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Abstract. Primary biological aerosol including bacteria, fun-
gal spores and pollen have important implications for public
health and the environment. Such particles may have differ-
ent concentrations of chemical fluorophores and will respond
differently in the presence of ultraviolet light, potentially al-
lowing for different types of biological aerosol to be dis-
criminated. Development of ultraviolet light induced fluores-
cence (UV-LIF) instruments such as the Wideband Integrated
Bioaerosol Sensor (WIBS) has allowed for size, morphology
and fluorescence measurements to be collected in real-time.
However, it is unclear without studying instrument responses
in the laboratory, the extent to which different types of parti-
cles can be discriminated. Collection of laboratory data is vi-
tal to validate any approach used to analyse data and ensure
that the data available is utilized as effectively as possible.

In this paper a variety of methodologies are tested on a
range of particles collected in the laboratory. Hierarchical ag-
glomerative clustering (HAC) has been previously applied to
UV-LIF data in a number of studies and is tested alongside
other algorithms that could be used to solve the classifica-
tion problem: Density Based Spectral Clustering and Noise
(DBSCAN), k-means and gradient boosting.

Whilst HAC was able to effectively discriminate between
reference narrow-size distribution PSL particles, yielding a
classification error of only 1.8 %, similar results were not ob-
tained when testing on laboratory generated aerosol where
the classification error was found to be between 11.5 % and
24.2 %. Furthermore, there is a large uncertainty in this ap-
proach in terms of the data preparation and the cluster index
used, and we were unable to attain consistent results across
the different sets of laboratory generated aerosol tested.

The lowest classification errors were obtained using gra-
dient boosting, where the misclassification rate was between
4.38 % and 5.42 %. The largest contribution to the error, in
the case of the higher misclassification rate, was the pollen
samples where 28.5 % of the samples were incorrectly clas-
sified as fungal spores. The technique was robust to changes
in data preparation provided a fluorescent threshold was ap-
plied to the data.

In the event that laboratory training data are unavailable,
DBSCAN was found to be a potential alternative to HAC.
In the case of one of the data sets where 22.9 % of the data
were left unclassified we were able to produce three distinct
clusters obtaining a classification error of only 1.42 % on
the classified data. These results could not be replicated for
the other data set where 26.8 % of the data were not classi-
fied and a classification error of 13.8 % was obtained. This
method, like HAC, also appeared to be heavily dependent on
data preparation, requiring a different selection of parameters
depending on the preparation used. Further analysis will also
be required to confirm our selection of the parameters when
using this method on ambient data.

There is a clear need for the collection of additional labo-
ratory generated aerosol to improve interpretation of current
databases and to aid in the analysis of data collected from an
ambient environment. New instruments with a greater resolu-
tion are likely to improve on current discrimination between
pollen, bacteria and fungal spores and even between different
species, however the need for extensive laboratory data sets
will grow as a result.

Published by Copernicus Publications on behalf of the European Geosciences Union.



6204 S. Ruske et al.: Machine learning using the WIBS

1 Introduction

Biological aerosol, such as bacteria, fungal spores and pollen
have important implications for public health and the envi-
ronment (Després et al., 2012). They have been linked to the
formation of cloud condensation nuclei and ice nuclei which
in turn may have important influence on the weather (Craw-
ford et al., 2012; Cziczo et al., 2013; Gurian-Sherman and
Lindow, 1993; Hader et al., 2014; Hoose and Möhler, 2012;
Möhler et al., 2007). These particles have impacts on health
(Kennedy and Smith, 2012), particularly for those who suffer
from asthma and allergic rhinitis (D’Amato et al., 2001). It
is therefore of paramount importance that we continue to de-
velop methods of detecting these particles, to quantify them,
determine seasonal trends and to compare different environ-
ments.

There are a wide range of biological molecules, commonly
referred to as biological fluorophores, that are known to re-
emit radiation upon excitation, e.g. amino acids, coenzymes
and pigments (Pöhlker et al., 2012, 2013). Ultraviolet-light
induced fluorescence (UV-LIF) spectrometers, such as the
wideband integrated bioaerosol spectrometer (WIBS) have
received increased attention in recent years as a potential
methodology for detecting biological aerosol (Kaye et al.,
2005). The WIBS uses irradiation at 280 and 370 nm to tar-
get some of the most significantly fluorescent bioflorophores
such as tryptophan (an amino acid) and NADH (a coen-
zyme). These measurements are combined with an optical
measurement of size and shape to further aid in discrimina-
tion.

Measurements from the WIBS have limited application in
isolation. However, there are a range of techniques that could
be used to predict quantities of biological aerosol from these
fluorescence, size and morphology measurements. Tech-
niques that could be used to solve this classification problem,
include field specific techniques such as ABC analysis (Her-
nandez et al., 2016) as well as supervised and unsupervised
machine learning techniques that are broadly used (Friedman
et al., 2001).

It is not clear at this point what approach is preferred as all
approaches have a range of advantages and disadvantages.

Supervised machine learning uses data collected within
the laboratory, where the correct classification is known.
Data are split into training data and testing data where the
training data are used to fit a model which is then validated
on the test set. Once a model is fitted and validated it may
then be applied to classify ambient data.

During unsupervised analysis, ambient data are classified
without using laboratory training data. Instead, an attempt is
made to naturally segregate the data. Ideally, we may expect
data to naturally be segregated into broad biological classes
or into different groups of similar bacteria, fungal material
and pollen, but this may not necessarily be the case.

The supervised methods, have the disadvantage that train-
ing data collected may not include the entirety of what might

be collected during an ambient campaign. Particularly, in
an urban environment, the instrument may collect measure-
ments for a large quantity of non-biological material that
should be classified as such or removed from the analysis.
We would expect most of this non-biological material to ei-
ther be non-fluorescent or weakly fluorescent and therefore it
should be removed prior to analysis by applying a justifiable
threshold to the fluorescent measurements (see Sect. 2.2).
Nonetheless, a few weakly fluorescent non-biological parti-
cles may remain and could be overlooked if the training data
are incomplete.

There are likely to be issues to be explored with either ap-
proach and therefore it seems unlikely that either supervised
or unsupervised techniques can justifiably be abandoned at
this point in time and it may well be the case that usage
of a variety of techniques may be required to better under-
stand the atmospheric environment. Nonetheless, it is still vi-
tal to investigate how these different techniques behave when
analysing laboratory data to better understand how they can
be most appropriately applied to ambient data.

In an ambient setting, determining the number of clusters
is difficult, so hierarchical agglomerative clustering (HAC)
has been the preferred method over other methods such as
k-means since the method naturally presents a clustering for
all possible number of clusters (Robinson et al., 2013). A
suggestion of the number of clusters can then be provided
using indices such as the Caliński–Harabasz Index (CH In-
dex) (Caliński and Harabasz, 1974) by maximizing a statis-
tic which yields a peak for clusterings which contain clusters
that are compact and far apart. HAC has previously been used
on data collected using the WIBS to discriminate between
different Polystyrene Latex Spheres (PSLs) and has been ap-
plied to ambient measurements collected as part of the BEA-
CHON RoMBAS experiment (Crawford et al., 2015; Gabey
et al., 2012; Robinson et al., 2013).

Nonetheless, relatively few studies have studied the usage
of HAC on laboratory data from the WIBS (Savage et al.,
2017; Savage and Huffman, 2018). Evaluating the effective-
ness of HAC on generated aerosol is crucial to support or
repudiate conclusions made using HAC on ambient data, es-
pecially since the fluorescence response from the laboratory
generated aerosol will much better reflect fluorescence re-
sponses from the environment, when compared with PSLs.

During the process of HAC there are also a number of vi-
tal choices that have to be made that could have a substantial
implication on the effectiveness of the method (these are dis-
cussed in detail in Sect. 2.2). For the PSLs previously anal-
ysed (Crawford et al., 2015), we determined standardizing
using the z score, with removal of non-fluorescent particles,
taking logarithms of shape and size was most effective. The
CH index was selected to determine the number of clusters
as it was demonstrated to perform best in the literature (Mil-
ligan and Cooper, 1985). It is, however, not clear whether
these choices will remain the most effective for laboratory
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Figure 1. Overview of different analysis approaches.

generated aerosol or ambient data. See Sect. 2.3 for further
details on data preparation for HAC.

Furthermore, data analysis using HAC can take a matter of
hours, if not days, depending on the number of particles. The
time requirements for HAC are between N2 and N3 mean-
ing that a doubling of the number of particles will require
between 4 and 8 times as much time. Such time require-
ments mean that not only is the method already quite slow,
but will get increasingly slower as more data are collected,
which may limit the real time effectiveness of the method.

Within the Python programming language, a package
called Scikit-learn (Pedregosa et al., 2011) offers imple-
mentations of several unsupervised methods. Some of these
methods, i.e. Affinity Propagation, Mean-shift, Spectral
Clustering and Gaussian mixtures are not explored as they
will scale poorly as the number of particles increases (Pe-
dregosa et al., 2011). Instead, our analysis is focused on k-
means, HAC and DBSCAN which can be used on larger
data-sets.

For HAC we continue to use the fastcluster package (de-
scribed in Sect. 2.3). Sci-kit learn does have a HAC imple-
mentation but it is not as fast or memory efficient. We do
use sklearn for DBSCAN and k-means, although if one was
to use DBSCAN for ambient data we would suggest explor-
ing alternatives such as ELKI (Schubert et al., 2015) as the
sci-kit learn implementation of DBSCAN by default is not
memory efficient making it difficult to utilize for more than
30 000 particles. Sci-kit learn has a fast implementation for
gradient boosting, so this is used.

Figure 2. Overview of preprocessing steps for WIBS data.

2 Methods

In this section we discuss the variety of approaches that could
be used to classify particles such as bacteria, fungal spores or
pollen. In Sect. 2.1 we provide an overview of the instrument
used to collect the data. In Sect. 2.2 we discuss the variety
of decisions that need to be made prior to passing the data
to the machine learning algorithms which are discussed in
Sect. 2.3–2.6. An overview of the different methods is given
in Fig. 1.

2.1 Instrumentation

The Wideband Integrated Bioaerosol Sensor (WIBS) col-
lects size, shape and fluorescence measurements (Kaye et al.,
2005). The size is a single measurement; the shape measure-
ment consists of four measurements (one for each quadrant)
which are combined to produce a single asymmetry factor
measurement. A more precise definition of asymmetry factor
has been provided previously in the literature (Gabey et al.,
2010).

To measure fluorescence, the particle is irradiated with UV
light at 280 and 370 nm from the firing of two xenon sources.
Fluorescence emission is collected via two collection chan-
nels in the ranges 310–400 and 420–600 nm. The 370 nm
xenon radiation lies within the first detection range and hence
elastically scattered light from the particle, sufficient to satu-
rate the detection amplifier, is received. This signal is there-
fore discarded.

After removal of this fluorescent measurement, there are
three remaining fluorescence measurements. The notation
FL1_280 is used to denote the measurement in the first de-
tection channel when the particle is irradiated with ultravio-
let light at 280 nm and FL2_280 and FL2_370 are used to
denote the measurements in the second detection channel
when the particle is irradiated with ultraviolet light at 280
and 370 nm, respectively. These fluorescence measurements
are combined with the size and asymmetry factor measure-
ments. A more detailed description of the instrument can be
found in previous publications (e.g. Gabey et al., 2010; Healy
et al., 2012a).
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2.2 Data preparation

Prior to analysis using the machine learning algorithm we
may choose to make a variety of decisions to pre-process the
data with the aim to improve performance (see Fig. 2). An
overview for the decisions often made are outlined below.

First we may elect to remove particles which are non-
fluorescent. Forced trigger data are collected which is a mea-
surement of the instrument response when particles are not
present. We then set a threshold, for which if a particle fails to
exceed this threshold in at least one of the fluorescent chan-
nels we conclude that the particle is non-fluorescent. Usually
we set the threshold to be three standard deviations above the
average forced trigger measurement although a recent labo-
ratory study has suggested that nine standard deviations may
be more appropriate (Savage et al., 2017).

Another threshold is usually then applied to the size. A
size threshold of 0.8 µm is usually applied as detection ef-
ficiency of the instrument drops below 50 % at this point.
(Gabey, 2011; Gabey et al., 2011; Healy et al., 2012b).

Natural logarithms of the size and the asymmetry factor
are often taken as these measurements are often log normally
distributed and it is postulated that this will increase perfor-
mance in the case of hierarchical agglomerative clustering.

It is also widely regarded that standardizing the data
prior to analysis is utmost importance (Milligan and Cooper,
1988). We often subtract the average measurement in each of
the five variables and divide by the standard deviation, often
referred to as “standardizing using the z score”. Standardiza-
tion is used to prevent variables with larger magnitude, such
as the fluorescent measurements, from dominating the analy-
sis. An alternative approach to standardizing is to divide each
of the five variables by the range.

2.3 Hierarchical agglomerative clustering

In order for particles to be clustered, we need to define a mea-
surement of how similar two clusters are. These similarity
measures are often referred to as linkages. We use the Python
package fastcluster (Müllner, 2013) which provides mod-
ern implementations of single, complete, average, weighted,
Ward, centroid and median linkages (Müllner, 2011). A thor-
ough detailing of the definitions of the different linkages can
be found in the fastcluster manual (Müllner, 2013). For the
memory efficient mode, which is essential when using the al-
gorithm for large data sets, only Ward, centroid, median and
single linkages are available.

Initially each particle is placed into an individual cluster.
Next, using the linkage selected, the two most similar clus-
ters are merged. The merging process is repeated until all
the particles are placed in a single cluster, which provides
a clustering from k = 1, . . . , N , where k is the number of
clusters and N is the number of particles being analysed. A
cluster validation index such as the Calińnski–Harabasz in-
dex (Caliński and Harabasz, 1974) is then used to identify an

\  

Figure 3. Visual representation of DBSCAN. Here each point is
represented as a black dot and its neighbourhood is represented by
a circle. Here ε is the radius of the circle and the minimum number
of points is 3. Four points have each been placed into the blue cluster
and green cluster, all of which having at least 3 other points in their
neighbourhood. One point is classified as noise as it has only 1 other
point in its neighbourhood.

appropriate number of clusters. The index is maximized for
clusterings that contain compact clusters that are far apart.

2.4 K-means clustering

K-Means clustering is designed to place particles into k

clusters. However we can repeat the method multiple times,
e.g. for k = 1, 2, . . . , 10, where k is the number of clusters.
Similar to HAC we can then use a cluster validation index to
determine which choice of k gives the most effective results.

The method works as follows. Initially k cluster centroids
are set by selecting k particles at random. The rest of the
particles are then placed into these k clusters depending on
which of the centroids the particle is closest to. At this point
a new centroid is calculated for each cluster. The process is
then repeated many times until convergence occurs and the
centroids do not change significantly from one iteration to
the next.

2.5 DBSCAN

For DBSCAN we set two parameters, the radius for a neigh-
bourhood ε, and the number of particles required for a neigh-
bourhood to be identified as dense.

Initially a random point, say A, is selected. If there are suf-
ficient number of points in the neighbourhood of A then all
the points in A’s neighbourhood are also checked and so on,
until the cluster has fully expanded and there are no points
left to check. Should the point not have a sufficient number
of other points in its neighbourhood then it is left unclassi-
fied. Further points are then selected and the above process
is repeated until all points have been considered.

We give an example of DBSCAN in Fig. 3. Note that clus-
ter validation indices are not required for DBSCAN, since
the number of clusters is intrinsically calculated within the
algorithm.

Atmos. Meas. Tech., 11, 6203–6230, 2018 www.atmos-meas-tech.net/11/6203/2018/
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Figure 4. Four example matching matrices. Immediately below
each matrix is the percentage of particles placed into the same clus-
ter for both clusterings in each case. At the very bottom we have the
adjusted rand score.

2.6 Gradient boosting

A basic decision tree is constructed by considering each pos-
sible split across all variables and evaluating which split best
divides the data. For example, we may consider the third flu-
orescence channel and split the data on the basis of whether
the measurement is more or less than 10 arbitrary units (AU).
This process is then repeated many times until a tree is built.

There are two ways in which trees can be combined into
an ensemble. The first is by averaging multiple trees in the
hope to produce a more accurate classification as is the case
in random forests and bagging classifiers (Breiman, 2001,
1996). In the case of random forests and bagging, the data
set is sampled with replacement, meaning that the same par-
ticle could be selected more than once or not at all. Sampling
in this way enables the algorithm to produce a subtly dif-
ferent version of the data from which to build each tree. In
addition, when using a random forest, instead of considering
all possible variables to use to split the data, only a random
subset is used.

Alternatively we can fit a single decision tree to the data,
evaluate where the tree is performing well and then fit a sec-
ond tree to the particles in the data for which the current
model is performing poorly. This process can be repeated
many times, each time adding a new tree to the model in the
hope of making an improvement. This approach is known as
AdaBoost (Freund and Schapire, 1997). Gradient boosting is
an extension of AdaBoost to allow for other loss functions
(Friedman, 2001).

For the current study we elect to use gradient boosting to
indicate the performance of the supervised approach since
it was the best performer for the Multiparameter Bioaerosol
Spectrometer, a similar UV-LIF spectrometer similar to the
WIBS but with single waveband fluorescence, 8 fluorescence
detection channels and very high shape analysis capability
(Ruske et al., 2017).

2.7 Evaluation criteria

To aid in evaluating how well methodologies performed we
used two tools: the matching matrix (Ting, 2010) and the ad-
justed rand score (Hubert and Arabie, 1985).

In Fig. 4 we present four different matching matrices. To
produce these matrices we compared: two random cluster-
ings with approximately 50 % of the data in each cluster (A);
two random clusterings each with 80 % and 20 % of the data
in each of the two clusters, respectively (B); two identical
clusterings (C); and two clusterings which were nearly iden-
tical except one data point had been placed into a third cluster
for one of the clusterings.

2.7.1 Matching matrix

The matching matrix, often referred to as a confusion matrix,
can be used as an aid in comparing two clusterings.

In the case of the current paper, we use this to compare
the output from an algorithm with labels assigned to each
particle. We may assign labels to indicate what broad type the
particle is (e.g. 1 if the particle is bacteria, 2 if the particle is
fungal etc.) or we may assign labels to indicate what sample
a particle is from (e.g. 1 if the particle is Bacillus atrophaeus,
2 if the particle is E. coli etc.)

Consider example C in Fig. 4. This matching matrix com-
pares two clusterings each containing two clusters. Each row
corresponds to a cluster in the first clustering and each col-
umn corresponds to a cluster in the second clustering. The el-
ement in the first row and the first column (in this case 784)
indicates the number of particles that were placed into the
first cluster in the first clustering that were also placed into
cluster 1 in the second clustering. Two identical clusterings
will produce a matching matrix that has non-zero values only
the diagonal.

A and B in Fig. 4 are examples of poor performance and
C and D are examples of very good performance.

2.7.2 Adjusted Rand score

When evaluating a large number of clusterings, it may be
useful to use a statistic to summarize the information in the
matching matrix. In a previous study (Ruske et al., 2017), we
used percentage of particles correctly classified as a statistic
for indicating performance. This is an easy to interpret statis-
tic, but can be misleading when used on imbalanced data.
In both example A and B, we have two randomly generated
clusterings. However in B we have 80 % of the data points
placed into the first cluster, whereas in A the data points are
approximately equally distributed between the two clusters.
The percentage of points which are placed into the same clus-
ter for both clusterings are 52.2 % and 68.3 % for A and B,
respectively. We can see that the more imbalanced a data set
is, the more likely data points are to be placed into the same
clusters. It is for this reason we elect to use an alternative
statistic: the adjusted rand score. This statistic attains a value
of approximately zero for both A and B.

Comparing clusterings is a developing area of research and
there are other alternative statistics such as the mutual infor-
mation score (Vinh et al., 2010) that could be preferable to
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the adjusted rand score. However our initial tests (not pre-
sented), indicated that calculation of the mutual information
often required an order of magnitude more time than the cal-
culation of the adjusted rand. Therefore, we elected to use
the adjusted rand score for the current study.

3 Data

The efficacy of the different data analysis approaches
was evaluated using three different data sets. The first of
which comprised several industry standard polystyrene latex
spheres of various different sizes and colours. This data set
was first analysed in Crawford et al. (2015), where hierarchi-
cal agglomerative clustering was successfully applied to the
data yielding a classification accuracy of 98.2 %. This data
set presents a simple challenge for which we would expect
any reasonable algorithm to be able to discriminate between
the different sizes and colours of particles.

To further extend the previous analysis in Crawford et al.
(2015) we include two data sets collected in 2008 and 2014
which are similar to data previously published using the Mul-
tiparameter Bioaerosol Spectrometer (Ruske et al., 2017). A
subsection of the data collected 2014 has previously been
analysed in the Appendix of Crawford et al. (2017). These
data sets consist of various different pollen, fungal, bacterial
and non-biological samples, and should present a much more
difficult challenge for the algorithms.

The samples of laboratory generated aerosol were col-
lected as follows. Material was aerosolized into a large, clean
HEPA filtered chamber, which incorporated a recirculation
fan. The Bacillus atrophaeus and Escherichia coli (E. coli)
bacteria were aerosolized into the chamber using a mini-
nebulizer (e.g. Hudson RCI Micro-Mist nebulizer) as were
the salt and phosphate buffered saline samples. The dry sam-
ples, which included the pollen, and fungal samples were
aerosolized directly into the chamber from small quantities
of powder utilizing a filtered compressed air jet. The diesel
smoke and grass smoke samples were generated by burning
a small amount within a fume cupboard using a smoker (a
piece of bespoke equipment). The bacterial samples were ei-
ther washed or unwashed and diluted or undiluted.

We present a summary of the number of particles for each
sample after a fluorescent threshold of 3σ and 9σ is applied
in Tables 1, 2 and 3. In 2008 the thresholds are constructed
using forced trigger data collected at the same time as the
experiment, whereas in 2014 the thresholds are constructed
using forced trigger data collected using the same instrument
at an earlier date. Ideally, the threshold for the data collected
in 2014 would be constructed using forced trigger data col-
lected at the same time as the laboratory data, but we can see
in Fig. 8 that the threshold we have constructed is successful
in removing the vast majority of NaCl samples collected.

Plots of the average fluorescent characteristics and size
and shape for each sample are provided in Figs. 5, 6 and 7
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Figure 5. Average fluorescent characteristics for the bacterial sam-
ples collected in 2008. The error bars in red indicate a range of±1σ
for each sample.
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Figure 6. Average fluorescent characteristics for the remaining
samples collected in 2008. The error bars in red indicate a range
of ±1σ for each sample.

after a fluorescent baseline of 3σ has been applied. Similar
plots have been produced using a 9σ threshold and can be
found in the repository released alongside the paper (see the
“Code and data availability” section for further details). Plots
and tables for the polystyrene spheres previously published
in Crawford et al. (2015) are omitted.

To provide further clarity on the variation of the samples
in terms of size and fluorescence we include scatter plots of
each of the fluorescence channels against size for four of the
samples in Fig. 8. For the puffball spore and rye grass sam-
ples, in particular we can see that we may be measuring both
fragmented and intact particles. For the interferent samples
we see that a threshold of 3σ removes the vast majority of
these particles. In fact the only interferent samples to mea-
sure a number of particles over a threshold of 3σ were the
grass smoke samples.
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Table 1. The number of particles remaining after a fluorescent threshold of 3σ or 9σ was applied for each of the bacterial samples collected
in 2008. Each sample was either washed or unwashed and diluted or undiluted. Each sample was either washed or unwashed, and diluted or
undiluted as indicated by a check mark in the corresponding column.

ID Sample W Dil. n > 3σ n > 9σ

A Bacillus atrophaeus spores 952 34
B X 52 4
C X 1171 217
D X X 241 38

E Bacillus atrophaeus vegetative cells 4779 1915
F X 1488 264
G X 1884 573
H X X 2064 194

I E. coli. 3684 1547
J X 1448 371
K X 2365 1461
L X X 835 302

Table 2. The number of particles remaining after a fluorescent
threshold was applied for each of the non-bacterial samples col-
lected in 2008.

ID Sample Category n > 3σ n > 9σ

M Bermuda grass smut Fungal 2681 423
N Johnson grass smut I Fungal 1209 259
O Johnson grass smut II Fungal 2673 378

P Birch pollen Pollen 111 56
Q Paper mulberry pollen I Pollen 233 209
R Paper mulberry pollen II Pollen 397 103
S Ragweed pollen I Pollen 123 34
T Ragweed pollen II Pollen 209 117

U Diesel smoke Interferent 11 5
V Grass smoke I Interferent 2542 231
W Grass smoke II Interferent 815 68

The data collected is using a WIBS version 3 which is lim-
ited to a detection range of approximately 0.5–12 µm, which
limits the ability of the instrument to detect intact pollen
grains. The vast majority of the equivalent optical diame-
ters (EODs) for the pollen samples collected are much lower
than the measurements for intact pollen grains and are there-
fore likely to be pollen fragments, as was the case in Her-
nandez et al. (2016). The exception is the paper mulberry
samples where there are differences across each of the sam-
ples. In 2008, sample Q which shows a size range similar
to the other pollen samples is most likely to consist entirely
of pollen fragments, whereas sample R shows a much wider
size range which is likely to comprise of both fragmented and
intact pollen. The collection of both fragmented and intact
pollen has previously been shown to occur in Savage et al.
(2017). In 2014, for sample H, the size range is much larger,
consistent with the hypothesis of measuring intact pollen.

A B C D E F G H I J
Sample

0

500

1000

1500

2000
Fl

uo
re

sc
en

t i
nt

en
si

ty
 (A

U
)

0

2

4

6

8

10

12

Si
ze

 
m

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
sy

m
m

et
ry

 fa
ct

or
 (A

U
)

FL1_280
FL2_280

FL2_370
Size

AF

Figure 7. Average fluorescent characteristics for the different
aerosol samples collected in 2014. The error bars in red indicate
a range of ±1σ for each sample.

Paper mulberry has been previously been sampled in Healy
et al. (2012a), using a WIBS version 4 in a low-gain mode
which allows for the collection of particles up to approxi-
mately 31 µm. In this study, the size range of the paper mul-
berry was 13.6± 6.2, indicating that if sample H is intact
pollen we may only be measuring part of the distribution.

It may have been possible to combine the data sets from
2008 and 2014. However, investigating if there are differ-
ences in conclusions when testing different methodologies
using different laboratory samples could offer insight into the
reproducibility of the research presented in the current study.
We therefore elected to analyse the data sets separately and
compare and contrast the findings when testing on the PSLs
and each of the data sets collected in 2008 and 2014.
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Table 3. The number of particles remaining after a fluorescent threshold was applied to each of the samples collected in 2014. Whether a
bacterial sample was washed or unwashed is specified after the sample name.

ID Sample Category n > 3σ n > 9σ

A Bacillus atrophaeus spores (unwashed) Bacteria 1728 684
B Bacillus atrophaeus spores (washed) Bacteria 1322 608
C E. coli (unwashed) Bacteria 1290 632

D Puffball spores I Fungal 504 248
E Puffball spores II Fungal 35 3
F Puffball spores III Fungal 16 1

G Aspen pollen Pollen 74 31
H Paper mulberry pollen Pollen 541 537
I Poplar pollen Pollen 104 50
J Ryegrass pollen Pollen 21 15

K Fuller’s earth Interferent 61 20
L NaCl Interferent 3 0
M Phosphate buffered saline Interferent 35 3

Figure 8. Scatter plots of fluorescence vs. size for four of the samples. Two of the samples were collected in 2008 (a, b) and two were
collected in 2014 (c, d); two are biological (a, c) and two are non-biological (b, d).

4 Results

In Sect. 4.1, 4.2, 4.3 we present the results using HAC, DB-
SCAN and gradient boosting, respectively. A summary of the
findings for each method and an indication of how the num-
ber of clusters are determined are shown in Table 4.

4.1 Hierarchical agglomerative clustering

Prior to hierarchical agglomerative clustering (HAC) being
applied, we labelled each particle from 1 to 4 to indicate
whether the particle was bacteria, fungal, pollen or non-
biological, respectively. We then considered a variety of dif-
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Table 4. Summary of findings and considerations for method selection.

Method Summary No. of clusters

HAC – Does not rely on training data.

– The conclusion we make when using the CH index may
be incorrect when a large proportion of the particles are
from one broad class.

– How the data were prepared greatly impacted upon per-
formance.

– Particles from different categories were sometimes clus-
tered together, e.g. pollen with fungal.

Determined using the
maximum value of the
CH index produced for
clusterings containing
between 1 and 10
clusters.

DBSCAN – Produced a clustering which contained three distinct
clusters each containing primarily one broad class of
bioaerosol in the case of one of the data sets.

– Data preparation greatly impacted upon performance.

– It is not clear at this point whether the values of epsilon
and the minimum number of points would be applicable
to ambient data.

Naturally determined
by setting epsilon and
the minimum number
of points required for a
neighbourhood.

Gradient
boosting

– Performance was consistently good irregardless of data
preparation provided that a threshold, either 3 or 9 stan-
dard deviations, was applied to the fluorescence measure-
ments

– Relies on adequate training data being collected and it is
not clear at this point whether the data collected will be
sufficient.

Always the same as the
number of groups in the
training data.

ferent approaches to prepare the data which are shown in
Table 5. Following this, 96 possible combinations of these
considerations were applied to the data and the hierarchical
agglomerative clustering routine was used to cluster the re-
sultant data in each case. For each of the 96 hierarchies pro-
duced, the clusterings containing between 1 and 10 clusters
were extracted. Subsequently, a value of the adjusted rand
score comparing each of these 10 clusterings to the known la-
bels was calculated. These values of the adjusted rand score
would be unavailable during an ambient campaign but are
used here to measure the similarity of each clustering to the
known labels in order to indicate overall performance and
highlight which of the first 10 clusterings was most similar
to the known labels. Values of the Calińnski–Harabasz index
(CH index), an index which is usually used in an ambient
campaign to determine the number of clusters, were also cal-
culated. The number of clusters in the clustering for which
the maximum value of the CH index was attained can then
be compared to the clustering which is most similar to the
known labels to determine if the CH index attains a maxi-
mum for the clustering which is most similar to the known
labels.

Table 5. Outline of the different approaches tested when using hi-
erarchical agglomerative clustering.

Consideration Option

Take logs True or false
Size threshold None or 0.8
Fluorescent threshold None, 3σ or 9σ
Standardization z score or range
Linkage Ward, centroid, median or single

4.1.1 Impact of data preparation

Figure 9 provides an overview of the results obtained us-
ing the 96 different strategies tested. The data preparation
approach suggested in Crawford et al. (2015) (presented in
blue) was to take logs of the size and asymmetry factor, use a
size threshold of 0.8 µm, use a fluorescent threshold of 3 stan-
dard deviations above the average forced-trigger measure-
ment, standardize using the z score and use Ward Linkage.
It has also been suggested that a threshold of nine standard
deviations may be more appropriate (Savage et al., 2017), so
the approach suggested in Crawford et al. (2015) modified to
use a threshold of 9σ is also presented (in orange).

www.atmos-meas-tech.net/11/6203/2018/ Atmos. Meas. Tech., 11, 6203–6230, 2018



6212 S. Ruske et al.: Machine learning using the WIBS

In the case of the PSL data set, we see that HAC has pro-
duced a clustering with 5 clusters which is very similar to
the known labels. The best performance occurred when us-
ing a fluorescent threshold of 9 standard deviations, albeit 3
standard deviations produced a similarly high value of the
adjusted rand score (0.958).

The maximum adjusted rand scores attained for the labora-
tory generate aerosol collected in 2008 and 2014 were 0.567
and 0.747. Lower scores are to be expected since we would
anticipate laboratory generated aerosol to be more complex
than polystyrene latex spheres and hence more difficult to
discriminate. The adjusted rand score of the best data strategy
of the 96 tested, as indicated by the height of the green bar,
is larger than the corresponding adjusted rand score for the
strategy suggested in Crawford et al. (2015), indicating that
potentially a different strategy may yield better results. How-
ever, the best performing strategy was not consistent across
both the 2008 and 2014 data.

In particular, the best strategy in 2008 was found to be tak-
ing logs; using a size threshold of 0.8 µm; using a fluorescent
threshold of 3 standard deviations; standardizing using the
range and using Ward linkage. In 2014, the highest value of
the adjusted rand score was obtained by not taking logs, not
applying a size threshold, using a fluorescent threshold of
9 standard deviations and using the centroid linkage. Since
our findings are inconsistent across the two laboratory gener-
ated aerosol data sets it becomes difficult to provide a better
recommendation for data preparation other than the strategy
suggested in Crawford et al. (2015).

In addition, there was a substantial difference between the
quality of results attained when using a fluorescent threshold
of 3 or 9 standard deviations. In 2008, we see a decrease
in the adjusted rand score from 0.482 to 0.277 when using
3 and 9σ , respectively. In 2014, we see an increase in the
adjusted rand score from 0.462 to 0.625 when using 3 and
9σ , respectively.

It is possible that the difference in performance when using
the different thresholds could be in part explained by the fluo-
rescent threshold in 2014 being constructed using forced trig-
ger data collected at a different time to the laboratory data, or
by the fluorescence properties differing across the two data
sets. But this differing behaviour when using different data
preparation does need to be investigated further with addi-
tional laboratory data sets and in the context of ambient data.
Nonetheless, the differing conclusions across the two data
sets as to which data preparation is preferable does highlight
the importance of repeating data collection and demonstrat-
ing conclusions are consistent across multiple experiments.

The adjusted rand score is often quite difficult to interpret,
so we provide matching matrices for the best and worst case
scenario using the current data preparation strategy in Ta-
bles 6 and 7. In the best case scenario we are able to dis-
criminate between the pollen and the rest of the data placing
86.8 % of the pollen into Cluster 2. Most of the bacteria is
also placed into Cluster 3 with 66.6 % of the fungal spores.

Figure 9. Performance of hierarchical agglomerative clustering us-
ing the adjusted rand score for the data sets tested across differ-
ent data preparation strategies. The number of clusters concluded in
each case is indicated at the bottom of each bar.

A third of the fungal spores are differentiated from the rest of
the data and placed into Cluster 1. In the worst case scenario
two clusters are provided both primarily containing bacteria.
In this case we can conclude that algorithm has failed to dif-
ferentiate between any of the biological classes, in part due
to the CH index concluding there are 2 clusters.

4.1.2 Impact of the Calińnski–Harabasz index

At the base of each bar in Fig. 9 we provided the number
of clusters in the clustering for which the adjusted rand score
presented was obtained. For the darker bars, this number rep-
resents the number of clusters in the clustering for which the
highest value of the adjusted rand score was obtained across
the clusterings containing between 1 and 10 clusters. For the
lighter bars, this number represents the number of the clus-
ters in the clustering for which a maximum of the CH index
was attained.

There are three different scenarios that occur. First, the
Calińnski–Harabasz index attains a maximum for the clus-
tering which is most similar to the known labels, e.g. for the
PSL data using a fluorescent threshold of 3 standard devia-
tions, the clustering which is most similar to the known la-
bels (shown in the darker bar) contains 5 clusters which is the
same as the clustering for which a maximum of the CH index
is attained (shown in the lighter bar). Second, the Calińnski–
Harabasz index attains a maximum for a different clustering
than that which is most similar to the known labels, but the
conclusion does not have a large impact on performance. For
example, in 2008 using a fluorescent threshold of 3 standard
deviations, the clustering which is most similar to the known
labels contains 5 clusters, whereas the clustering for which
the CH index attains a maximum contains 4 clusters. How-
ever, the heights of bars are nearly the same. In this case, a
very small cluster has been merged in the hierarchy from 5
to 4 clusters resulting in the 4 and 5 cluster clusterings being
extremely similar and consequently the fact that the CH in-
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dex has attained a maximum at 4 clusters instead of 5 is not
concerning, since concluding 4 clusters instead of 5 has very
little impact upon performance.

The final case is in 2008, using a fluorescent threshold of 9
standard deviations. Here the clustering which is most simi-
lar to the known labels is the clustering containing 5 clusters,
whereas the CH index attains a maximum for the clustering
containing only 2 clusters. The 2 cluster solution in this case
is very dissimilar from the known labels.

In the cases where a maximum for the CH index was at-
tained for a clustering containing 2 clusters, i.e. in 2008 using
9σ and in 2014 using 3σ , 78.6 % and 76.5 % of the particles
were from a bacterial sample. Conversely in 2008 using 3σ
and in 2014 using 9σ , 65.4 % and 68.4 % of the particles
analysed were bacteria.

To investigate the possibility of a relationship between the
proportion of the data which is contained in the category con-
taining the largest number of particles and the tendency of the
CH index to conclude that there are 2 clusters we produced
data simulated from 3 normal distributions in 3 dimensions.
Each of the clusters was centred around [0, 0, 0], [5, 5, 5],
[10, 10, 10] and the co-variance matrix was set to σ I3, where
I3 is the 3 by 3 identity matrix. The value of σ was varied
from 1 to 3 to produce a range of variation in the simula-
tions. We elected to produce this simulated data from nor-
mal distributions rather than the laboratory data collected to
remove any potential confounding issues such as the fluo-
rescent threshold used. The proportion of the data that was
contained in the dominant cluster was varied from 50 % to
99 %. Each simulation was repeated 100 times to provide an
indication of the frequency the CH index attains a maximum
for the 3 cluster solution.

In Fig. 10 we see that there is a point where the frequency
for which the CH index attains a maximum for the cluster-
ing containing 3 clusters starts to decrease. The proportion
of data points that needs to be placed in the dominant cluster
before this decrease in performance of the CH index is seen
decreases as the variability in the data increases.

This incorrect conclusion when using the CH index when
analysing data for which a large proportion of data are of
one particular type is problematic when analysing biological
aerosol, since we may expect the quantity of bacteria to be an
order of magnitude greater than the fungal spores, and for the
quantity of fungal spores to be an order of magnitude greater
than the pollen (Després et al., 2012; Gabey, 2011). In future
studies it may therefore be necessary to explore the use of
other indices for determining the number of clusters.

4.1.3 Breakdown of the hierarchies

To more clearly understand how data have been clustered us-
ing HAC we have presented dendrograms for the laboratory
data collected in 2008 and 2014 in Figs. 11 and 12 alongside
heat maps of the matching matrices to indicate the cluster
composition of the 10 cluster solution broken down by sam-

Figure 10. Percentage of simulations for which the CH index at-
tained a maximum for the clustering containing 3 clusters against
the proportion of the data which is placed into a dominant cluster.

ple. The hierarchy produced using the strategy suggested in
Crawford et al. (2015) is presented at the top of each plot
whereas a modification of this strategy using a threshold of
9 standard deviations as suggested by Savage et al. (2017) is
presented at the bottom.

Each row of the heat map corresponds to a particular clus-
ter and each column corresponds to a particular sample. The
intensity of each box corresponds to the quantity of parti-
cles placed into a particular cluster from a particular sam-
ple. Bacterial, fungal, pollen and non-biological samples are
grouped together in blue, green, orange and black, respec-
tively. Different scales are used for the different groups to
prevent the dominant class from obscuring information in the
other classes.

In 2008, the majority of the bacteria is placed into a sin-
gle cluster for both 3σ and 9σ . The fungal and a number of
pollen particles are placed into the same two clusters when
using 3σ and into one cluster when using 9σ . The non-
biological samples, consisting primarily of grass smoke, are
clustered mostly with bacterial samples, possibly due to their
similar size. In addition, there are two clusters when using
3σ and three clusters when using 9σ containing primarily
pollen.

In 2014, pollen has been placed primarily into 1 or 2 clus-
ters. Some of the fungal samples have been placed into a
singleton cluster. For both thresholds the bacteria is grouped
with some of the fungal samples. The non-biological mate-
rial has almost entirely been removed by the threshold and
the remaining material has been divided among a number of
the clusters.

In both 2008 and 2014, some of the material has been seg-
regated into clusters containing primarily one broad class of
biological aerosol. However, a number of fungal particles has
been grouped with pollen samples in the case of 2008 and a
number of the fungal samples have been grouped with bac-
terial particles in 2014. The more successful segregation of
pollen in 2014 may be due to the much larger size range for
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Table 6. Matching matrix for the best case scenario when using the
current data preparation strategy with 9σ on the data collected in
2014.

bacteria fungal spores pollen non-biological

CL1 4 80 13 5
CL2 85 4 550 3
CL3 1835 168 70 15

Table 7. Matching matrix for the worst case scenario when using
the current data preparation strategy with 9σ on the data collected
in 2008.

bacteria fungal spores pollen non-biological

CL1 547 69 298 0
CL2 6373 991 221 304

the paper mulberry sample, whereas in 2008 the fungal and
pollen material may be grouped due to presence of a larger
number of pollen fragments. It is therefore important when
interpreting results from an ambient campaign that it is possi-
ble that clusters may contain more than one broad biological
class.

Also note that this potentially undesirable grouping of ma-
terial from two different classes has occurred prior to the final
stages of the algorithm and therefore will be apparent in the
final solution regardless of the number of clusters concluded,
and cannot be rectified by using a different validation index.

4.2 DBSCAN

One of the main difficulties of using DBSCAN is selecting
the minimum number of points to form a neighbourhood and
the radius of the neighbourhood (Khan et al., 2014). For 3σ
and 9σ using z score standardization, taking logs of the size
and asymmetry factor and removing particles smaller than
0.8 µm we repeat the DBSCAN algorithm for a variety of ε
(neighbourhood radii) and minimum number of points val-
ues. The range of values of ε we test is 0.1, 0.2, . . . , 1.0. The
range of minimum number of points is set using the follow-
ing range relative to the number of particles collected 0.1 %,
0.2 %, . . . , 1.0 %, 2.0 %, . . . , 10.0 %.

We found wide variety of performance across the differ-
ent parameters. Often high accuracy could be obtained when
using a high value of the minimum number of points but
this resulted in removing a substantial portion of the data.
In Fig. 13 we filter our results using a range of thresholds
for the maximum number of points that can be left unclas-
sified (5 %, 10 %, . . . 60 %) and plot the corresponding best
performance under this filter. In all the data sets there was a
point of diminishing returns where no further benefit could
be attained by removing any more of the data. In the case of
the PSL data, this point happened after removing around 5 %

Table 8. Matching matrix for the best case scenario when using
DBSCAN with 9σ , ε = 0.4 and a minimum number of points of
0.7 % on the 2014 data.

bacteria fungal pollen non-biological

Unclassified 329 169 134 16
CL1 0 0 490 0
CL2 12 80 4 0
CL3 1583 3 5 7

of the particles. For the laboratory data sets between 25 %
and 40 % of the data were left unclassified before a peak in
performance was attained. Nonetheless, we note in the case
of the laboratory data collected in 2014 and using a 9σ flu-
orescent threshold, we can attain performance similar to that
which we attain for the PSL data.

In order to investigate further a choice of ε and the mini-
mum number of points which would maximize performance
in terms of the adjusted rand score we plot the adjusted rand
score for each test across all of the data sets. In Fig. 14 we
see that there is a large window of different values for which
a higher value of the adjusted rand score can be achieved on
the PSLs. Contrary to this, in 2008 when using 9σ there is a
very narrow window for which higher values of the adjusted
rand score could be attained. It can also be seen that as ε
increases the number of points required to create a cluster
needs to be increased to compensate.

Overall our results indicate setting ε = 0.3 and ε = 0.4
when using 3σ and 9σ , respectively. The best results can
then be obtained by setting the number of points between
0.4 % and 0.7 % of the data when using an ε of 0.3 % and
0.7 % and 1.0 % when using an ε of 0.4. However, future re-
search will be required to demonstrate these conclusions are
applicable when studying ambient data.

We provide matching matrices for the worst and best case
scenarios in Tables 8 and 9. We see that in the best case
scenario, leaving a decent proportion of data left unclassi-
fied we are able to produce three distinct clusters containing
predominantly one broad class of biological aerosol. In the
worst case scenario we manage only to distinguish between
the bacteria from the fungal spores combined with the pollen.

In the worst case scenario, i.e. using 3σ , on the 2008 data
we fail to remove a sizeable fraction of the non-biological
particles, which was also the case when using HAC, however
we would have expected that the algorithm would leave the
particles unclassified. There is some argument that this worst
case scenario could be circumvented by simply using the 9σ
threshold instead. But further research needs to be conducted
on the handling of non-biological material that appears fluo-
rescent in the instrument.
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Figure 11. Dendrogram truncated at 10 clusters (left) for laboratory data collected in 2008 alongside a heat map of matching matrix (right)
indicating cluster composition by each sample segregated by bacteria, fungal, pollen and non-biological in blue, green, orange and black,
respectively. Separate scales are used for each broad class to prevent dominant class obscuring detail in the other classes. Hierarchies for 3σ
(top) and 9σ (bottom) are presented.

Figure 12. Dendrogram truncated at 10 clusters (left) for laboratory data collected in 2014 alongside a heat map of matching matrix (right)
indicating cluster composition by each sample segregated by bacteria, fungal, pollen and non-biological in blue, green orange and black,
respectively. Separate scales are used for each broad class to prevent the dominant class obscuring detail in the other classes. Hierarchies for
3σ (top) and 9σ (bottom) are presented.

4.3 Gradient boosting

We conducted a similar analysis varying data preparation ap-
proaches as in Sect. 4.1. We found data preparation to have
a very small impact upon performance when using gradient
boosting as long as some kind of fluorescence threshold is
applied where a high value of the adjusted rand score was

obtained regardless of whether we took logs, what standard-
ization was used or the size threshold imposed.

Figure 15 shows the performance using 3σ and 9σ using
z score, taking logs and applying a size threshold of 0.8 mi-
crons. High performance was attained across both laboratory
generated aerosol data sets and for the PSLs. As we did in
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Figure 13. Adjusted rand score using different thresholds of per-
centage of points we allow to be left in the analysis for DBSCAN.

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.1 0.5 0.9 1.0 5.0
Points (%)

0.2
0.4
0.6
0.8
1.0

0.1 0.5 0.9 1.0 5.0
Points (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14. Adjusted rand score for DBSCAN, over a range differ-
ent values of ε and minimum number of points required to form a
neighbourhood. The minimum number of points is expressed rela-
tive to the total number of points. The columns correspond to 3 and
9σ , respectively. The rows correspond to the PSL, 2008 and 2014
data, respectively.

the previous sections we provide matching matrices of the
worst case scenario and best case scenario when using gradi-
ent boosting using the current data preparation in Tables 10
and 11. In the best case scenario we provide a very good clas-
sification with very small errors (AR= 0.933).

In the worst case scenario a similar performance is
achieved (AR= 0.882). Nonetheless, a few particles are
incorrectly classified within the fungal spore and pollen
classes. The classification for the bacteria is still very strong
and most of the remaining non-biological particles are cor-
rectly classified. The non-biological samples have been re-
moved from this data set prior to gradient boosting being ap-
plied when using a fluorescent threshold of either 3σ or 9σ .
We elect to remove these particles since too few of the non-
biological samples that exceed either threshold to produce a
viable training class.

Table 9. Matching matrix for the worst case scenario when using
DBSCAN with 3σ , ε = 0.3 and a minimum number of points of
0.4 % on the 2008 data.

bacteria fungal pollen non-biological

Unclassified 5858 1893 636 752
CL1 15 025 15 44 2616
CL2 80 4655 393 0

Figure 15. Performance of gradient boosting for the different data
sets when using 3σ and 9σ .

4.4 K-means

Similar to the findings presented in Ruske et al. (2017), k-
means performed poorly and hence the results are omitted
from the main text. The results are available in the reposi-
tory published alongside the paper (see the “Code and data
availability” section for further details).

5 Conclusions

We evaluated a variety of different methods that could be
used for classification of biological aerosol. Gradient boost-
ing offered the best performance consistently across the dif-
ferent data preparation strategies and the different data sets
tested. That being said it is unclear at this point how this will
translate to ambient data and whether or not the training data
currently collected will be sufficient to outline the variety of
environments that could potentially be studied.

Should there not be sufficient training data available an
unsupervised approach may be required. In this case, a pos-
sible alternative to HAC is provided. In the best case sce-
nario DBSCAN, despite leaving a decent proportion of the
data unclassified, was able to produce three distinct clusters
containing predominantly one biological class each.

To the best of our knowledge this is the first paper using
DBSCAN to classify biological aerosol using the WIBS. So
we will need to continue to evaluate the performance of this
algorithm in the context of the ambient setting. In particular,
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Table 10. Matching matrix for the best case scenario when using
gradient boosting. This is when using 9σ on the 2014 data.

bacteria fungal pollen

bacteria 1911 8 19
fungal 7 219 29
pollen 6 25 595

Table 11. Matching matrix for the worst case scenario when using
gradient boosting. This is when using 9σ on 2008 data.

bacteria fungal pollen non-biological

bacteria 6852 85 76 8
fungal 56 898 147 2
pollen 8 72 293 0
non-biological 4 5 3 294

we have provided details of what we believe to be sensible
selections of epsilon and the minimum number of points on
the basis of the laboratory data collected. However, it is un-
clear at this point how effective these selections will be when
analysing ambient data.

When applied the laboratory generated aerosol tested, we
found that performance of HAC was in general much lower
than what was achieved previously using the PSLs (Craw-
ford et al., 2015). Performance was heavily dependent on the
data preparation strategy used, and often results could vary
substantially between different strategies and data sets, po-
tentially due to differences in the fluorescence measurements
across the two data sets. A potential issue with the CH index
is highlighted, whereby we see a failure of the index to deter-
mine the correct number of clusters as the size of the dom-
inant class and variation in the data increases. Some of the
pollen samples were clustered with the fungal samples when
analysing the data from 2008. A number of the pollen parti-
cles may be fragmented which may explain why this group-
ing may occur. Similarly grass smoke was grouped with the
bacterial samples, potentially due to their similar size. Cau-
tion will therefore be required when applying the HAC algo-
rithm to ambient data, and it must be noted in particular that
material from two different classes may be placed into the
same cluster and that the CH index may indicate an incorrect
number of clusters if the data collected contains a significant
quantity of one particular type of particle.

In the future, more laboratory generated aerosol particles
will need to be collected to continue to evaluate the perfor-
mance of the algorithms which we use. In addition, when
gradient boosting was used we failed to classify the some of
the pollen and fungal spore samples analysed. It is therefore
possible that higher spectral instruments such as the spec-
tral intensity bioaerosol sensor (Nasir et al., 2018), will be
required to provide a more accurate classification.

Code and data availability. Part of the code used produce the
above paper is part of an ongoing development of a software suite
for analysis of various UV-LIF instruments, available at https:
//github.com/simonruske/UVLIF, last access: 5 November 2018,
upon publication, and Ruske (2018a). Other code not currently in-
cluded within the software package, i.e. code files which are used to
produce the plots and figures specific to the current paper are avail-
able at https://github.com/simonruske/AMT-2018-126, last access:
13 November 2018, and Ruske (2018b).

The data used is available upon request by contacting the lead
author.
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Appendix A: Comparison of particle size with other
studies

To contextualize the samples collected in the current study
we examined the literature to find similar studies using the
WIBS as well as other studies using microscopy. In the case
of most of the samples we were able to find a paper on the
same or similar species of particle which are presented in
Table A1.
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Table A1. Average particle sizes for the current study compared with other studies. The sizes presented here are collated from the following
studies [1] Healy et al. (2012a), [2] Savage et al. (2017), [3] Hernandez et al. (2016), [4] Pierucci (1978), [5] Carrera et al. (2007), [6] Crotzer
and Levetin (1996), [7] Geiser et al. (2000), [8] Pinnick et al. (1995), [9] Fumanal et al. (2007), [10] Mäkelä (1996), [11] Kang et al. (2007),
[2008] and [2014] are taken from the current study.

Sample Measurement type Size (µm) Reference

Paper mulberry pollen WIBS4 low-gain 13.6± 6.2 [1]
WIBS3 7.18± 4.74 [2008]
WIBS3 3.41± 1.43 [2008]
WIBS3 11.27± 1.74 [2014]
Miscroscopy 13.8 [11]

Ragweed pollen WIBS4 low-gain 24.5± 7.6 [1]
WIBS3 3.51± 1.38 [2008]
WIBS3 4.70± 1.71 [2008]
Microscopy 13.02± 0.12–14.86± 0.16 [9]

Birch pollen WIBS4 low-gain 19.0± 9.2 [1]
Betula lenta, nigra and populifolia pollen WIBS4 2.5± 4.2 [3]
Birch pollen WIBS3 3.98± 1.59 [2008]
Betula pollen (various) Microscopy 17.31± 0.08–24.36± 1.59 [10]

White poplar WIBS4A 18.7± 1.9 [2]
White poplar fragments WIBS4A 7.4± 4.0 [2]
Aspen pollen WIBS3 3.72± 2.49 [2014]
Poplar pollen WIBS3 3.63± 2.39 [2014]

Bermuda grass smut WIBS4 high-gain 4.7± 2.2 [1]
WIBS3 3.57± 1.16 [2008]
Microscopy 6.7× 6.5 [6]

Johnson grass smut WIBS4 high-gain 8.9± 1.5 [1]
WIBS3 3.47± 1.00 [2008]
WIBS3 3.35± 0.78 [2008]
Microscopy 13.9× 12.6 [6]

Puffball spores Microscopy 3.5± 0.24 [7]
WIBS3 2.50± 0.85 [2008]
WIBS3 2.45± 1.16 [2008]
WIBS3 3.39± 1.76 [2008]
Fluorescence particle counter 2-4 [8]

Bacillus atrophaeus spores WIBS4A 2.2± 0.4 [2]
WIBS3 1.00± 0.40–1.60± 0.78 [2008, 2014]
Microscopy 1.22± 0.12 (length)

0.65± 0.05 (diameter) [5]

Bacillus atrophaeus vegetative cells WIBS3 1.06± 0.68–1.60± 0.78 [2008]

E. coli WIBS4A 1.2± 0.3 [2]
WIBS4 0.9± 0.4 [3]
WIBS3 0.89± 0.23–1.48± 0.79 [2008, 2014]
Microscopy 1.67–3.08 (length)

0.69–0.84 (diameter) [4]
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Appendix B: ABC counts and average particle sizes

To aid in comparing the data presented with other studies, we
have presented Tables B1 and B2 which are very similar to
the table in the appendices of Hernandez et al. (2016). A, B
and C are used to denote particles which exceed the fluores-
cent threshold in FL1_280, FL2_280, FL2_370, respectively.
For example A is used to denote a particle that was only flu-
orescent in the FL1_280 channel only. Combinations such as
AB, AC, BC and ABC are used to denote particles which ex-
ceed a fluorescent threshold in more than one channel. For
example, AB is used to denote a particle that exceeded the
fluorescent in both the FL1_280 and FL2_280 channels.

The same information but using a 9σ threshold instead is
presented in Table B3.
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Table B1. For the data collected in 2008, a summary of size and fluorescent measurements for each sample to include: the number of particles
in the sample (total), average equivalent optical diameter (EOD), standard deviation of the size (σ ), the number of points that exceeded a
fluorescent threshold of 3 standard deviations above the average forced trigger measurement (n > 3σ ), and ABC counts using a 3σ threshold.

n EOD σ n > 3σ A B AB C AC BC ABC

Bacteria

Bacillus atrophaeus spores (unwashed) 5778 1.4 0.5 1015 322 200 74 113 48 90 168
Bacillus atrophaeus spores (unwashed, diluted) 1525 1.1 0.7 82 65 6 3 4 0 3 1
Bacillus atrophaeus spores (washed) 4694 1.6 0.8 1246 728 107 191 18 29 5 168
Bacillus atrophaeus spores (washed, diluted) 1786 1.5 0.8 280 183 21 30 9 10 12 15
Bacillus atrophaeus vegetative cells (unwashed) 6142 1.1 0.4 5546 409 693 771 75 79 287 3232
Bacillus atrophaeus vegetative cells (unwashed, diluted) 2192 1 0.2 1739 484 279 326 30 26 67 527
Bacillus atrophaeus vegetative cells (washed) 6002 1.3 0.6 1961 1797 3 139 0 1 1 20
Bacillus atrophaeus vegetative cells (washed, diluted) 2827 1.1 0.2 2218 2178 3 36 0 0 1 0
E. coli (unwashed) 4956 1.2 0.5 4097 366 578 174 179 69 868 1863
E. coli (unwashed, diluted) 2508 1 0.2 1778 751 309 82 99 27 263 247
E. coli (washed) 5669 1.5 0.8 2627 2508 1 99 0 0 0 19
E. coli (washed, diluted) 2104 0.9 0.2 1390 1383 0 5 0 0 2 0

Fungal

Bermuda grass smut 5220 3.6 1.2 2681 1446 7 34 271 495 81 347
Johnson grass smut I 2157 3.5 1 1211 76 3 3 796 128 92 113
Johnson grass smut II 5091 3.3 0.8 2675 217 8 1 1939 270 132 108

Pollen

Birch pollen 164 4 1.6 112 16 1 0 29 7 8 51
Paper mulberry pollen I 295 7.2 4.7 237 16 2 9 2 0 21 187
Paper mulberry pollen II 735 3.4 1.4 405 159 2 9 72 59 37 67
Ragweed pollen I 241 3.5 1.4 127 24 1 0 57 12 7 26
Ragweed pollen II 328 4.7 1.7 209 21 0 1 41 16 15 115

Non-biological

Diesel smoke 7900 1.1 0.4 16 3 4 0 5 0 0 4
Grass smoke I 9212 1.1 0.4 2976 1 234 0 2004 0 737 0
Grass smoke II 5245 1.1 0.4 900 3 51 0 668 0 176 2
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Table B2. For the data collected in 2014, a summary of size and fluorescent measurements for each sample to include: the number of particles
in the sample (total), average equivalent optical diameter (EOD), standard deviation of the size (σ ), the number of points that exceeded a
fluorescent threshold of 3 standard deviations above the average forced trigger measurement (n > 3σ ), and ABC counts using a 3σ threshold.

n EOD σ n > 3σ A B AB C AC BC ABC

Bacteria

Bacillus atrophaeus spores (washed) 3321 1 0.4 2685 2545 1 15 1 81 1 41
Bacillus atrophaeus spores (unwashed) 2896 1 0.5 2248 85 15 2 1166 88 350 542
E. coli (unwashed) 2534 1.2 0.6 1640 268 10 5 439 239 48 631

Fungal

Puffball spores I 1739 2.5 0.8 35 3 1 0 27 1 3 0
Puffball spores II 553 2.5 1.2 16 2 0 0 12 1 0 1
Puffball spores III 1627 3.4 1.8 506 79 4 73 168 7 68 107

Pollen

Aspen pollen 398 3.7 2.5 74 5 1 0 35 1 11 21
Poplar pollen 375 3.6 2.4 104 7 0 3 45 4 21 24
Paper mulberry pollen 565 11.3 1.7 543 3 0 1 4 0 35 500
Ryegrass pollen 47 3.3 2.1 21 0 0 0 6 0 7 8

Non-biological

Fuller’s earth 3064 3.6 2.8 62 40 1 0 8 4 3 6
Phosphate buffered saline 3226 1.2 1.6 50 29 7 0 11 1 0 2
NaCl 2197 1.4 0.8 6 6 0 0 0 0 0 0
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Table B3. Summary of properties for samples collected from 2008 and 2014, respectively, using a fluorescent threshold of 9σ .

2008

EOD σ n > 9σ A B AB C AC BC ABC

Bacteria

Bacillus atrophaeus spores (unwashed) 2.2 0.6 34 9 2 3 13 1 3 3
Bacillus atrophaeus spores (unwashed, diluted) 2.7 1.8 4 1 0 0 0 0 2 1
Bacillus atrophaeus spores (washed) 2.6 1.1 217 182 0 9 0 5 0 21
Bacillus atrophaeus spores (washed, diluted) 2.6 1 38 28 0 1 1 0 6 2
Bacillus atrophaeus vegetative cells (unwashed) 1.3 0.6 2051 273 326 132 33 19 184 1084
Bacillus atrophaeus vegetative cells (unwashed, diluted) 1.2 0.3 278 121 72 24 2 2 14 43
Bacillus atrophaeus vegetative cells (washed) 1.7 0.9 581 567 0 13 0 0 0 1
Bacillus atrophaeus vegetative cells (washed, diluted) 1.3 0.3 196 196 0 0 0 0 0 0
E. coli (unwashed) 1.5 0.7 1676 343 97 23 92 30 334 757
E. coli (unwashed, diluted) 1.1 0.2 413 333 23 4 12 4 17 20
E. coli (washed) 1.7 0.9 1516 1506 2 7 0 0 0 1
E. coli (washed, diluted) 1.1 0.3 349 348 0 0 0 0 1 0

Fungal

Bermuda grass smut 4 1.5 423 118 10 14 133 19 37 92
Johnson grass smut 4.2 1.3 259 0 0 1 171 0 29 58
Johnson grass smut II 3.8 1 378 2 2 0 340 0 29 5

Pollen

Birch pollen 4.5 1.8 57 7 0 0 9 0 2 39
Paper mulberry pollen I 7.8 4.6 212 22 0 7 3 0 30 150
Paper mulberry pollen II 3.9 2.1 107 17 2 2 21 0 39 26
Ragweed pollen I 4.7 1.4 34 0 0 0 11 0 2 21
Ragweed pollen II 5.5 1.5 117 2 0 0 9 0 10 96

Non-biological

Diesel smoke 1.1 0.2 6 0 3 1 1 0 0 1
Grass smoke I 2 0.5 236 0 1 0 218 0 17 0
Grass smoke II 2 0.4 68 0 0 0 64 0 4 0

2014

Bacteria

Bacillus atrophaeus (washed) 1.3 0.5 735 721 0 0 0 12 1 1
Bacillus atrophaeus (unwashed) 1.5 0.5 679 2 0 0 262 7 264 144
E. coli (unwashed) 1.6 0.7 669 55 0 0 209 135 13 257

Fungal

Puffball spores I 2.4 0.7 1 0 0 0 0 0 0 1
Puffball spores II 2 0 3 0 0 0 2 0 1 0
Puffball spores III 4.2 1.8 249 98 0 4 46 1 18 82

Pollen

Aspen pollen 5 3.2 31 1 0 0 10 2 7 11
Poplar pollen 4.4 2.9 50 3 0 0 14 1 19 13
Paper mulberry pollen 11.4 1.4 537 3 0 0 7 0 285 242
Ryegrass pollen 3.6 2.4 15 0 0 0 6 0 3 6

Non-biological

Fuller’s earth 4.5 3.2 20 9 0 0 4 1 3 3
Phosphate buffered saline 4.6 5.1 3 2 0 0 0 0 0 1
NaCl N/A N/A 0 0 0 0 0 0 0 0
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Appendix C: Summary of average properties of the
different data sets

In the following section we summarize mean and standard
deviations in each of the five measurements in each of the
samples collected in 2008 and 2014. The properties pre-
sented in Tables C1, C2, C3 and C4 are after a size threshold
of 0.8 µm is imposed and a fluorescent threshold of either 3σ
or 9σ has been applied. These summary statistics presented
are prior to any log-transformations or data standardization
has been applied.
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Table C1. Summary of particle measurements for the 2008 data set using a fluorescent threshold of 3σ .

Sample n > 3σ FL1_280 FL2_280 FL2_370 Size AF

Bacillus atrophaeus spores (unwashed) 952 mean 94.6 63.9 65.4 1.4 7.7
SD 47.3 36.1 44.6 0.4 3.8

Bacillus atrophaeus spores (unwashed, diluted) 52 mean 110.3 51.8 43 1.3 8.1
SD 84.8 79.7 76.5 0.8 6.1

Bacillus atrophaeus spores (washed) 1171 mean 164.2 60.6 48.5 1.7 9.3
SD 136.4 58.5 55.8 0.8 4.9

Bacillus atrophaeus spores (washed, diluted) 241 mean 140.7 50.3 46.1 1.7 9.4
SD 97.9 57.1 58.4 0.8 5.9

Bacillus atrophaeus vegetative cells (unwashed) 4779 mean 239.3 221.2 192 1.1 4.7
SD 287.5 293.3 284.9 0.4 2

Bacillus atrophaeus vegetative cells (unwashed, diluted) 1488 mean 140.5 94.5 68.8 1 6.1
SD 71.6 70.1 60.4 0.2 3.8

Bacillus atrophaeus vegetative cells (washed) 1884 mean 214.5 29.8 12.4 1.4 6.4
SD 156.7 44.9 33.6 0.6 3.4

Bacillus atrophaeus vegetative cells (washed, diluted) 2064 mean 153.8 19 7.4 1.1 11
SD 43.2 19.3 17.7 0.2 5.8

E. coli (unwashed) 3684 mean 222.5 240.4 247.7 1.2 4.7
SD 301.6 351.1 375.5 0.5 2

E. coli (unwashed, diluted) 1448 mean 139.3 70 63.9 1 5.5
SD 99.2 56.1 59.6 0.2 2.5

E. coli (washed) 2365 mean 351.4 12.5 0.8 1.6 7.5
SD 317.8 30.7 22.5 0.8 4.7

E. coli (washed, diluted) 835 mean 202.6 10.7 4.1 1 6.6
SD 56.3 20.2 20.8 0.2 2.8

Bermuda grass smut 2681 mean 138.1 46.5 97.9 3.6 12.6
SD 122.7 134.7 153.9 1.2 6.4

Johnson grass smut I 1209 mean 160.5 97.4 154.9 3.5 11
SD 419.7 280.4 169.2 1 6

Johnson grass smut II 2673 mean 66.7 25.7 124.4 3.3 11.6
SD 28.9 48.3 89.4 0.8 5.7

Birch pollen 111 mean 662 433.7 250.4 4 8.3
SD 854.8 586.9 280 1.6 6.9

Paper mulberry pollen I 233 mean 668.3 1228.4 1247.9 7.3 10.9
SD 583 851.5 856.6 4.7 7.1

Paper mulberry pollen II 397 mean 142.8 159.6 229.2 3.5 13.5
SD 188.7 412.3 443.4 1.4 6.5

Ragweed pollen I 123 mean 384.6 219.5 173.2 3.6 10
SD 698.7 447.9 211.1 1.3 6.5

Ragweed pollen II 209 mean 928.2 625.1 310.6 4.7 7.9
SD 953.9 643.9 303.1 1.7 7.3

Diesel smoke 11 mean 161.1 146.5 78.4 1.2 7.8
SD 204.3 166.2 96.3 0.3 7.5

Grass smoke I 2542 mean 9.8 52 110.9 1.2 4.4
SD 18.2 33.3 66.9 0.4 1.9

Grass smoke II 815 mean 10.9 44.2 108 1.2 4.9
SD 19.2 32.7 59.2 0.4 2.4

www.atmos-meas-tech.net/11/6203/2018/ Atmos. Meas. Tech., 11, 6203–6230, 2018



6226 S. Ruske et al.: Machine learning using the WIBS

Table C2. Summary of particle measurements for the 2008 data set using a fluorescent threshold of 9σ .

Sample n > 9σ statistic FL1_280 FL2_280 FL2_370 Size AF

Bacillus atrophaeus spores(unwashed) 34 mean 214.2 142.5 163.3 2.2 10.2
SD 79.3 60.2 72.9 0.6 5.6

Bacillus atrophaeus spores (unwashed, diluted) 4 mean 230.8 259.2 242.5 2.7 14.4
SD 243.8 162.1 142 1.8 11.3

Bacillus atrophaeus spores (washed) 217 mean 358 121.6 110.1 2.6 12.4
SD 218.1 105.4 95.5 1.1 6.1

Bacillus atrophaeus spores (washed, diluted) 38 mean 276 128 123.7 2.6 14.8
SD 169.6 97.3 101.8 1 7.9

Bacillus atrophaeus vegetative cells (unwashed) 1915 mean 423.7 400.4 358 1.4 4.8
SD 384 399.3 393.3 0.6 2.4

Bacillus atrophaeus vegetative cells (unwashed, diluted) 264 mean 244.9 166 123.1 1.2 7.5
SD 94.5 117.3 103.9 0.3 4.6

Bacillus atrophaeus vegetative cells (washed) 573 mean 347.9 50.3 21.4 1.7 7.6
SD 230.2 72 53.9 0.9 3.9

Bacillus atrophaeus vegetative cells (washed, diluted) 194 mean 247.7 26.8 11.1 1.3 13.8
SD 32.6 21.4 17 0.2 6.8

E. coli (unwashed) 1547 mean 413.7 447.1 470.3 1.5 4.8
SD 388.8 467.3 498.4 0.7 2.4

E. coli (unwashed, diluted) 371 mean 254.1 75.4 68.8 1.1 6.6
SD 111.1 86.8 92.2 0.2 3

E. coli (washed) 1461 mean 463.6 18.1 2.8 1.8 8.5
SD 360.6 34.3 24 0.9 5.2

E. coli (washed, diluted) 302 mean 260 12.8 6.4 1.1 7
SD 47 22.5 24.7 0.2 3.2

Bermuda grass smut 423 mean 271.7 203.8 303.7 4 13.4
SD 262.6 285.5 303.1 1.5 7.3

Johnson grass smut I 259 mean 510.2 380.2 344.8 4.2 9
SD 814.8 513 289.3 1.3 6.1

Johnson grass smut II 378 mean 77.7 82.5 267.8 3.8 12.6
SD 41.1 96.2 161 1 6

Birch pollen 56 mean 1229.8 828.8 406.1 4.6 5.4
SD 891.9 605.8 324.5 1.7 5.8

Paper mulberry pollen I 209 mean 730.8 1363.4 1384.5 7.9 11.2
SD 583.7 794.4 798 4.5 7.1

Paper mulberry pollen II 103 mean 258.1 556 690.7 4 13.4
SD 340.3 663.8 682.1 2 7

Ragweed pollen I 34 mean 1188 750.4 393.1 4.7 6.5
SD 933.1 577.8 299.9 1.4 6.5

Ragweed pollen II 117 mean 1590.7 1089.8 484.3 5.5 5.2

SD 791.9 499.4 307.5 1.5 6.7
Diesel smoke 5 mean 284.8 281.2 173.8 1.2 4.6

SD 248.8 160.7 58.9 0.1 2.9
Grass smoke I 231 mean 10.9 106.4 262.7 2 3.3

SD 18.3 51 127.4 0.5 2
Grass smoke II 68 mean 8.6 102.1 260.3 2 4

SD 18.9 40.5 93 0.4 3.2
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Table C3. Summary of particle measurements for the 2014 data set using a fluorescent threshold of 3σ .

Sample n > 3σ statistic FL1_280 FL2_280 FL2_370 Size AF

Bacillus atrophaeus spores (unwashed) 1728 mean 104.5 45.5 26.5 1.2 8.4
SD 118 45.9 61.2 0.4 4.3

Bacillus atrophaeus spores (washed) 1322 mean 25.4 211.2 357 1.2 5
SD 69.5 222.7 376.5 0.5 2.1

E. coli (unwashed) 1290 mean 104.3 174.9 317.4 1.3 6.1
SD 187.3 207.1 395.6 0.6 2.8

Puffball spores I 504 mean 288.2 218.1 169.3 3.4 12.1
SD 524.4 289 182 1.8 9.8

Puffball spores II 35 mean −19.6 64.4 118.4 2.5 17.6
SD 17.8 49.9 107.7 0.8 8.7

Puffball spores III 16 mean 19.4 64.2 100.2 2.5 20.6
SD 165.4 68.4 60.3 1.2 12.3

Aspen pollen 74 mean 131.3 301 447.6 3.7 17.2
SD 385.8 504.4 631.4 2.5 7.5

Paper mulberry pollen 541 mean 99.9 1907.9 1924.1 11.3 11.8
SD 77.9 311.9 260.9 1.6 5.5

Poplar pollen 104 mean 163.2 338.2 496.2 3.6 17
SD 488.6 525.4 643.3 2.4 9.1

Ryegrass pollen 21 mean 110.7 278.7 569.3 3.3 18.4
SD 340 258.6 431 2.1 8.6

Fuller’s earth 61 mean 180.2 114.3 148.2 3.7 16
SD 476.2 214.5 367.8 2.8 9.9

NaCl 3 mean 16.7 19.7 14.7 2 9.1
SD 5.4 24.4 32.5 0.7 5.3

Phosphate buffered saline 35 mean 64.2 113.9 89.1 1.4 6.2
SD 342.1 320 324.1 1.8 2.7
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Table C4. Summary of particle measurements for the 2014 data set using a fluorescent threshold of 9σ .

Sample n > 9σ statistic FL1_280 FL2_280 FL2_370 Size AF

Bacillus atrophaeus spores (unwashed) 684 mean 195 60.5 46.2 1.4 9.8
SD 144.6 65.3 90.3 0.5 4.7

Bacillus atrophaeus spores (washed) 608 mean 65.4 358.7 636.8 1.6 4.6
SD 83.6 257.9 402.1 0.5 2

E. coli (unwashed) 632 mean 199.9 284.1 550 1.7 6.2
SD 229.6 251.3 460 0.7 3.1

Puffball spores I 248 mean 599.7 380.6 252.3 4.3 8.7
SD 606 341.3 226.1 1.8 8.2

Puffball spores II 3 mean −20.7 176.7 417.3 2.4 19.7
SD 17.4 76 146.6 0.7 9

Puffball spores III 1 mean 654 298 284 2 25.6
SD 0 0 0 0 0

Aspen pollen 31 mean 338 643.5 952 5 18.7
SD 529.9 635.9 716.1 3.2 8.6

Paper mulberry pollen 537 mean 101 1921.8 1937.7 11.4 11.8
SD 77.2 268.5 209.1 1.4 5.5

Poplar pollen 50 mean 355.9 644.5 938.8 4.4 16.5
SD 651.1 626.5 694.4 2.9 9.8

Ryegrass pollen 15 mean 168.1 361.5 753.3 3.6 17.8
SD 387.7 263.5 375.9 2.4 9.5

Fuller’s earth 20 mean 521.1 274.6 411.7 4.5 15.7
SD 719.7 317.2 552.1 3.2 11.3

Phosphate buffered saline 3 mean 748.7 725.7 711 4.6 4.7
SD 918.1 878.5 888.2 5.1 1.6
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