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Abstract. Air pollution has had an increasingly powerful im-
pact on the everyday life of humans. More and more people
are aware of the health problems that may result from inhal-
ing air which contains dust, bacteria, pollens or fungi. There
is a need for real-time information about ambient particulate
matter. Devices currently available on the market can detect
some particles in the air but cannot classify them according
to health threats. Fortunately, a new type of technology is
emerging as a promising solution.

Laser-based bio-detectors are characterizing a new era in
aerosol research. They are capable of characterizing a great
number of individual particles in seconds by analyzing opti-
cal scattering and fluorescence characteristics. In this study
we demonstrate the application of artificial neural networks
(ANNs) to real-time analysis of single-particle fluorescence
fingerprints acquired using BARDet (a Bio-AeRosol Detec-
tor). A total of 48 different aerosols including pollens, bacte-
ria, fungi, spores, and nonbiological substances were charac-
terized. An entirely new approach to data analysis using a de-
cision tree comprising 22 independent neural networks was
discussed. Applying confusion matrices and receiver operat-
ing characteristics (ROC) analysis the best sets of ANNs for
each group of similar aerosols were determined. As a result, a
very high accuracy of aerosol classification in real time was
achieved. It was found that for some substances that have
characteristic spectra, almost each particle can be properly
classified. Aerosols with similar spectral characteristics can
be classified as specific clouds with high probability. In both
cases the system recognized aerosol type with no mistakes.

In the future, it is planned that performance of the sys-
tem may be determined under real environmental conditions,
involving characterization of fluorescent and nonfluorescent
particles.

1 Introduction

Ambient air contains a variety of particles such as dust, bac-
teria, pollens, fungi and other particles of biological and
nonbiological origin (Pöhlker et al., 2013; Górny, 2004).
Aerosols are involved in various atmospheric processes such
as ice nuclei formation, precipitation and global climate ef-
fects (Deguillaume et al., 2008; Fröhlich-Nowoisky et al.,
2016; Gabey et al., 2010; Pósfai and Buseck, 2010; Fuzzi et
al., 2015). They also greatly influence human health (David-
son et al., 2005; Pope and Dockery, 2006; Michaels, 2017;
Shiraiwa et al., 2012). Therefore, the characterization of am-
bient air is important for estimating potential health hazards
and environmental impact (Mauderly and Chow, 2008; Lim
et al., 2005). Standard methods of aerosol composition as-
sessment usually include microscopic inspection or molec-
ular analysis of filters (Miaskiewicz-Peska and Lebkowska,
2012), tape or liquid trapped particles. Nevertheless, they
suffer from low time resolution due to periodical and rela-
tively long analytical procedures. They are also ineffective
for the detection of non-culturable microorganisms (Blais-
Lecours et al., 2015; Trafny et al., 2014).

The detection and classification of biological particles is
possible using fluorescence techniques due to the presence
of proteins, NADH, and some vitamins that emit light when
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excited with UV light (Lakowicz, 2006). This feature is uti-
lized in single-particle fluorescence detectors. In the flowing
air each particle is characterized for size/shape using light
scattering as well as fluorescence properties. This approach
ensures continuous measurement and immediate response.
Thus the analysis process can be facilitated and accelerated
compared with other commonly used analytical procedures
(Hill et al., 1999; Choi et al., 2014; Taketani et al., 2013;
Feugnet et al., 2008). Besides advantages such as reagentless
and real-time particle characterization, laser-based methods
do not provide information on the chemical composition of
aerosol.

Several studies using single-particle fluorescence detectors
have demonstrated that fluctuations of aerosol concentration
and variations in its fluorescence properties are highly de-
pendent on the season, day, time, location and place occu-
pancy (Gabey et al., 2011; Huffman et al., 2010; Pinnick et
al., 2004; Bhangar et al., 2014; Fennelly et al., 2017). Each
single particle passing the instrument is labeled with a time
stamp, scattering properties (size and/or shape) and fluores-
cence characteristics. It is obvious that continuous single-
particle measurements bring a new potential and quality to
environmental research. However, particles of the same type
and batch display slightly different spectral characteristics
due to variations in biochemical composition, size, age of
population (Agranovski et al., 2003), degradation (Hernan-
dez et al., 2016) or stress level (Lee et al., 2010) and the
particle position within the instrument’s interrogation point
(Pan et al., 2011). Simpler statistical analyses, such as data
averaging and graphical spectra representation, are not suffi-
cient. Therefore, the huge amount of data and occurring spec-
tral variations require more advanced algorithms support-
ing automatic data classification. Various analytical methods
of particle discrimination and classification have been ap-
plied. It has been shown that principal component analysis
(PCA), linear discriminant analysis (LDA) and hierarchical
cluster analysis (HCA) of fluorescence spectra greatly in-
crease the discrimination of particles compared with meth-
ods based on spectra averaging or fluorescence threshold
(Leśkiewicz et al., 2016; Kaliszewski et al., 2013; Pan et
al., 2012; Savage et al., 2017; Crawford et al., 2015). Arti-
ficial neural networks (ANNs) comprise an emerging ana-
lytical approach that is becoming more widely and success-
fully applied in various life domains such as chemical anal-
ysis (Borecki et al., 2008), image recognition (Antowiak and
Chałasińska-Macukow, 2003), data mining and weather fore-
casting (Purnomo et al., 2017). It has been shown that ANNs
can be applied in bio-aerosol classification (Kohlus and Bot-
tlinger, 1993). However, it usually requires more user input
compared to other analytical procedures (Ruske et al., 2017).

This paper focuses on the application of ANNs for real-
time discrimination of bio-aerosols based on single-particle
fluorescence characteristics. We demonstrate a new approach
to data analysis using ANNs which allows automation of data
preparation procedures and minimum user involvement.

Table 1. Configuration of bands in the multichannel PMT.

BARDet’s Bandwidth
fluorescence bands (nm)

B1 415.4–429.3
B2 443.1–456.8
B3 470.5–484.2
B4 497.8–524.9
B5 538.3–565.0
B6 578.3–604.6
B7 617.6–643.5

2 Materials and methods

2.1 Experiment

2.2 BioAeRosol Detector (BARDet)

Detailed information concerning the construction and param-
eters of the instrument used for the experiments was pre-
sented in our previous work (Kaliszewski et al., 2016). In
general, the ambient air is continuously drawn through the
nozzle. It is focused with a sheath flow of filtered air. Par-
ticles in the focused air pass through the BARDet’s cham-
ber where they are interrogated by a 16 mW CW laser beam
generated by a diode laser operating at 375 nm wavelength
(CUBE, Coherent). The backward and forward scattered sig-
nals are detected with two PMTs (photomultiplier tubes;
H6780, Hamamatsu) mounted at the 35 and 145◦ angles to
the laser beam axis.

The fluorescence of particles is measured at a 90◦ angle
to the laser beam with a 32-channel PMT (A10766, Hama-
matsu). The longpass filter with a cutting edge at 400 nm
(Edmund Optics) separates the fluorescence signal from scat-
tered light. The multichannel PMT measures fluorescence in
18 active channels in a range of 415.4–643.5 nm. The chan-
nels are grouped in seven bands. Such a solution extends
the dynamic range of measured spectra, assures a high S/N
(signal-to-noise) ratio and also reduces the possibility of sig-
nal saturation. The remaining channels are not used. The
band configuration is presented in Table 1.

2.2.1 Aerosols

For the tests, dry powders of harmless substances were used
since they did not need a specialized aerosol protection
chamber. In order to achieve a reliable aerosol classification,
the ANNs need to be trained using as large a number of mea-
surement data as possible. Therefore, various particle types,
that can be easily aerosolized, were tested. Samples such as
pollens, fungi, bacteria, spores and plant debris naturally oc-
cur in the atmosphere. Biofluororphores such as riboflavin,
cellulose, amino acids and proteins were also characterized
since they are present in biological materials. The group of

Atmos. Meas. Tech., 11, 6259–6270, 2018 www.atmos-meas-tech.net/11/6259/2018/
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Figure 1. Setup of aerosol generation, data recording and analysis.

bacterial growth media was investigated due to their power-
ful influence on bacteria fluorescence, especially if they are
not sufficiently washed. This can occur in the case of inten-
tionally released bacterial aerosols. Due to technical limita-
tions, samples other than of a pharmaceutical type could not
be aerosolized in this study. The aerosols of flours as well as
fluorescent nonbiological substances such as paper dust, AC
fine test dust and talc were analyzed since they can especially
occur in indoor and public places. Nonfluorescent particles
were not the subject of research since they can be automat-
ically discarded as nonbiologically applying given fluores-
cence thresholds.

The samples used for this study are listed in Table 2.
To perform numerous experiments, disposable vials were
used, one for each aerosol sample. This prevented cross-
contamination between measured samples. The aerosols
were generated from modified 50 ml Falcon tubes placed
on the vortex. The vials in the lower part contained two
connectors for silicon tubes. Vortexed particles were en-
trained and formed an aerosol cloud inside the Falcon tube.
The aerosolized particles were aspirated from the vial to
BARDet’s aerosol inlet. Each tube contained about 50 mg
of the dry powder sample. During aerosol generation, fil-
tered air was supplied into the vial to compensate for the
BARDet’s flow. The concentration of the aerosols was ad-
justed with the vibration frequency of the vortex. The mea-
surement started after the aerosol reached a homogeneous
concentration. The experimental setup is shown in Fig. 1.

2.2.2 Aerosol microscopy

For microscopy analysis the aerosols were generated as de-
scribed above and collected by impaction on a glass mi-
croscopic slide. The visualization of the samples was per-
formed using a Nikon Eclipse Ti-U microscope with 10×
objective. The images were recorded with a 5 megapixel DS-
Fi1 camera. The aerosol equivalent diameters and circular-
ity were analyzed automatically using NIS-Elements 64 bit
3.22.10 software. The threshold of particle outline was cor-
rected manually to obtain the visually best fit.

2.2.3 Data acquisition method and preprocessing

The fluorescence of each particle was recorded in seven
bands. This creates a time series of the signals which has to
be preprocessed before further analysis. There are two steps
in gathering data. The first one is performed by the inter-
nal software of BARDet which is responsible for controlling
the instrument and the acquisition of raw signals. Then data
are forwarded to a preprocessing module in the analysis soft-
ware. Its first task is to extract valuable signals from the noise
(three sigma rule). After that a normalization procedure is re-
quired. It is performed first by subtracting the average value
of the signal and then normalizing it to its standard deviation.
The main goal was to analyze the shape of the emission spec-
trum (not signal strength). An example visualization of input
data is shown in Fig. 2.

The data acquisition process started after the stabilization
of the aerosol generation rate which was measured by the
device. It was important not to exceed one particle per 2 ms
of data integration time in a 20 µs measurement window. Fi-
nally, a total of 114 779 spectral characteristics of 48 aerosols
was gathered, which gives on average 2391 (SD 437) fluores-
cence characteristics per substance. From the recorded data,
80 % were used as a training data set and 20 % as a test data
set.

2.3 Data analysis

2.3.1 ANN (artificial neural network)

Basics

There are many types of artificial neural networks (ANNs),
but in this paper only the backpropagation algorithm is
demonstrated because it is one of the most practical ones.
The main concept of this algorithm is based on a model of
the neuron that has two tasks. It aggregates signals (1) and
then processes them by an activation function (2), which, in
this research, is a sigmoid. The result of such single process-
ing is a new signal zj propagated to other neurons (Fig. 3).

aj =
∑
i

wjizi, (1)

where aj is the aggregated signal, wji is the weight that con-
nects neuron i with j and zi is the signal (input).

g(aj )=
1

1+ e−βaj
, (2)

where g(aj ) is the sigmoidal function and β is the parameter
(steepness) of sigmoid curve.
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Table 2. List of all substances used in the experiment.

Abbreviation Name Size (µm) AF Source Group

1 FM Fluoro-Max green fluorescent 7 µm
microspheres

6.25± 0.91 0.92± 0.02 Thermo Scientific standard 1

2 RIB Riboflavin 2.22± 1.82 0.88± 0.09 Sigma-Aldrich standard 2

3 BGP Cynodon dactylon (Bermuda grass) 28.35± 0.6 0.97± 0.01 Duke Sci. Corp.

pollens

4 CP Zea mays (corn) 78.13± 1.22 0.95± 0.01 Duke Sci. Corp.

5 CA Corylus avellana (common hazel) 27.71± 1.33 0.67± 0.04 (∗OC)

6 LP Lycopodium 30.67± 1.2 0.94± 0.01 Fluka

7 PPP Poa pratensis (Kentucky bluegrass) 30.62± 0.87 0.94± 0.01 Sigma-Aldrich

8 RP Ambrosia (ragweed) 19.48± 0.78 0.99± 0.01 Duke Sci. Corp.

9 SCP Secale cereale (rye) 44.8± 2.01 0.94± 0.01 Sigma-Aldrich

10 SP Picea (spruce) 70.09± 4.16 0.88± 0.02 (∗OC)

11 AA Abies alba (silver fir) 84.56± 12.77 0.92± 0.02 (∗OC)

12 UDP Urtica dioica (common nettle) 14.99± 1.26 0.9± 0.05 (∗OC)

13 PSP Pinus sylvestris (Scots pine) 39.29± 1.44 0.93± 0.02 (∗OC)

14 PNP Pinus nigra (black pine) 44.97± 1.33 0.88± 0.03 (∗OC)

15 LPP Lycopodium (Poland) 28.66± 0.6 0.95± 0.01 (∗OC)

16 PMP Broussonetia papyrifera (paper mulberry ) 13.57± 0.88 0.94± 0.04 Duke Sci. Corp.

17 ATP Artemisia tridentata (big sagebrush) 22.53± 0.42 0.96± 0.01 Sigma-Aldrich

18 AAP Artemisia absinthium (wormwood) 18.37± 1.51 0.96± 0.02 Sigma-Aldrich

19 CPP Chenopodium 27.29± 0.97 0.98± 0.01 (∗OC)

20 BWF Buck wheat flour 25.17± 15.76 0.82± 0.06 Melvit Poland (∗RS) flours

21 PF Potato flour 21.23± 3.11 0.96± 0.03 KUPIEC Poland (∗RS)

22 RF Rice flour 18.22± 6.23 0.6± 0.07 Melvit Poland (∗RS)

23 TF Tapioca flour 12.91± 3.41 0.7± 0.06 Cock Brand (∗RS)

24 WF Wheat flour 20.57± 4.36 0.62± 0.07 Melvit Poland (∗RS)

25 Trp Tryptophan 15.42± 8.96 0.81± 0.08 Sigma-Aldrich

amino acids and proteins26 Phe Phenylalanine 10.41± 5.31 0.73± 0.11 Sigma-Aldrich

27 BSA Bovine serum albumin 63.8± 30.49 0.43± 0.05 POCH Poland

28 OVA Ovalbumin 26.45± 5.31 0.83± 0.07 POCH Poland

29 AMB Bifidobacterium animalis, S. boulardii,
S. thermophilus, L. casei, L. bulgaricus

27.97± 4.42 0.84± 0.03 AMBIO Probiotyk, Lab.
Galenowe Poland (∗P) bacteria in medium

30 LCB Lactobacillus bulgaricus 51.16± 19.33 0.68± 0.08 LakciBios, ASA Poland (∗P)

31 LF Bifidobacterium animalis,
L. acidophilus

32.62± 8.45 0.82± 0.07 Linex forte, LEK Pharmaceuticals
d.d. Slovenia (∗P)

32 BA Bacteriological agar 49.47± 10.03 0.74± 0.07 Sigma-Aldrich

medium33 BAB Blood agar base 18.78± 2.11 0.71± 0.12 Sigma-Aldrich

34 LB Luria broth 15.11± 6 0.67± 0.07 Sigma-Aldrich

35 NB Nutrient broth 42.67± 9.21 0.69± 0.03 Sigma-Aldrich

36 BTSTG Bacillus thuringiensis
spores technical grade

7.13± 5.95 0.72± 0.12 Agricultural bacterial spore
with admixtures

37 SB Saccharomyces boulardii 57.82± 7.56 0.69± 0.05 Enterol, Biocodex France (∗P)
fungi with admixtures

38 SC Saccharomyces cerevisiae 21.33± 5.55 0.76± 0.07 Dr. Oetker Germany (∗RS)

39 LS Lycoperdon spores 14.52± 0.62 0.92± 0.02 (∗OC) fungal spores

40 JGSS Johnsons grass smut spores 6.91± 0.34 0.98± 0.02 Duke Sci. Corp.
smut spore (fungal spore)

41 BGSS Bermuda grass smut spores 6.47± 0.27 0.97± 0.02 Duke Sci. Corp.

42 ACFTD AC fine test dust 3.47± 2.34 0.87± 0.09 Duke Sci. Corp.

other
43 NT Nivea talc 14.33± 4.71 0.77± 0.09 Nivea Baby (∗RS)

44 PPD Printer paper dust 76.37± 18.89 0.43± 0.11 XEROX Laserprint collected from
paper shredder (∗RS)

45 PTD Paper towel dust 73.45± 25.65 0.56± 0.15 Merida Poland collected from
crushed towel (∗RS)

46 CIN Cinnamon 23.97± 4.39 0.78± 0.05 Kamis Poland (∗RS)

47 CEL Cellulose 82.86± 14.28 0.25± 0.04 Sigma-Aldrich

48 GGL Ground green leaves 18.03± 4.3 0.77± 0.09 Dried and ground oak (∗OC)

∗OC: pollens collected from trees, flowers and grass in the region of Warsaw during vegetative seasons in 2015 and 2016. ∗RS: regular shops in Warsaw where common goods are purchased. ∗P: pharmacy shops in Warsaw.
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Figure 2. Example of 50 normalized subsequent fluorescence characteristics of NT (a), FM (c) and LCB (e) and corresponding averaged
normalized intensities of NT (b), FM (d) and LCB (f). Error bars represent standard deviation of measurements.

Figure 3. Mathematical model of a single neuron cell.

The structure of a neural network is formed by layers of
neurons: input, hidden and output. In this research input neu-
rons constitute a fluorescence spectrum and output neurons
represent substances. Most computations are carried out in
the hidden layers (no more than two layers were examined).

Figure 4. Typical topology of an artificial neural network.

The schematic representation of neuron layers is presented in
Fig. 4.

The described algorithm constitutes the supervised learn-
ing method that requires training data for a teaching pro-
cess. This allows one to calculate an error between the tar-
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Figure 5. Model of backward error propagation.

get shown and the ANN response. Every problem is related
to minimizing output error which is calculated as the mean
squared error (Eq. 3).

E =
1
2

c∑
k=1
(yk − tk)

2, (3)

where E is the mean squared error, tk is the observed value
(target), yk is the calculated response, k is the output neuron
and c is the number of output neurons.

The gradient descent method is used to find a minimum of
error function. Error is dependent on network weights 1wji
which might be adjusted (Eq. 4). In order to update weights
correctly, firstly one needs to propagate the error backwards
by calculating partial derivatives δj (Eq. 5) (Fig. 5). All math-
ematical details are well described by Christopher M. Bishop
(Bishop, 1995).

1wji(t)=−ηδjzi +m1wji(t − 1), (4)

where η is the learning rate, m is the momentum and t is the
iteration.

δE

δwji
=
δE

δaj

δaj

δwji
= δjzi (5)

δj = g
′(aj )

∑
k

wkj δk

The learning rate factor determines the size of the steps,
while the momentum parameter enables the local minimum
to be omitted by adding a fraction of the weight correction
from the last step.

After the correction of all weights of the ANN, the output
error is examined, and the procedure starts again unless an
error level is low enough and there is no overfitting. All data
are divided into three different sets: training, test and vali-
dation. For calculations during the learning process, only the
first two are used. In order to determine whether it is time
to stop the teaching process, one has to observe an error in
the test set. There will be a moment when this error comes
to be constant or starts increasing due to the overfitting of
training data (Fig. 6). The validation data set may be useful
for comparing different models or just to verify the current
model with a completely separate set of data.

Figure 6. Example of error minimizing during the training process.

Figure 7. ROC graph with an example of classifier (blue).

Implementation of ANNs for BARDet

There are statistical commercial software packages available
that provide ANN modules as one of the methods to ana-
lyze the data. It is worthwhile noting that customized soft-
ware was developed for this research. This approach helped
us to understand ANNs in depth and led to the development
of software that is not only responsible for data preprocess-
ing and network training, but also (mainly) for solving a real-
time classification problem.

Ruske et al. in their studies (Ruske et al., 2017) com-
pared various algorithms to analyze single-particle data and
noted that an ANN requires much more user input. How-
ever, we present a method to overcome this inconvenience by
automating the process and implementing procedures which
simplify and improve the analysis.
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The main disadvantage of an ANN is the fact that it is a
parametrized algorithm. How well it works depends strictly
on a proper choice of the best possible factors, which may
be different for each problem. There are two types of factors
that influence the ANN outcome. The first one corresponds
to the architecture of the ANN which comprises a number
of layers, neurons and an activation function parameter. The
second one determines the learning process: momentum and
learning rate. The latter can be tuned during the learning pro-
cess to make it much faster. The “bold driver” procedure was
chosen for that purpose. It continuously increases the learn-
ing rate unless an error is higher than that before the change.
If it is, the algorithm radically decreases the learning rate and
obtains weights from the last step again. Teaching an ANN
is a stochastic process initiated by using randomly chosen
initial weights. It was found that the best procedure for this
investigation would be to conduct all optimization processes
that way. Therefore, the parameters of the ANN, responsi-
ble both for structure and the learning process, are randomly
selected until the desired result is reached. In fact, the cal-
culations are carried out automatically and simultaneously
for several models by means of multicore-oriented software.
The benefits of this approach are time-saving and high lev-
els of efficiency and effectiveness in finding the best model.
The latter is especially important because the goal is to cre-
ate a model that produces the best results, which does not
necessary mean creating a more complicated network (more
neurons or layers).

2.3.2 Model evaluation

The main goal of the analysis described in this paper is to find
a solution to the bio-aerosol classification problem. When a
training process ends, a final model is created, a network,
which has a unique structure and a set of weights. One can
create many of them and only make a comparison by using
the final error. It is not the best solution because the goal is
to distinguish patterns in data consistently, not to produce a
network with a minimal error. That is why there is a need to
conduct a final analysis of the results and evaluate the model
in accordance with the best classification performance.

The standard method for visualization of results is a con-
fusion matrix which will be necessary for receiver operat-
ing characteristics (ROC) analysis (Fawcett, 2006). It simply
shows what fraction of population for each class is predicted
correctly or not. Each element from the data set is assigned
to one of the following fits of the confusion matrix: true pos-
itive (TP), true negative (TN), false negative (FN) and false
positive (FP). If it belongs to TP and TN, it was classified
correctly.

The ROC graphs are very simple but useful tools for dis-
covering whether a classifier is worth using or if it makes a
random classification. It is based on two rates from the con-
fusion matrix: hit rate (Eq. 5) and false alarm rate (Eq. 6).

hit rate (true positive rate)=
TP

TP+FN
(6)

false alarm rate (false positive rate)=
FP

FP+TN
(7)

Each discrete classifier has a threshold level that assigns
an element to a positive or negative class. The points on the
ROC graph (Fig. 7) represent the classifier for many thresh-
olds. The most desirable curve will be obtained when the true
positive rate is high, and the false positive rate is low (convex
line). The random classifier, in turn, has a hit rate equal to a
false alarm rate despite threshold variation (diagonal line). To
identify an ROC analysis with one coefficient, the area under
the curve (AUC) may be used. A higher value of AUC re-
sults in better performance (0.5 means random, and 1 means
excellent).

The confusion matrix and ROC analysis described above
were defined for two class problems (positive, negative).
There is a straightforward way to expand it for multi-class
problems. One needs to take a desired class versus all other
classes. Then it will be possible to compare how good the
classifier for specific classes within one model is.

3 Results

3.1 ANN performance

First attempts were made to distinguish all substances using
only one neural network model. The tests revealed that it is
impossible due to the huge number of samples (48 aerosols)
and only a few of them presented significantly different fluo-
rescence spectra which allow accurate characterization. The
remaining substances are then misclassified. Therefore, we
decided to use a more practical approach to this problem,
which would be to create several groups (considering infor-
mation about aerosols), but we did not want to create any
classes a priori. Although the ANN type demonstrated needs
training, which requires a set of known classes, further tests
showed that there is a possibility of finding similarities be-
tween substances through the analysis of confusion matri-
ces. It was achieved after many trials of matching substances,
which were not well separated, into new groups and check-
ing if they are good enough on ROC graphs. Consequently,
this procedure was also applied to those new groups.

All examples demonstrated below were calculated on the
test data sets, not training data. In the first ANN presented
(Fig. 8), which tries to classify all of the 48 substances
(Group 0), four aerosols reached a very high accuracy of sep-
aration (AUC> 0,9). The best separation was achieved for
fluorescent microspheres (FM). In this case 98.5 % of all FM
particles were correctly classified. Similarly, an efficient sep-
aration was achieved for riboflavin (RIB), talc (NT) and Lac-
tobacillus bulgaricus (LCB). The remaining aerosols were

www.atmos-meas-tech.net/11/6259/2018/ Atmos. Meas. Tech., 11, 6259–6270, 2018
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Figure 8. (a) ROC and (b) error progress of an ANN that classifies all samples.

Figure 9. ROC (a) and error progress (b) of an ANN that classifies two very similar samples.

divided into three separate groups that gather the most simi-
lar substances (Group 1–3) (Table 3). The subsequent groups
up to 21 represent individual ANNs leading to the final clas-
sification of the aerosol. In practice separation is done not by
one confusion matrix (ANN) but by all of them in sequence
(22 ANNs combined in a decision tree). For example, if an
ANN classifies an unknown substance into any of 22 groups
it means that the decision process is not ended but rather from
that moment another ANN classifies this substance. How-
ever, each new ANN is trained using only a subsection of the
data excluding the data from other groups.

Table 4 and Fig. 9 show results achieved for two sub-
stances that have a very similar spectrum, and the AUCs
calculated are not much higher than in a random classifier.
This example clearly shows why we are not always able to
classify every single particle of aerosol with 100 % accu-
racy. However, just a representative number (several dozen)
of measured particles (a cloud) allows the proper prediction
of aerosol types within a few seconds. This is easy to ob-
serve during real-time detection because counts allocated in
a confusion matrix tend to reach a stable state quite quickly.

3.2 Classification tree

Finally, to achieve the best possible classification, a decision
tree was created (Fig. 10). It comprises not 1, but 22 mod-
els. The process of creating them is not replicable in terms
of the exact factors used for ANN generation. However, this
is not essential because the decision tree is based on ANN
results (classification ability), which should be the highest
possible. Therefore, the final result will be the same. It is dif-
ficult to present confusion matrices and ROC graphs for all
neural networks in this paper. Therefore, only the most in-
teresting one has been discussed. Here, each node represents
a network that classifies a group of aerosols. The aerosols
on the left side of the diagram show the most distinct differ-
ences; thus they are easy to classify (Level 0). On the right
side (Level 1–5), this task is much more demanding due to
a similar spectrum, and the separation is less probable in ac-
cordance with single particles, although it is still very useful
from a practical point of view for aerosol cloud discrimina-
tion.
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Table 3. Exemplary confusion matrix of all aerosols classified by the first ANN. Bold numbers denote how correct (in percent) a certain
substance was classified to be.

Predicted

FM RIB NT LCB Group 3 Group 1 Group 2

FM 98.5 0 0 0.3 0.1 0 1.1
RIB 0.1 91 0.5 3.1 1.2 0.6 3.4
NT 0 0.1 86.5 0 9.3 0.3 3.8

True LCB 1 1.6 0.6 72.7 3.9 10.7 9.5
Group 3 0 0.7 6.6 0.6 63.3 12 16.8
Group 1 0.2 1 1 7.9 12.5 61.6 15.8
Group 2 0.1 1.2 3.8 6.6 17.6 13.2 57.4

Figure 10. The decision tree consists of 22 ANNs separating 48
substances.

Table 4. Confusion matrix of two substances that have very similar
spectra.

Predicted

BWF CEL

True BWF 54.8 45.2
CEL 45.6 54.4

At first glance one can see that FM and RIB are very well
recognized, but that was expected because these are stan-
dards of fluorescence. Surprisingly, NT and LCB aerosols
were also separated from the others (Level 0 network). Fur-
ther analysis of the tree structure identifies a correlation be-
tween samples and their real categories. It is especially no-
ticeable for pollens, which are allocated to a separate branch
of that tree, and all stems from Group 1. Most of them were
classified on the third level. Interestingly all grass pollens
(AAP, ATP, BGP, PPP) belong to the same group, Group 6.
Similarly, both Lycopodium pollens from different regions
of the word show a close correlation, although Abies alba,
which is a tree, was classified in the same group. Flours, smut
spores and papers are dispersed between different levels, but
particular groups belong to the same branch of the tree. How-
ever, some of the samples are scattered on the whole tree area
and do not correspond to any group.

It should be noted that the result is a system of 22 ANNs
that work simultaneously. In comparison to the training pro-
cess, which is rather time-consuming and has to be empiri-
cally optimized, this cluster of learned ANNs delivers high
performance. Input data are processed by a single ANN in
milliseconds. This performance makes the neural network
a great tool as a splitting node in the classification tree.
Compared to our previous results, for which principal com-
ponent analysis was applied to analyze data from BARDet
(Kaliszewski et al., 2016), the ANNs allowed much better
discrimination between various bio-aerosols.
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4 Summary

In this paper the possibility of applying an artificial neural
network (ANN) for the real-time classification of biological
aerosols was investigated. The spectral characteristics of bio-
aerosols were collected using the BARDet instrument. The
database consisted of 48 substances. Finally, 22 neural net-
works were trained and combined into a decision tree. This
allowed aerosols to be characterized in real time. Tests re-
vealed that only certain substances have such characteristic
fluorescence spectra that allow correct classification of al-
most each particle. However, in all other cases the system
was able to recognize a particular aerosol accurately with
no mistakes, but a representative number of several dozens
of particles in a cloud was necessary. Further approximation
was based on decision tree analysis in which each node cor-
responded to a separate learned ANN. The best sets of ANNs
for each group of similar aerosols were discovered utilizing
confusion matrices and ROC analysis. Our intention was to
make a complete system which detects and classifies sub-
stances without creating groups a priori. This attitude helped
us to create a powerful analytical tool that works automati-
cally, and the results of classification are immediately avail-
able on the operator’s screen.

This study proved that it is possible to create a tool for
a highly effective analysis of bio-aerosols using multiple
ANNs combined into a decision tree. Our approach allowed
us to automate and speed up the analysis, which reduced time
and the amount of computing power needed. In a future study
the database will be extended to obtain potentially a vast va-
riety of samples including atmospherically relevant bacteria
and fungi. In the next step, the actual performance of the sys-
tem will be determined under real environmental conditions,
which will be most challenging due to the presence of un-
known fluorescent and nonfluorescent particles.
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M.: A new approach to UVAPS data analysis towards de-
tection of biological aerosol, J. Aerosol Sci., 58, 148–157,
https://doi.org/10.1016/j.jaerosci.2013.01.007, 2013.

Kaliszewski, M., Włodarski, M., Młyńczak, J., Leśkiewicz,
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