
processing stream using MODIS data from the second half
of 2016 to initialize is expected to start soon.

The latest BRF combined with previous BRFs stored in the
queue are used for the BRDF inversion, providing three pa-
rameters of the RTLS model. This represents a change from
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the original algorithm (Lyapustin et al., 2012a), which de-
rived RTLS coefficients by matching the measured TOA re-
flectance. Using the original TOA measurements potentially
allows a better accuracy of BRDF retrievals to be achieved,
but at the expense of storing or recomputing a number of
RT functions for each past observation from the queue. Our
analysis showed that, with the current high accuracy of MA-
IAC cloud detection and aerosol retrieval, the result of much
simpler and faster BRF-based inversion is practically indis-
tinguishable from the TOA-based inversion.

With a C6+ calibration (Lyapustin et al., 2014b), which
added MODIS Terra polarization correction (Kwiatkowska
et al., 2008) and response vs. scan (RVS) trending using
quasi-stable desert calibration sites (Sun et al., 2014), and
removed residual trends and cross-calibrated Terra to Aqua,
we are using MODIS Terra and Aqua as one data set. This
doubles the MODIS revisit frequency, a critical requirement
for the time series analysis, which significantly helps MA-
IAC in all stages of processing, in particular for the BRDF
retrieval and SRC characterization.

MAIAC has a surface change detection algorithm (Lya-
pustin et al., 2012a) based on an analysis of geometrically
normalized BRF in bands B1, B2, B7. For instance, normal-
ization to SZA =45° and VZA=0° (Fopy = —0.0458621,
Fog = —1.1068192 in Eq. 1) at any wavelength uses the fol-
lowing formula (see Eq. 6 from Lyapustin et al., 2012a):

BRF, =BRF - (kX — 0.0458621 - k¥ — 1.1068192 - k)
J(kE + Fy-kY + Fg - k9), (16)

where Fy and Fg are volumetric and geometric kernels for
the MODIS view geometry provided for the user’s con-
venience in the MAIAC output (see Sect. 10.2.2). Geo-
metric (or BRDF) normalization significantly reduces BRF
variations (by a factor of 3-6) caused by the chang-
ing view geometry of MODIS with the orbit. MAIAC
change detection looks for anticorrelated changes in the
red and NIR bands during the accumulation period, n =
ABRF,, /BRF,, 4y, where BRF,, 4 is an average value. Based
on this analysis, the surface state is characterized as stable or
having no change (n < 0.05) and two categories of greenup
or senescence, namely regular change (0.05 < 1 < 0.15) and
big change (n > 0.15, Sect. 10.2.2).

Based on extensive empirical analysis, MAIAC under-
takes RTLS inversion when the surface is relatively stable,
n < 0.15). When change is significant (n > 0.15), the BRDF
is scaled with the latest observation to adjust the total re-
flectance assuming the shape of BRDF does not change, as
in (Schaaf et al., 2002). After inversion, the new BRDF goes
through several tests to verify the correctness of its shape and
its consistency with the previous solution stored in the queue
(for details, see Lyapustin et al., 2012a). In order to preserve
consistency and reduce random noise, we are using an update
with relaxation,

K = wK"™ + (1 —w)KPe, (17)
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Above, the superscript indicates the new and previous solu-
tions, the weight w = 0.5 when surface does not change and
w = 0.7 for the regular change. While such an update prac-
tice generally improves the quality of the BRDF model dur-
ing stable periods, it delays the BRDF model response to the
surface change in addition to the delay related to the length of
the queue. On the contrary, spectral BRF,, represents an in-
stantaneous surface snapshot from the latest observation. For
this reason, studies of vegetation phenology, seasonality, etc.
should use BR F;, rather than BRDF model-based reflectance
values.

Many applications, including higher-level algorithms for
vegetation characterization, e.g., LAI/FPAR (Chen et al.,
2017) and global model assimilation, require knowledge of
uncertainty. We provide the BRF uncertainty (Sigma_BRFn)
in MODIS red (B1) and NIR (B2) bands at 1km defined
as a standard deviation of the BRFn over the accumula-
tion period of the queue (4—16 days) under the assumption
that the surface is stable or changes linearly in time. This
is one of the most conservative and realistic estimates of
uncertainty which includes contribution from gridding, un-
detected clouds, errors of atmospheric correction including
those from the aerosol retrieval, and of surface change when
reflectance change is nonlinear over the length of the queue.
Sigma_BRFn in the red band can serve as a proxy of uncer-
tainty at shorter wavelengths, where the surface is generally
darker, and the NIR value can be a proxy for the longer wave-
lengths with high surface reflectance.

With the detection of snow, MAIAC freezes the land spec-
tral BRDF in the Q memory and switches to the snow pro-
cessing mode, retrieving subpixel snow fraction and snow
grain size. The total surface reflectance (albedo) in this case
is computed as a linear mixture of land BRDF and snow re-
flectance given by a semi-analytical model (Lyapustin et al.,
2010).

10 MCD19 data products and quality assurance

MAIAC provides a suite of MODIS atmospheric and sur-
face products in three HDF4 files: daily MCD19A1 (spectral
BRE, or surface reflectance), daily MCD19A2 (atmospheric
properties) and 8-day MCD19A3 (spectral BRDF/Albedo).
As this paper describes the first official public release of MA-
IAC MODIS data, we consider it useful to provide a brief
technical description of MAIAC products and its quality as-
surance flags (QA) which is given in the User’s Guide in
more detail.

10.1 Tiled file structure and naming convention
All products are reported on 1 km sinusoidal grid. The sinu-
soidal projection is not optimal due to distortions at high lat-

itudes and off the grid center, but it is a tradeoff made by the
MODIS Land team for the global data processing. The grid-
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Figure 5. Illustration of MODIS tiles for the sinusoidal grid.
MAIAC performs processing over green and light blue (land-
containing) tiles.

ded data are divided into 1200 x 1200 km? standard MODIS
tiles shown in Fig. 5. The current data set presents data per or-
bit. Each daily file name follows the standard MODIS name
convention, for instance:

MCD19A1.DayOfObservation.TileNumber.Collection.
TimeOfCreation.hdf. DayOfObservation has the format
YYYYDDD, where YYYY is year, DDD is Julian day.
TileNumber has the standard format, e.g., h11v05 for the
east coast USA.

Each daily file usually contains multiple orbit overpasses
(1-2 at equator and up to 30 in the polar regions for com-
bined Terra and Aqua) which represents the third (time) di-
mension of MAIAC daily files. The orbit number and the
overpass time of each orbit are saved in global attributes
“Orbit_amount” and “Orbit_time_stamp” sequentially. The
Orbit_time_stamp has the format YYYYDDDHHMMITA],
where YYYY is year, DDD is Julian day, HH is hour, MM is
minute, and T and A stand for Terra and Aqua. At high lat-
itudes, only 16 orbits with the largest coverage are reported
per day in order to limit the file size.

10.2 MAIAC products: general description

MAIAC conducts processing over global land tiles and land-
containing ocean tiles (green and light blue colors in Fig. 5).

Over inland, coastal and open-ocean waters, MAIAC re-
ports AOD, fine-mode fraction and spectral reflectance of
underlight (water-leaving radiance). MAIAC processing over
water will be described in a separate publication.

10.2.1 Atmospheric properties file (MCD19A2)

For each orbit, the MAIAC daily MCD19A2 (atmospheric
properties) file includes the following parameters listed in
Table 2a. Over land, MAIAC reports the following param-
eters at 1 km resolution: AOD at 0.47 and 0.55 ym and AOD
uncertainty evaluated using Eq. (9) for cloud-free and possi-
bly cloudy pixels; column water vapor (cm) for all pixels; in-
jection height of smoke plume (in meters above ground); and
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background aerosol model used in the retrievals (see Fig. 4).
The aerosol type (result of smoke/dust test) is reported in QA
bits 13—14 (aerosol model) of Table 2b.

Over water, we report AOD outside of the glint area. Cur-
rent processing has a glint angle cutoff of <40° as in the
DT-over-ocean algorithm (Levy et al., 2013). When MA-
IAC detects dust, AOD is also reported for smaller glint an-
gles when measured TOA reflectance at 1.24 um (BS) signif-
icantly exceeds reflectance from the ocean surface predicted
by the Cox—Munk model (Cox and Munk, 1954) for a given
wind speed. Over the open ocean and large inland lakes (e.g.,
Great Lakes of North America), we also report the fine-mode
fraction (FMF). FMF is not retrieved over small inland water
bodies.

In addition to the blue-band AOD (0.47 um), MAIAC also
reports AOD at 0.55 pm, which is computed based on spec-
tral properties of the aerosol model used in retrievals. It is
provided to support the regional and global chemical trans-
port and climate simulation models, AOD validation and
AOQOD product intercomparison, all standardized to 0.55 um.
Validation shows that the quality of AOD at 0.55 um is gen-
erally close though slightly worse than the original retrieval
at 0.47 um.

Along with the retrieval results, we also provide the sun—
view geometry at 5 km resolution, which includes cosines of
solar and view zenith angle, relative azimuth, and scattering
and glint angles, which may be required for analysis or ap-
plications.

The QA structure for MCD19A2 file is presented in Ta-
ble 2b.

10.2.2 Surface reflectance file (MCD19A1)

For each orbit, the MAIAC daily MCD19A1 (surface re-
flectance) file includes parameters shown in Table 3a.

Over cloud-free land and clear-to-moderately turbid
(AODg 47 < 1.5) conditions, for solar zenith angles below
80°, file MCDI19A1 reports the surface BRF at 1km in
bands 1-12, and at 500 m in bands 1-7 and BRF uncertainty
(Sigma_BRFn) in MODIS red (B1) and NIR (B2) bands at
1 km. When snow is detected, we report snow grain size (di-
ameter in millimeters), subpixel snow fraction and RMSE
(Snow_Fit) between MODIS measurements in bands B1, B5,
B7 and the linear mixture model of spectral snow reflectance
and land spectral BRDF at 1 km. Following the sun—view ge-
ometry suite at 5km, MCD19A1 also reports values of vol-
umetric (Fy) and geometric-optics (Fy) kernels of the RTLS
model for the geometry of observation. The kernels are pro-
vided for the ease of users’ geometric (or BRDF) normaliza-
tion of spectral BRFs using Eq. (16). One can easily mod-
ify normalization to a preferable sun angle according to lati-
tude or season, by replacing coefficients in the numerator of
Eq. (16) with values from Table 1 in the User’s Guide calcu-
lated for different solar zenith angles and nadir view.
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Table 2. (a) Reported parameters in the atmospheric properties file (MCD19A2). (b) AOD QA definition for MCD19A2 (16 bit unsigned

integer). N/a is not applicable.

(a) SDS name Scale

Description

Optical_Depth_047  0.001
Optical_Depth_055 0.001
AOD_Uncertainty 0.0001
FineModeFraction 0.0001

Column_WV 0.001
Injection_Height n/a
AOD_QA n/a
AOD_MODEL 0.001

Blue-band aerosol optical depth

Green-band aerosol optical depth

AOD uncertainty

Fine mode fraction over water

Column water vapor (cm)

Smoke injection height (meters above ground)
AOD QA

Regional background model used

Sun-view geometry suite at 5 km

cosSZA 0.0001
cosVZA 0.0001
RelAZ 0.01
Scattering_Angle 0.01
Glint_Angle 0.01

Cosine of solar zenith angle (5 km)
Cosine of view zenith angle (5 km)
Relative azimuth angle (5 km)
Scattering angle (5 km)

Glint angle (5 km)

(b) Bits  Definition

0-2 Cloud mask

000 — Undefined
001 — Clear

010 — Possibly cloudy (detected by AOD filter)
011 — Cloudy (detected by cloud mask algorithm)

101 — Cloud shadow
110 — Hot spot of fire
111 — Water Sediments

34 Land-water snow/ice mask

00 — Land

01 — Water
10 — Snow
11-Ice

5-7 Adjacency mask

000 — Clear
001 — Adjacent to clouds

010 — Surrounded by more than 8 cloudy pixels
011 — Adjacent to a single cloudy pixel

100 — Adjacent to snow

101 — Snow was previously detected in this pixel

8-11 QA for AOD over land and water

0000 — Best quality

0001 — Water sediments are detected (water)

0011 — There is one neighboring cloud

0100 — There is > 1 neighboring clouds

0101 — No retrieval (cloudy or other)

0110 — No retrievals near detected or previously detected snow

0111 — Climatology AOD (0.02): altitude above 4.2 km (Land)/3.5 km (water)
1000 — No retrieval due to sun glint over water

1001 — Retrieved AOD is very low (< 0.05) due to glint (water)

1010 — AOD within 2 km from the coastline (may be unreliable)

1011 - Land, research quality: AOD retrieved but CM is possibly cloudy

12 Glint mask

0 —No glint

1 — Glint (glint angle < 40°)

13-14 Aerosol model

00 — Background model (regional)

01 — Smoke detected

10 — Dust model (dust detected)

15 Reserved
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Table 3. (a) Reported parameters in the surface reflectance file (MCD19A1). (b) Surface reflectance QA definition for MCD19A2 (16 bit

unsigned integer).

Surface reflectance, bands 1-12

BRFn uncertainty, bands 1-2

Snow fraction

Snow grain diameter (mm)

Land—snow mixture model RMSE in bands 1, 5, 7

(a) SDS name Scale  Description
Sur_refl[1-12] 0.0001
Sigma_BRFn[1-2] 0.0001
Snow_Fraction 0.0001
Snow_Grain_Size 0.001

Snow_Fit 0.0001

Status_QA n/a QA bits
Sur_refl_500m[1-7] 0.0001

Surface reflectance at 500 m, bands 1-7

Sun-view geometry suite (5 km)

Fy n/a  RTLS volumetric kernel (5 km)
Fg n/a  RTLS geometric kernel (5 km)
(b) Bits  Definition
0-2 Cloud mask
3-4 Land water snow/ice mask
5-7 Adjacency mask
8 AOD level

0 - AOD is low (<= 0.6)

1 — AOD is high (> 0.6) or undefined

9 Algorithm initialization status

0 — Algorithm is initialized

1 — Algorithm is not initialized

10 BREF retrieved over snow assuming AOD =0.05

0-no
1 —yes

11 Altitude > 4.2 km (land)/3.5 km (water), BRF is
retrieved using climatology AOD = 0.02

0-No
1 - Yes

12-14 Surface change mask

000 — No change

001 — Regular change: greenup

010 — Big change: greenup

011 — Regular change: senescence

100 — Big change: senescence

Over water, MCD19A1 reports diffuse reflectance of un-
derlight (of water-leaving radiance) in bands 1-12.

Table 3b shows the QA definition for the surface re-
flectance file. Bits 0—2, 3—4 and 5-7 are the same as in Ta-
ble 2b. The QA bits 8 and 9 carry additional information
about the quality of atmospheric correction. For instance,
better quality is achieved at low AOD and when the surface
BRDF is known (algorithm is initialized) as opposed to high
AOD and/or “not initialized” status when a Lambertian as-
sumption is used in the atmospheric correction.

www.atmos-meas-tech.net/11/5741/2018/

10.2.3 Surface BRDF file (MCD19A3)

The 8-day MCD19A3 (BRDF/Albedo) file reports parame-
ters of RTLS BRDF model (k;, ky, kg) for MODIS bands
B1-B8, number of days since the last RTLS model update
(Update_Day) and instantaneous surface albedo for the over-
pass time in bands 1-8 at 1 km resolution. These parameters
are listed in Table 4.
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Table 4. Eight-day BRDF model parameters (MCD19A3).

SDS name Scale  Description

Kiso 0.0001  RTLS isotropic weight, bands 1-8
Kvol 0.0001  RTLS volumetric weight, bands 1-8
Kgeo 0.0001  RTLS geometric weight, bands 1-8
Sur_albedo 0.0001  Surface albedo, bands 1-8
Update_Day n/a  Number of days since the last update

Table 5. Regional linear regression model parameters for the ex-
pected error (RMSE) and bias. NA and SA stand for North and
South America.

Regions RMSE ‘ ORMSE

a b ‘ o B
NA 0.034 0.13 | 0.049 0.20
SA 0.049 0.063 | 0.083 0.041
Asia 0.057 0.13 | 0.083 0.12
Europe 0.035 0.15 | 0.055 0.18
Africa 0.049 0.21 | 0.087 0.17
Australia 0.05 0.088 | 0.094  0.08
Regions Bias | IBias

a b ‘ o B
NA —0.0081 —0.0034 | 0.031 0.31
SA —0.017 0.0065 0.11 0.07
Asia —0.040 0.067 | 0.092 0.18
Europe —0.019 —0.021 | 0.031 0.33
Africa —0.0056 —0.028 | 0.088 0.30
Australia  —0.0076 0.085 0.15 0.11

10.3 Quality assurance

In daily output files, the QA reports cloud mask, adjacency
mask, surface type (the result of MAIAC dynamic land-
water—snow classification) and a surface change mask. In
general, MAIAC aerosol-surface retrievals are only per-
formed for cloud-free pixels (QA.Cloud_Mask = Clear) ex-
cept AOD which is also reported for the value possibly
cloudy. As discussed in Sect. 7, this AOD may be used with
caution in specific well-understood cases, e.g., at high spa-
tial variability of aerosol or aerosol analysis near clouds. Be-
cause most pixels with QA.Cloud_Mask = possibly cloudy
contain residual cloud contamination, these pixels are not
recommended for general use.

Adjacency mask gives information about detected
clouds or snow in the =£2-pixel vicinity. For most
applications, we recommend to only use data with
QA.AdjacencyMask = Clear (000). The value 011 (Adja-
cent to a single cloudy pixel) can also be used as it often
represents a false cloud detection. The other categories of
Q.AdjacencyMask are not recommended when using either
AOD or BRF products because neighboring clouds or snow
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increase possibility of residual cloud/snow contamination of
a given pixel, resulting in overestimation of AOD and respec-
tive errors of atmospheric correction.

To select the best-quality AOD, one should use
QA.QA_AOD = Best_Quality which combines the best val-
ues of cloud and adjacency masks: QA.CloudMask = Clear
and QA.AdjacencyMask = Clear.

For the best-quality BRF, one should apply
the following QA filter: QA.AODLevel = low
0), QA.AdjacencyMask = Clear, and
QA.AlgorithmlInitializeStatus = initialized (0). We should
admit that the current QA structure is not optimal and may
be improved in the future.

10.4 An example of MAIAC products

To illustrate MAIAC product suite, Fig. 6 shows the global
daily composite browse images at 20 km resolution for se-
lected products including AOD (0-2), column water vapor
(0-5cm), RGB BREF, snow fraction (0—1) and RGB of the
isotropic parameter (k*) of the RTLS model, which gives
an indication of spectral BRDF and serves as a proxy of the
general surface brightness and spectral albedo. The numbers
in parenthesis give the scale range. The browse images were
generated by the MODAPS Land processing team (Roy et
al., 2002) as part of the product quality evaluation.

The browse images are shown for days 60 and 230 of
2005: day 60 shows a considerable snow cover in the North-
ern Hemisphere in RGB BRF with the corresponding high
snow fraction; dust storms in the northern Sahara and in Tak-
lamakan Desert, and high AOD levels in the Indo-Gangetic
plane, northern China and southeastern Asia. In contrast, on
day 230 cloud-free observations show detected snow only
over Greenland and polar north, as well as southern An-
des. AOD shows strong forest fires in Alaska and large-
scale biomass burning in southern Amazon with smoke trans-
ported southeast across South America. It also reveals dust
storms in Western Sahara and the Thar Desert, and high
aerosol levels in southern Africa. The RGB of RTLS &’ pa-
rameter is naturally gap-filled and shows contrasting seasonal
dynamics of vegetation between the northern and southern
hemispheres. The column water vapor shows seasonal, latitu-
dinal and vertical variations, the latter of which is associated
with retrievals above the clouds.

10.5 Accuracy assessment of MAIAC AOD

Figure 7 presents results of the global MATAC AQOD val-
idation against AERONET (Holben et al., 1998) showing
correlation coefficient, average bias and RMSE for individ-
ual AERONET sites along with the global scatterplot dur-
ing 2000-2016. The detailed validation analysis of MAIAC
data set, and its comparison with the standard products from
MODIS or other sensors deserves a separate consideration,
so this analysis merely serves to illustrate the overall quality
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Figure 6. Global browse images showing MAIAC AOD (scale 0-2), column water vapor (scale 0-5 cm), RGB BREF, snow fraction (scale
0-1) and RGB of the isotropic parameter (kL) of the RTLS model for days 60 (top row) and 230 (bottom row) of 2005.
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Figure 7. Results of global MAIAC AOD validation against AERONET from the MODIS Terra and Aqua 2000-2016 record.

of MAIAC aerosol retrievals. Figure 7 shows (a) predomi-
nantly high correlation with AERONET except for the world
regions where typically both AOD and its range of variation
are low (e.g., southwestern USA or south of South Ameri-
can continent); (b) globally low bias and RMSE except ma-
jor biomass burning, industrial or mineral dust source regions
such as Sahara, Sahel and subtropical Africa, Indo-Gangetic
Plane, southern Asia and China. The higher RMSE in these
source regions is typical of all aerosol retrieval products and
is expected due to high variability of aerosol types and prop-
erties, often in combination with the bright land surface in-
creasing uncertainties of satellite retrievals. The bias shows
clustering of results and gives a clear indication of the re-
quired tuning of MAIAC regional aerosol models, e.g., in
southern Asia and China. Some of these biases come from
the seasonal variation in aerosol properties (e.g., Mhawish et
al., 2018), which will be implemented in the next version of
MAIAC.

The global scatterplot of Fig. 7 shows that 66 % of re-
trievals (grey area) agree with AERONET within £0.05 &+
0.1 AOD, which improves over the standard accuracy assess-
ment of 15 % from the DT algorithm over land (e.g., Levy et
al., 2013). While the global assessment may serve as a useful
indicator of accuracy, the true performance of any algorithm
is inherently regional and local, as shown by R, RMSE and
bias statistics for each AERONET site. To generalize these
assessments into regional prognostic error models, we com-
puted RMSE and bias binned to retrieved AOD for differ-
ent world regions. These results are summarized in Fig. 8,
where the line shows the mean and the shaded area represents
= 1 standard deviation. Our analysis and results of indepen-
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dent studies (e.g., Superczynski et al., 2017; Mhawish et al.,
2018) show that MAIAC AOD has little dependency on view
geometry. Although MAIAC accuracy somewhat decreases
over bright surfaces, here the regional analysis was done for
all AERONET sites together. Figure 8 shows that the linear
model for both mean and standard deviation can serve as a
reasonable proxy for both RMSE and bias; for instance

RMSE = a + b x AOD  (a + 8 x AOD).. (18)

The regional linear regression model parameters are given in
Table 5. A more detailed MAIAC AOD error analysis, as in
Sayer et al. (2013), will be given separately.

10.6 Known issues and limitations

Below is a list of currently known issues and limitations of
algorithm MAIAC:

1. The maximum value of LUT AODy 47 is 4.0, which lim-
its characterization of strong aerosol emissions.

2. MAIAC LUTs are built assuming pseudospherical cor-
rection in single scattering, which has a reduced accu-
racy for high sun/view zenith angles. A reduced MAIAC
performance is expected at solar zenith angles > 70°.

3. MAIAC may be missing bright salt pans in several
world deserts. In such cases, it generates a persistently
high AOD resulting in missing surface retrievals.

4. Geographic AOD boundaries may sometimes be ob-
served on borders of the regional aerosol models when

www.atmos-meas-tech.net/11/5741/2018/
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Figure 8. Bias (a) and RMSE (b) of MAIAC AOD for different world regions as a function of retrieved AOD. NA and SA stand for North
and South America.

Figure 9. Illustration of MAIAC AOD contrast on the boundary of aerosol models (see Fig. 4) caused mainly by the difference in aerosol
absorption between the models: (a) transition 8-2 (day 82, 2010), (b) transition 7-6 (day 113, 2010) and (c) transition 7-2 (day 237, 2010).

they have a significant difference in absorption. While
this is not an issue over most of the globe, three tran-
sition zones may stand out during the biomass-burning
seasons (see Fig. 4): the northwest boundary between
India (model 8) and central Asia (model 2), and two
transitions from central Africa to Sahel-Sahara (mod-
els 7-6) and to southern Africa (models 7-2). Figure 9
shows one the worst-case examples for each transition
zone when at high AOD the contrast across the model
boundary can be as high as 40-50 % of the mean value,
while it is not noticeable for most of the year when AOD
is moderate to low.

Because of inherent uncertainties of gridding on the
coastline, the area of £1-3 pixels from the coastline
may contain frequent artifacts in cloud mask (usually
overdetection), AOD (higher values) and surface BRF.
Users should exercise caution near the coastline as indi-
cated by QA.QA_AOD (value 1010).

www.atmos-meas-tech.net/11/5741/2018/

6. AC over detected snow: as MAIAC does not retrieve

AOD over snow, it assumes a low climatology AOD is
0.05 globally and 0.02 at high elevations (H > 4.2 km).
Over north-central China, which is often heavily pol-
luted and where low-AOD assumption can lead to a sig-
nificant bias, we use AOD averaged over a mesoscale
area of 150 km using reliable AOD retrievals over snow-
free pixels. Such an approach does improve the quality
of AC compared to low-AOD assumption as judged by
the reduced boundaries and diminished color artifacts,
but it does not account for the aerosol variability inside
a 150km area, which may be significant.

. The ice mask is currently unreliable.

. A particular type of cloud (moderately thin and ho-

mogeneous cumulus) is consistently missed over water
generating high AOD.

. MAIAC uses a specialized “bay” mask for aerosol re-

trievals over coastal waters with high sediments. The
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5762

current bay mask misses several these areas where AOD
retrievals often show a high bias.

10. Since 2014, when MODIS Terra/Aqua calibration was
consistently updated (Lyapustin et al., 2014b), the con-
tinued calibration degradation of MODIS Terra in MA-
IAC AOD increasingly appears via striping and a pos-
itive bias on the left-hand side of the MODIS scan,
mostly over bright surfaces. The MODIS calibration
was recently updated. It will be implemented in MODIS
Collection 6.1 Land Discipline reprocessing (which in-
cludes MAIAC), scheduled for the second half of 2018.
We expect a significant reduction of mentioned errors in
MAIAC C6.1 AOD.

11 Conclusions

This paper presented the C6 MAIAC algorithm used in the
ongoing MODIS Collection 6 processing. MAIAC cloud de-
tection, aerosol retrieval and atmospheric correction over
land were described in detail. Being the first publication of
the official new MODIS product MCD19, this paper also pro-
vided the technical specification of MCD19 output files along
with the brief quality assurance discussion and recommen-
dations for use. Other MAIAC components related to detec-
tion and processing of snow, retrievals over water and smoke
plume height retrieval will be described elsewhere.

The paper also presented a brief analysis of near-global
MAIAC AOD validation against AERONET measurements
along with error analysis. These results serve to complement
the growing body of the air quality and land community stud-
ies of MAIAC data quality and its comparison to the standard
MODIS products.

Data availability. The following tools offer options for searching
the LP DAAC (Land Processes Distributed Active Archive Center)
data holdings and provide access to the data:

1. Bulk download: LP DAAC Data Pool (https://lpdaac.usgs.
gov/data_access/data_pool, last access: 10 October 2018) and
DAAC2Disk (https://Ipdaac.usgs.gov/data_access/daac2disk,
last access: 10 October 2018)

2. Search and browse: USGS EarthExplorer (https:
/learthexplorer.usgs.gov/, last access: 10 October 2018)
and NASA Earthdata Search (https://search.earthdata.nasa.
gov/search, last access: 10 October 2018)

3. MODIS Land Global Browse Images: 5km versions of se-
lected product to enable synoptic quality assessment (http://
landweb.nascom.nasa.gov/cgi-bin/browse/browse.cgi, last ac-
cess: 10 October 2018)
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