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Abstract. We assessed the performance of ambient ozone
(O3) and carbon dioxide (CO2) sensor field calibration tech-
niques when they were generated using data from one lo-
cation and then applied to data collected at a new location.
This was motivated by a previous study (Casey et al., 2018),
which highlighted the importance of determining the extent
to which field calibration regression models could be aided
by relationships among atmospheric trace gases at a given
training location, which may not hold if a model is applied
to data collected in a new location. We also explored the sen-
sitivity of these methods in response to the timing of field
calibrations relative to deployment periods. Employing data
from a number of field deployments in Colorado and New
Mexico that spanned several years, we tested and compared
the performance of field-calibrated sensors using both linear
models (LMs) and artificial neural networks (ANNs) for re-
gression. Sampling sites covered urban and rural–peri-urban
areas and environments influenced by oil and gas produc-
tion. We found that the best-performing model inputs and
model type depended on circumstances associated with indi-
vidual case studies, such as differing characteristics of local
dominant emissions sources, relative timing of model train-
ing and application, and the extent of extrapolation outside of
parameter space encompassed by model training. In agree-
ment with findings from our previous study that was focused
on data from a single location (Casey et al., 2018), ANNs re-
mained more effective than LMs for a number of these case
studies but there were some exceptions. For CO2 models,
exceptions included case studies in which training data col-
lection took place more than several months subsequent to
the test data period. For O3 models, exceptions included case
studies in which the characteristics of dominant local emis-

sions sources (oil and gas vs. urban) were significantly dif-
ferent at model training and testing locations. Among models
that were tailored to case studies on an individual basis, O3
ANNs performed better than O3 LMs in six out of seven case
studies, while CO2 ANNs performed better than CO2 LMs in
three out of five case studies. The performance of O3 mod-
els tended to be more sensitive to deployment location than
to extrapolation in time, while the performance of CO2 mod-
els tended to be more sensitive to extrapolation in time than
to deployment location. The performance of O3 ANN mod-
els benefited from the inclusion of several secondary metal-
oxide-type sensors as inputs in five of seven case studies.

1 Introduction

In places like the Denver-Julesburg (DJ) and San Juan (SJ)
basins, along Colorado’s Front Range and in the Four Cor-
ners region, oil and gas production activities have been in-
creasing with the advent of horizontal drilling that can be
effectively used in conjunction with hydraulic fracturing to
produce hydrocarbons from unconventional geologic forma-
tions. Public health concerns have arisen about the increas-
ing number of people living alongside these industrial ac-
tivities and emissions (Adgate et al., 2014; McKenzie et al.,
2014; McKenzie et al., 2012, 2017). We previously devel-
oped methods to quantify ozone (O3), carbon dioxide (CO2),
methane (CH4), and carbon monoxide (CO) using low-cost
gas sensors in an area where the ambient mole fractions of
these species are influenced by oil and gas production ac-
tivities (Casey et al., 2018). Such low-cost sensor measure-
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ments could enable greater understanding of air quality in oil
and gas production basins, informing the spatial and tempo-
ral scales on which people live and work in a way that current
technologies used by regulatory agencies cannot feasibly ac-
complish. In our previous work, we tested and compared the
performance of direct and inverted linear models (LMs) as
well as artificial neural networks (ANNs) as regression tools
in the field calibration of low-cost sensor arrays to quantify
these target gas species using month-long test datasets, train-
ing each model with approximately 1 month of data prior to
and 1 month of data subsequent to this test period. ANNs are
powerful pattern recognition tools. They were found to per-
form better than both inverted and direct LMs in our previous
study, but concerns arose when findings suggested that the
performance of ANNs was being augmented by the relation-
ships among gas mole fractions in the atmosphere at a given
location. Low-cost gas sensor systems have the potential to
inform spatial and temporal variability in pollution. Calibra-
tion equations for each sensor system can be generated in
one location based on co-located measurements with refer-
ence instruments, and then the sensor systems can be moved
into a spatially distributed network. Since the relationships
among gas mole fractions will differ at different sampling
sites across a spatially distributed network, calibration mod-
els may not hold at new sampling sites. In this work, we test
calibration model performance when extended to new loca-
tions.

1.1 Low-cost sensors for air quality measurements

The use of low-cost metal oxide, electrochemical, and
nondispersive infrared sensors to characterize air quality is
becoming increasingly common across the globe (Clements
et al., 2017; Kumar et al., 2015). While low-cost sensors have
been emerging on the market with sufficient sensitivity to re-
solve variations in ambient mole fractions of target gases of
interest, they are also sensitive to temperature and humidity
variations that occur in the ambient environment. Nondisper-
sive infrared (NDIR) sensors, like the ELT S-300 CO2 sensor
employed in this study, have good selectivity, but, since pres-
sure and temperature are not controlled in the optical cavity
of ELT S-300 CO2 sensors, the influence of temperature on
sensor signals plays an important role. The influence of hu-
midity is also important to address because changes in water
vapor are known to influence NDIR measurements of CO2
in terms of spectral cross-sensitivity due to absorption band
broadening (LI-COR, 2010).

Both metal-oxide- and electrochemical-type sensors op-
erate on the principle of oxidizing or reducing reactions at
sensor surfaces. For electrochemical sensors, like the Al-
phasense CO-B4 sensor employed in this study, oxidizing or
reducing compounds react at the working electrode, resulting
in the transfer of ions across an electrolyte solution from the
working electrode to the counter electrode, balanced by the
flow of electrons across the circuit connecting the working

electrode to the counter electrode. A linear relationship is ex-
pected between this current and the target gas mole fraction.
Electrochemical sensors can be tuned to respond more or less
strongly to specific gases by adjusting the material properties
of the working electrode. A membrane is located between the
working electrode and the exterior of the sensor in order to
control redox reaction rates. The rates at which gases diffuse
through the membrane to reach the working electrode and the
electron transfer rates have been shown to increase at higher
temperatures (Xiong and Compton, 2014), and since chemi-
cal reaction rates are also influenced by temperature, electro-
chemical sensor responses can be influenced by sensor op-
erating temperature. Changes in ambient humidity levels can
cause sensors to lose or gain the electrolyte solution, by mass,
also influencing electrochemical sensor response (Xiong and
Compton, 2014).

For metal oxide sensors, and to a lesser extent for elec-
trochemical sensors, resolving the response of a sensor at-
tributable to the target gas species can also pose a challenge
in the presence of interfering gas species. Metal oxide sen-
sors, like those used in this study, have a resistive heater cir-
cuit that warms up the sensor surface, causing O2 molecules
to adsorb to the sensor surface, which leads to increased re-
sistance across the surface of the sensor. In the presence of
an oxidizing compound, like O3, more oxygen molecules are
adsorbed to the sensor surface and the resistance across the
sensor surface is increased further. In the presence of a reduc-
ing compound, like CO, oxygen molecules are removed from
the sensor surface, allowing electrons to flow more freely, re-
sulting in decreased resistance across the sensor surface. For
metal oxide sensors, the resistance across the sensor surface
can then be used to determine the mole fraction of a given
oxidizing or reducing compound, often according to a non-
linear relationship. Exposure to humidity has been shown to
significantly lower the sensitivity of metal oxide gas sensors,
making it an important parameter to address in a gas quan-
tification model (Wang et al., 2010). Metal oxide sensor op-
erating temperature has also been shown to strongly influ-
ence sensor sensitivity and selectivity to different gas species
(Wang et al., 2010). Metal-oxide-type sensors can be tuned
to respond differently from one another to oxidizing and re-
ducing gas species by using different metal oxide materials
and doping agents for the sensor surface, but selectivity is
difficult to achieve.

1.2 Low-cost air quality sensor quantification

Because low-cost gas sensor signals are influenced, some-
times significantly, by interfering gas species and changing
weather conditions in the ambient environment, field normal-
ization methods to quantify atmospheric trace gases using
low-cost sensors have been found to be more effective than
lab calibration (Cross et al., 2017; Piedrahita et al., 2014;
Sun et al., 2016). Our previous study and several others have
compared the performance of field calibration models gener-
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ated using LMs (simple and multiple linear regression) rel-
ative to supervised learning methods (including ANNs and
random forests), all finding that ANNs (Casey et al., 2018;
Spinelle et al., 2015, 2017) and random forests (Zimmerman
et al., 2017) outperformed LMs in the ambient field calibra-
tion of low-cost sensors. Like earlier laboratory-based stud-
ies (Brudzewski, 1999; Gulbag and Temurtas, 2006; Huy-
berechts and Szeco, 1997; Martín et al., 2001; Niebling,
1994; Niebling and Schlachter, 1995; Penza and Cassano,
2003; Reza Nadafi et al., 2010; Srivastava, 2003; Sundgren
et al., 1991), ANN-based calibration models, incorporating
signals from an array of gas sensors with overlapping sensi-
tivity as inputs, have been able to effectively compensate for
the influence of interfering gas species and resolve the target
gas mole fraction.

ANNs are known to be able to very effectively represent
complex, nonlinear, and collinear relationships among input
and output variables in a system (Larasati et al., 2011). ANNs
are useful in the field calibration of low-cost sensors because,
through pattern recognition of a training dataset, they are able
to effectively represent the complex processes and relation-
ships among sensors and the ambient environment that would
be very challenging to represent analytically or based on em-
pirical representation of individual driving relationships. In
practice though, the reason multiple gas sensors are able to
improve the performance of calibration models may be in
part the result of correlation among mole fractions of target
gases themselves that hold for one model training location,
but might not remain effective at alternative sampling sites
or during other time periods.

1.3 Summary of previous study

Our previous study was carried out using sensor measure-
ments collected over the course of several months in the
spring of 2017, in Greeley, Colorado, which lies within the
Denver-Julesburg oil and gas production basin. Others had
recently demonstrated the utility of machine learning meth-
ods in the quantification of atmospheric trace gases using
arrays of low-cost sensors in urban (De Vito et al., 2008,
2009; Zimmerman et al., 2017) and rural (Spinelle et al.,
2015, 2017) areas. Our previous study tested the relative
performance of machine learning methods and LMs in the
quantification of CH4, O3, CO2, and CO in an area strongly
influenced by oil and gas production activities, where en-
hanced levels of hydrocarbons and other industry-related pol-
lutants could potentially confound measurements. The pre-
vious study was also the first to compare machine learn-
ing regression techniques with LMs toward the quantifica-
tion of CH4 using arrays of low-cost sensors in any setting.
The study tested and compared calibration models using data
from two U-Pod sensor systems containing arrays of low-
cost gas sensors; these systems were co-located with optical
gas analyzers at a Colorado Department of Public Health and
Environment monitoring site. ANNs and LMs were trained

using a variety of sensor signal input sets from a month of
co-located data collected prior to and following a month-long
test period. The performance of each model was then eval-
uated relative to reference instrument measurements during
the test period. For quantification of all four trace gases that
we tested in this oil- and gas-influenced setting, we found
that ANNs performed better than LMs. The better perfor-
mance of ANNs over LMs was likely largely attributable
to the ability of ANNs to more effectively represent com-
plex and nonlinear relationships among sensor responses,
environmental variables, and trace gas mole fractions than
LMs. However, the performance of these powerful regression
methods could be aided by relationships among atmospheric
trace gases specific to the training location, which would not
necessarily hold at different sampling sites.

1.4 Spatially distributed networks of sensors and
spatial extension of calibration models

Distributed spatial networks of low-cost sensor systems have
the potential to inform air quality with high spatial and tem-
poral resolution. As such, studies have begun to deploy spa-
tial networks of low-cost sensor systems. These studies rely
on the spatial transferability of quantification techniques. In
the present work, we test model performance under condi-
tions of spatial transferability, wherein a model is trained us-
ing data from one location and then applied to a test dataset
using data from a new location. In testing spatial extension
of a model, we investigate how well the field calibration of
low-cost sensors can inform target gas mole fractions when
sensors are deployed in a new location and a new microenvi-
ronment of oxidizing and reducing compounds. We also test
model performance under conditions of temporal extension,
wherein a model is trained using data that was collected only
prior or subsequent to the model application period. In test-
ing temporal extension of models, we investigate how model
performance is influenced by sensor drift over time. We op-
portunistically utilize measurements collected with low-cost
sensors in Denver, Boulder County, and the DJ and SJ oil
and gas production basins in recent years. This effort fo-
cuses on the analysis for O3 and CO2 using both LMs and
ANNs, including a comparison of models with a number of
different input sets. In previous work (Casey et al., 2018),
we have additionally addressed the quantification of CO and
CH4 using arrays of low-cost sensors together with field nor-
malization methods, but these species are not included in the
present analysis because analogous reference data to those
we present for O3 and CO2 were not available for CO and
CH4.

1.5 Oil and gas production and air quality

Emissions related to oil and gas production, namely nitro-
gen oxides (NOx) and volatile organic compounds (VOCs),
have been shown to influence tropospheric ozone (O3),
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which is particularly relevant in regions that are in non-
attainment of the United States Environmental Protection
Agency (USEPA) National Ambient Air Quality Standards
(NAAQS) for ozone, like the Colorado Front Range where
the DJ Basin is situated. NOx and VOC emissions, includ-
ing those from oil and gas production activities, react in the
atmosphere in the presence of sunlight to form tropospheric
O3. A number of studies have demonstrated that oil- and gas-
related emissions contribute to increased O3 in the DJ Basin
(Cheadle et al., 2017; Gilman et al., 2013; McDuffie et al.,
2016). Mole fractions of ozone as high as 140 and 117 ppb
during winter months have also been observed and attributed
directly to oil and gas production emissions in the Upper
Green River basin of Wyoming and Utah’s Uinta Basin, re-
spectively (Ahmadov et al., 2015; Edwards et al., 2013, 2014;
Field et al., 2015; Oltmans et al., 2016; Schnell et al., 2009).
Additionally, a modeling study concluded that oil and gas
production activities could significantly impact ozone near
emissions sources, beginning 2 and 8 km downwind of com-
pressor engine and flaring activities, respectively (Olaguer,
2012).

Emissions of industry-related air pollutants, including O3
precursors NOx and VOCs, are expected to occur on spatially
distributed scales, across components on well pads, transmis-
sion lines, transportation routes, and gathering stations that
are each distributed throughout production basins (Litovitz et
al., 2013; Mitchell et al., 2015; Allen et al., 2013). Spatially
distributed networks of low-cost sensors have the potential
to better inform spatial variability in air quality than exist-
ing regulatory air quality monitoring stations, which cannot
feasibly cover such spatially resolved measurements contin-
uously and may not be representative of air quality across
smaller spatial scales (Bart et al., 2014; Jiao et al., 2016;
Moltchanov et al., 2015). Abeleira and Farmer show that
ozone production throughout much of the Front Range, out-
side of downtown Denver, is likely to be NOx limited, im-
plying that local NOx sources are likely influencing ozone
on small spatial scales (Abeleira and Farmer, 2017). Oil- and
gas-industry-related NOx sources, such as diesel truck traf-
fic, flaring, and compressor engines, could lead to pockets
of elevated O3 throughout the DJ Basin. While emissions
from truck traffic (and in some cases a generator to power
a drill rig) at a given well pad are expected to be highest dur-
ing the drilling, stimulation, and completion phases, industry
truck traffic often persists as the contents of produced wa-
ter and condensate tanks are frequently collected from well
pads throughout the production phase, as do emissions from
flaring and compressor engines. Low-cost O3 sensors could
augment the few and far apart regulatory sites that currently
monitor O3 levels in places like the DJ Basin, which has bet-
ter coverage than many other production basins in the United
States. While elevated ambient CO2 levels are not directly
harmful to human health, continuous CO2 measurement can
provide information about nearby combustion-related pollu-
tion and atmospheric dynamics that lead to the accumulation

of potentially harmful compounds associated with the oil and
gas production industry during periods of atmospheric stabil-
ity.

In this work, we present and compare models designed to
address the unique challenges that come with using low-cost
sensors in the quantification of atmospheric trace gases of
interest in oil and gas production basins, where ambient hy-
drocarbon mole fractions are potentially elevated, exerting
a uniquely confounding influence on low-cost gas sensors.
Calibration models that were found to perform best in our
previous study are applied to data collected in different loca-
tions. For the first time, we investigate how well models can
be transferred from one microenvironment to another, with
different dominant local emissions source characteristics and
different relative abundance of oxidizing and reducing com-
pounds. Microenvironments explored in this work include a
basin where both natural gas and heavier hydrocarbons are
produced (the DJ Basin) and a basin where natural gas is
prominently produced (the SJ Basin), with much smaller pro-
portional emissions of heavier hydrocarbons and likely lower
atmospheric concentrations of alkanes, alkenes, and aromat-
ics. Within and bordering the DJ Basin, additional microenvi-
ronments include an urban location, with significant mobile
source emissions (NOx , CO, and VOCs), and a peri-urban
site with fewer mobile emissions and closer proximity to oil
and gas production activities. We explore how robust model
performance is when a model is trained in one microenvi-
ronment and transferred to another, challenged by different
relative abundances of oxidizing and reducing gas species.
Additionally, we test how well models can represent and ad-
dress sensor stability over time and the potential for drift.

2 Methods

2.1 Sensors and U-Pods

All U-Pod sensor systems (mobilesensingtechnology.com)
employed in the case studies, described below, were pop-
ulated with seven low-cost gas sensors, as in our previous
study (Casey et al., 2018). The gas sensors are listed in Ta-
ble 1 along with their target gas and the model input codes we
assigned to each. A RHT03 sensor was used in each U-Pod
to measure temperature (temp) and relative humidity (RH).
A Bosch BMP085 sensor was used to measure pressure in
each U-Pod.

2.2 Case studies

Five to 10 U-Pods were deployed at sampling sites in and
around the DJ and SJ basins from 2014 to 2017. Deploy-
ments generally consisted of co-location with reference mea-
surements prior to and following approximately 1-month pe-
riods of spatially distributed measurements. During some of
the distributed measurement periods, a subset of U-Pods re-
mained co-located with reference instruments where the field
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Table 1. Gas sensors included in U-Pods along with the model input codes for each. The input code is an abbreviation for the make of the
sensor, followed by the target gas species(s).

Sensor type NDIR Metal oxide Electrochemical

Target gas(es) CO2 CH4
a CxHyb O3 VOCs CO CO

Model S-300 TGS 2600 TGS 2602 MiCS-2611 MiCS-5521 MiCS-5525 CO-B4
Make ELT Figaro Figaro e2v/SGX e2v/SGX e2v/SGX Alphasense
Code eltCO2 figCH4 figCxHy e2vO3 e2vVOC e2vCO alphaCO

a Light hydrocarbons. b Heavy hydrocarbons.

Figure 1. (a) Training and test deployment locations are identified in the SJ and DJ basins in context with urban centers and oil and gas
production wells. (b) Panel zoomed in on the SJ Basin, covering approximately 11 000 km2 (137× 80 km). (c) Panel zoomed in on the DJ
Basin covering approximately 4000 km2 (45× 89 km).

calibrations took place. During some distributed measure-
ment periods, some U-Pods were also deployed in new loca-
tions that were equipped with reference measurements. In be-
tween periods of distributed sensor system deployments, sen-
sor systems were co-located with reference instruments for

as long as possible, as logistics and coordination with other
regulatory agencies and researchers would allow. In this way,
we hoped to maximize our ability to encompass full ranges of
temperature, humidity, and trace gases that occur across sea-
sons in order to minimize extrapolation with respect to these
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parameters when models were applied to measurements from
distributed deployment periods. The locations where all or a
subset of U-Pods were co-located with reference instruments
are indicated in Fig. 1. In this exploratory study, we op-
portunistically employ data from these sensor deployments,
treating them as case studies in order to characterize the per-
formance of field calibration models when they are extended
to new locations. For each case study, described below, data
were divided into training and test periods. Time lines for
these dataset pairs are detailed in Fig. 2. Some U-Pods em-
ployed in these case studies (indicated in grey font in Fig. 2)
were constructed, populated with sensors, and deployed at
field sites in the spring of 2014, approximately a year before
the rest of the U-Pods were constructed, populated with sen-
sors, and deployed at field sites in the spring of 2015. The
relative age of sensor systems included in some case study
comparisons could have contributed to some discrepancy in
model performance, though systematic differences based on
U-Pod age are not apparent.

As available data from each case study allowed, we used
approximately 1 month of training data before and after a
given test period. When training data were not available
within several months of a test period, significantly longer
training datasets were used in order to attempt capture and
effectively represent trends in sensor drift over time, as well
as to avoid extrapolation of model parameters (particularly
temperature) during the test data period. As a result, model
training durations varied across case studies and sometimes
significantly exceeded model testing durations. Each case
study is similar in representing an approximately 1-month-
long deployment of sensor systems. This study design serves
a primary goal of this work, supporting the quantification of
atmospheric trace gases from low-cost gas sensor data in new
locations, relative to model training locations, for periods of
approximately 1 month at a time.

Making quantitative measurements of atmospheric trace
gases with low-cost sensors is challenged by unique varia-
tions in individual sensor responses associated with varia-
tions in the manufacturing process, sensor age, and sensor
exposure history. For these reasons, we generated unique cal-
ibration models using data from sensors in each individual
U-Pod sensor system. The closest available data prior and/or
subsequent to a test data period were used for model train-
ing to avoid complications associated with significant sen-
sor drift and degradation in sensor sensitivity to target gas
species over time. Table 2 lists the O3 and CO2 reference in-
struments that were co-located with U-Pods at each sampling
site, along with instrument operators, calibration procedures,
and reference data time resolution. The selected case stud-
ies, described in Sect. 2.2.1 through 2.2.7 below, were aimed
to support methods to quantify atmospheric trace gases dur-
ing the distributed deployments we carried out from 2014
through 2017 as well as future distributed sensor network
measurements. Figure 1 shows sampling site locations in
context with urban areas and oil and gas production wells.

Figure 2 shows the time line of each of these deployments,
highlighting the training and testing periods defined for both
O3 and CO2.

2.2.1 Dawson summer 2014

The first distributed measurement campaign took place dur-
ing the summer of 2014 when five U-Pods were sited at lo-
cations around Boulder County, with four distributed along
the eastern boundary of the county, adjacent to Weld County
where dense oil and gas production activities were under-
way. A background site, further from oil and gas produc-
tion activities, was also included to the west, near a busy
traffic intersection on the north end of the city of Boulder.
Co-locations with reference measurements that were used
for field calibration of the sensors took place at the Contin-
uous Ambient Monitoring Program (CAMP) Colorado De-
partment of Health and Environment (CDPHE) air quality
monitoring site in downtown Denver. One of the distributed
sampling sites, Dawson School, was also equipped with a
Thermo Electron 49 O3 reference instrument operated by
Detlev Helmig’s research group from the Institute of Arc-
tic and Alpine Research (INSTAAR). In this work, a case
study is developed using data from one U-Pod located at the
CAMP site in downtown Denver for O3 model training and
data from one U-Pod located at the Dawson School for O3
model testing. This case study is used to test model perfor-
mance when extrapolated in terms of O3 mole fractions and
applied in a new location, transferred from an urban to a peri-
urban environment.

2.2.2 SJ Basin spring 2015

In the spring of 2015, we augmented our original fleet of
five U-Pods (BA, BB, BD, BE, and BF) with five more (BC,
BG, BH, BI, and BJ) and deployed these sensor systems in
the SJ Basin while a targeted field campaign was underway
to understand more about a CH4 “hot spot” that was dis-
covered from satellite-based remote-sensing measurements
(Frankenberg et al., 2016; Kort et al., 2014). The primary
goal of this sensor deployment was to inform spatial and
temporal patterns in atmospheric trace gases like CH4, O3,
CO, and CO2 across the SJ Basin. Most U-Pods were located
at existing air quality monitoring sites operated by the New
Mexico Air Quality Bureau (NM AQB), the Southern Ute In-
dian Tribe Air Quality Program (SUIT AQP), and the Navajo
Environmental Protection Agency (NEPA), which supported
validation of sensor measurements for O3. After this deploy-
ment period, all U-Pods were moved to the Boulder Atmo-
spheric Observatory (BAO) site in the DJ Basin for approxi-
mately 1 month and were co-located with reference instru-
ments there that were operated by National Oceanic and
Atmospheric Administration (NOAA) researchers. A case
study is developed with data from the BAO site to train O3
models for four U-Pods and data from SJ Basin sites to test
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Figure 2. (a) ANN and LM training and test deployment time lines. The Dawson, BAO, and GRET sampling sites are all located in the
DJ Basin. Model training periods for each test deployment are shown in blue, and model test periods are shown in magenta. For the BAO
summer 2016 case study, the period outlined in blue shows data that were used to train the O3 model but not CO2 models since CO2 reference
data were not available during winter months. (b) Information about each of the case studies presented in the above time lines, including
model training and testing locations, as well as the number and names of U-Pods included in each case study for both O3 and CO2 models.
The U-Pods with names shown in grey were constructed and deployed starting in May 2014. The U-Pods with names shown in black were
constructed and deployed starting in April 2015.

O3 models for four U-Pods. This case study is used to test
model performance when extrapolated in temperature and
time and applied in a new location, extended from one oil
and gas production basin to another across Colorado.

2.2.3 SJ Basin summer 2015

In the summer of 2015, after an approximately month-long
co-location with reference instruments at the BAO site, seven
U-Pods were deployed again at existing regulatory monitor-
ing sites for approximately 1 month, after which they were
moved back to the BAO site for another month of co-location
with reference instruments there. We equipped two of the
regulatory monitoring sites in the SJ Basin with LI-COR LI-
840A CO2 analyzers to provide reference measurements for
CO2. A case study is developed with data from the BAO site,
before and after the SJ Basin summer 2015 deployment to
train models, and data from SJ Basin sites during the summer

deployment period to test models. Data from seven U-Pods
were used to train and test O3 models and data from two U-
Pods were used to train and test CO2 models. This case study
is used to test model performance when training took place
both before and after the test period, and when extended to
a new location, from one oil and gas production basin to an-
other across Colorado.

2.2.4 BAO summer 2015

During the SJ Basin summer 2015 deployment period, two
U-Pods remained at the BAO site. A case study is developed
using data from those two U-Pods that remained at the BAO
site. This case study is used to test model performance when
training took place both before and after the test period and
when the model was tested on data that were collected in the
same location as model training.
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Table 2. Reference instrument measurements at U-Pod sampling sites.

Deployment Reference instrument Calibration Operator Res.

Ozone

CAMP Teledyne API 400E quarterly cal./nightly quality checks CDPHE 1
Dawson Thermo Electron 49 before cal./after cal. check INSTAAR 5
BAOa Thermo Scientific 49c annual cal./monthly quality checks NOAA 60
Navajo Dam Thermo Scientific 49i quarterly cal./weekly quality checks NM AQB 1
Bloomfield Thermo Scientific 49i quarterly cal./weekly quality checks NM AQB 1
Sub Station Thermo Scientific 49i quarterly cal./weekly quality checks NM AQB 1
Ignacio Thermo Scientific 49is monthly cal./weekly quality checks SUIT AQP 1
Bondad Thermo Scientific 49is monthly cal./weekly quality checks SUIT AQP 1
Shiprock Teledyne API T400 quarterly cal./monthly quality checks NEPA 60
Fort Lewis 2B Technologies 202 factory cal./after cal. check CU Boulder 1
GRET Teledyne API T400E quarterly cal./nightly quality checks CDPHE 1

Carbon dioxide

BAO Picarro G2401 NOAA 1
SJ Basin LI-COR LI-840A before+ after cal.: zero precision span CU Boulder 1
GRET Picarro G2508 periodic zero stability checks CSU 1

a McClure-Begley et al. (2017);
res: time resolution of measurements in minutes.

2.2.5 BAO summer 2016

U-Pods were deployed at the BAO site again in 2016 for sev-
eral months during the summer. In August 2016 the U-Pods
were moved to the Greeley Tower (GRET) CDPHE air qual-
ity monitoring site in Greeley, Colorado, a location which,
like the BAO site, is also strongly influenced by DJ Basin
oil and gas production activities. The U-Pods remained there
for 1 year. For the GRET co-location period, CDPHE shared
reference measurements for O3. Additionally, Jeffrey Col-
lett and Katherine Benedict of Colorado State University
(CSU) shared CO2 reference measurements from an instru-
ment they operated at the site before 1 October 2016 and
after 7 March 2017, when the instrument was located at the
GRET site. A case study is developed using data from two U-
Pods. Data from the yearlong deployment at the GRET site
were used to train models for O3, and data from the BAO site
during the summer 2016 deployment were used test models
for O3. Because reference data for CO2 were not available
at the GRET site during winter months, only 8 months of
data from these two U-Pods during the GRET deployment
were used to train models for CO2, but again, data from the
BAO summer 2016 deployment were used to test models for
CO2. A significantly longer training duration is implemented
in this case study because the training period took place more
than several months after the model testing period. We rea-
soned that a longer training duration would be better able to
represent patterns in sensor drift over time, as well as encom-
pass the temperature range of the test dataset period. Signif-
icantly less training time is needed when training occurs di-
rectly before and/or after a given model application period.

This case study is used to test model performance when ex-
trapolated significantly (more than several months) in time
and extended to a new location, from one location in the DJ
Basin to another.

2.2.6 GRET fall 2016

In order to test model performance, under similar circum-
stances in terms of relative model training and testing dura-
tions and timing of the BAO summer 2016 case study, but
with no extension of models to a new location, we devel-
oped another case study. This time, models for O3 and CO2
were trained using data from two U-Pods at GRET over the
course of 8 months and models for O3 and CO2 were tested
using data from two U-Pods at GRET over the course of ap-
proximately a month in the fall of 2016. This case study is
used to test model performance when extrapolated signifi-
cantly (more than several months) in time and applied in the
same location as training took place.

2.2.7 GRET spring 2017

We include findings from our previous work as a case study
in order to provide context. Models for CO2 and O3 were
tested using data from two U-Pods collected over the course
of approximately 1 month at the GRET site in the spring of
2017. Data from two U-Pods during approximately month-
long periods before and after the test period were used to
train O3 and CO2 models. This case study provides another
example of model performance when training took place
both before and after the test period, and testing took place
in the same location as training.
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2.3 Reference and sensor data preparation

Each of the U-Pod sensor signals was logged to an onboard
micro SD card. For metal-oxide-type sensors, voltage signals
were converted into resistance and then normalized by the re-
sistance of the sensor in clean air, R0. A single value for R0
was used for each sensor across the study duration. This R0
value was taken as the resistance of each sensor during the
GRET spring 2017 field deployment period, when the target
pollutant had approached background levels (at night for the
metal oxide O3 sensors and midday for all other metal ox-
ide sensors) and when the ambient temperature was approx-
imately 20 ◦C and RH was approximately 25 %. RH, tem-
perature, and pressure measured in each U-Pod were used to
calculate absolute humidity. Over the course of multiple field
deployments, RH sensors in four of the U-Pods drifted down,
causing the lower humidity levels to be cut off or “bottomed
out”. RH sensors were not replaced during field deployments
in order to preserve consistency across different deployment
periods, allowing for the possibility of a single comprehen-
sive model to apply to all data from a single U-Pod. After
some experimentation in generating a “master model” that
could be applied to data from a given U-Pod for all collected
field measurements, across several years, we determined that
individual models for each deployment would be more effec-
tive, and replacing RH sensors that had drifted down would
have been appropriate in support of the methods presented
here. We have since upgraded to Sensirion AG SHT25 sen-
sors, which appear to be more robust and consistent over the
course of long-term field deployments. For measurements
collected in the spring and summer of 2015 and the spring
of 2017, we replaced the RH signal of U-Pods with malfunc-
tioning humidity sensors with signals from the closest U-Pod
with a good humidity sensor and complete data coverage as
noted in Table S1 in the Supplement. Temperature and RH
sensor measurements are usually collected from within each
U-Pod sensor system in order to gain representative informa-
tion about the environment the gas sensors are being oper-
ated in. Using an alternative source for RH data that are not
onboard an individual U-Pod has the potential to increase un-
certainty of quantified gas mole fractions. We used replace-
ment RH data from the closest available U-Pod instead of
ambient measurements in order to more closely approximate
humidity at the operating temperature within a U-Pod enclo-
sure. The closest U-Pod with good humidity sensors ranged
from approximately 1 m, when U-Pods were co-located dur-
ing deployments in the DJ Basin at the BAO and GRET sites,
to approximately 80 km during deployments in the SJ Basin.

When the U-Pods were initially deployed at the GRET
site, on 23 August 2016, the RH sensors in all 10 U-Pods
malfunctioned, logging an error code of −99 instead of the
RH. This malfunction seemed to coincide with the imple-
mentation of radio communication from each U-Pod to a
central node in an effort to reduce trips to the field site to
download data and to identify issues with data acquisition

promptly. No other impacts to sensor systems were observed
in connection with radio communications. RH signals in the
U-Pods began logging correctly again in October when we
stopped remote communication. We replaced RH values for
the U-Pods during this time period by utilizing data from the
Picarro cavity ring-down spectrometer that was co-located
at GRET with the U-Pods. Water mole fractions measured
by the Picarro were converted into mass-based mixing ratios
to match the units of the absolute humidity signal in the U-
Pod data. We applied an adjustment to this absolute humid-
ity signal so that it matched observations in U-Pods during
the following month when good RH sensor data were avail-
able to account for the fact that temperatures were higher in
U-Pod enclosures than the ambient environment. We then re-
placed the RH signal in each U-Pod from 23 August through
1 October 2016 with the mixing ratios derived from Picarro
measurements. Using the temperature and pressure logged in
each U-Pod along with the absolute humidity from the Pi-
carro, RH was calculated for each U-Pod during this period.

To perform regressions toward field calibration of sensors,
the reference and U-Pod data needed to be aligned. When
reference measurements with minute time resolution were
available for both training and corresponding testing peri-
ods, minute median data from the U-Pods were used. Me-
dians were used as opposed to averages in order to reduce
the potential influence of sensor noise as well as to remove
short-duration spikes in the reference and sensor data that re-
sulted from air masses that may not have been well mixed
across the reference instrument inlets and the U-Pod enclo-
sures. When reference data were instead available with only
5 or 60 min time resolution, U-Pod medians were calculated
to match that time step. In order to test models using the same
time resolution they were trained with, the time resolution of
reference and sensor measurements for corresponding train-
ing and testing datasets was matched, if necessary, by taking
medians of the dataset with higher time resolution to match
the data with the longer time resolution. The first 15 min
of data after any period that the U-Pods had not recorded
data for the previous 5 min were removed in order to filter
transient behavior associated with sensor warm-up. During a
given deployment, the data removed to avoid sensor warm-up
transients constituted less than 1 %.

When time was included in a model as an input, the abso-
lute time was used. Specifically, we used the datenum value
from the MATLAB environment, which is defined by the
number of days that have elapsed since the start of 1 Jan-
uary, in the year 0000. A model was extrapolated in time
whenever training data did take place both before and af-
ter a given test deployment period. In several case studies
we present, model training only took place after the test de-
ployment period, comprising an “after-only” calibration. In
Colorado, and more broadly in the western United States,
ambient temperatures change significantly across the seasons
throughout the year, so if a model is extrapolated in time, ex-
trapolation in temperature often results as well.
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Figure 3. Example of a simple feed forward neural network, show-
ing how inputs are propagated through the network during each of
the training iterations (Casey et al., 2018).

2.4 Calibration model techniques

In this work, we explore how well field calibration methods
hold up in new locations, a topic which has not yet been suf-
ficiently addressed by the scientific community. As in Casey
et al. (2018), direct LMs and ANNs were trained with a num-
ber of different sensor input sets to map those inputs to target
gas mole fractions measured by reference instruments. Di-
rect LMs implemented were multiple linear regression mod-
els given by

r = p1+p2s1+p3s2+ . . .+pnsn−1, (1)

where r is the target gas mole fraction (measured by a ref-
erence instrument) s1–sn−1 are sensor signals from U-Pods
that are included as model predictor variables, and p1–pn

are corresponding predictor coefficients.
ANNs designed for regression tasks, like those employed

in this work, generally consist of artificial neuron nodes that
are connected with weights. Weights are initiated with ran-
domly assigned values. An optimization algorithm is then
employed to iteratively adjust the values of these weights
in order to map a given set of input values to correspond-
ing target values. An example of a very simple feed forward
neural network, and how weights are propagated through it,
is depicted in Fig. 3. In this work, ANNs were designed by
assigning U-Pod sensor signals to artificial neurons in an in-
put layer and assigning target gas mole fractions for an indi-
vidual gas species, measured by a reference instrument to a
single output neuron. Nonlinear, tansig, artificial neurons in
one hidden layer for O3 or two hidden layers for CO2 (in ac-
cordance with our earlier findings for each target gas species;
Casey et al., 2018) were then added between the input layer
and the network output neuron. Additionally, bias neurons,
each assigned a value of 1, were connected to neurons in the
hidden layer(s) so that individual connecting weights could
be activated or deactivated during the optimization process.
The number of neurons in each hidden layer was set equal
to the number of inputs included in a given ANN. Figure 4
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Figure 4. Diagram of an example ANN with the same color-coded
components as are presented in Figure SM3 in Sect. S2.2 of the Sup-
plement. This ANN has five inputs, one hidden layer with five tansig
hidden neurons, and one linear output layer leading to one output.
The network is fully connected with weights and biases (Casey et
al., 2018).

shows a diagram of an ANN architecture employed in this
work, when there were five inputs.

For ANN training we employed the Levenberg–Marquardt
optimization algorithm with Bayesian regularization (Hagan
et al., 1997). The Levenberg–Marquardt algorithm combines
the Gauss–Newton and gradient decent methods, towards
incremental minimization of a cost function, which is de-
fined by the summed squared error between the ANN out-
put and target values as a function of all of the weights in
the network. Training begins according to the Gauss–Newton
method, in which the Hessian matrix, the second-order Tay-
lor series representation of the local shape of the error sur-
face, is approximated as a function of the Jacobian ma-
trix and its transpose, significantly reducing required train-
ing time. Network weights are adjusted accordingly during
each training step to reduce error. If the cost function is not
reduced in a given training step, an algorithm parameter is
adjusted so that optimization more closely approximates the
gradient decent method (a first-order Taylor series represen-
tation of the local shape of the cost function), providing a
guarantee of convergence on a cost function minimum. Since
local minima may exist across the error surface, it is impor-
tant to train the same network multiple times, with differ-
ent randomly assigned starting weights, in order to assess the
stability of ANN performance. In this work, each ANN was
trained five times.

In the implementation of Bayesian regularization, a term is
added to the sum of squared error cost function as a penalty
for increased network complexity in order to guard against
over fitting. A two-level Bayesian inference framework is
employed, operating on the assumptions that the noise in
the training data is independent and normally distributed and
also that all of the weights in the ANN are small, normally
distributed, and unbiased (Hagan et al., 1997). In preliminary
ANN tests we found that over fitting occurred even when
Bayesian regularization was used, so we additionally imple-
mented early stopping, which proved to be effective in the
reduction of over fitting. To implement early stopping, dur-
ing training a portion of training data are set aside as a vali-
dation dataset. Training continues so long as the error asso-
ciated with the validation dataset is reduced. When the error
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Table 3. The best-performing models, as determined for each gas
species, in the previous study (Casey et al., 2018).

Gas species Model type Sensor signal model inputs

CO2 ANN
eltCO2 (ELT S-300 CO2 sensor)
temp (temperature)
absHum (absolute humidity)

O3 ANN

e2vO3 (e2v MiCS-2611)
e2vCO (e2v MiCS-5525)
e2vVOC (e2v MiCS-5521)
figCH4 (Figaro TGS 2600)
figCxHy (Figaro TGS 2602)
temp (temperature)
absHum (absolute humidity)

associated with the validation dataset is no longer being re-
duced, training stops early. For ANNs, training datasets were
divided in half on an alternating 24 h basis, with half used
for training and half used as validation data for early stop-
ping. Input signals for both LMs and ANNs were normal-
ized so that they ranged in magnitude from −1 to 1 since
this practice is recommended for the ANN optimization al-
gorithm used (Hagan et al., 1997).

2.5 Calibration model evaluation and testing

To evaluate the performance of each of the ANN and LM
models that were generated using training data then applied
to test datasets, we explored residuals, the coefficient of
determination (r2), root-mean-squared error (RMSE), mean
bias error (MBE), and centered root-mean-squared error
(CRMSE). The CRMSE is an indicator of the distribution
of errors about the mean, or the random component of the
error. The MBE, alternatively, is an indicator of the system-
atic component of the error. The sum of the squares of the
CRMSE and the MBE is equal to the square of the total er-
ror, the square root of which is defined by the RMSE.

First, we generated and applied the best-performing
model, as determined in our previous work (presented in Ta-
ble 3), to data from each new case study. Each new case study
was selected to challenge models in different ways in order
to evaluate the resiliency of the findings from our previous
study when challenged by different circumstances. Then we
tested LMs for CO2 and O3 that contained only the primary
target gas sensor for each species, as well as temperature
and absolute humidity as inputs. Finally, we generated, ap-
plied, and evaluated the performance of a number of LMs
and ANNs with different sets of inputs for each case study
in order to see which specific model performed the best for
each individual case study. The r2, RMSE, and MBE for
each of these alternative models when applied to test data are
presented in the Supplement in Figs. S2 through S7, along
with representative scatter plots and time series comparing
the performance LMs and ANNs for a given set of inputs.

In Figs. S2 through S7, the best-performing model inputs for
each training and test data pair are shaded in purple. The type
of model that performed the best (ANN vs. LM) is indicated
in the caption of each figure. We discuss both the perfor-
mance of the previously determined best-fitting model (gen-
erated using data from the GRET spring 2017 case study)
when applied and generated to data from new case studies
and the performance of models that were tuned to perform
the best for each individual case study. From these com-
parisons, we draw insight into circumstances that challenge
model performance in terms of relative local emissions char-
acteristics, location, and timing between model training and
testing pairs. Table 4 lists the relative timing and parame-
ter coverage between model training and testing periods for
dataset pairs, highlighting instances of incomplete coverage
during training that led to model extrapolation during testing.

3 Results and discussion

3.1 BAO and SJ Basin summer 2015

The set of deployments we conducted in the summer of
2015 is particularly useful to the objective of characteriz-
ing how well field calibration models can be extended to a
new location relative to their performance where they were
trained. During the testing period, two U-Pods were located
at BAO, where training took place, while seven U-Pods were
co-located with reference measurements for O3, and two U-
Pods were co-located with reference measurements for CO2
in the SJ Basin, across Colorado, and over the state line in
New Mexico. Sampling sites at BAO, in the DJ Basin, and
throughout the SJ Basin were all influenced by oil and gas
production activities and their associated emissions to some
extent, but the composition of the production stream is dif-
ferent in each basin. In the SJ Basin, particularly the north-
ern portion of the basin where all our sampling sites were
located, production is dominated by coal bed methane. In
contrast, many wells in the DJ Basin produce both oil and
gas, leading to greater relative abundance of heavier hydro-
carbons in emissions. The DJ Basin airshed is also more
strongly impacted by urban emissions than the SJ Basin air-
shed, and is more strongly influenced by mobile sources
with Denver, Boulder, Fort Collins, Greeley, and many other
smaller communities in its midst and along its borders. The
Four Corners region, where the SJ Basin is situated, has a
much smaller population density. Additionally, while there
are some agricultural activities and associated emissions in
and around the SJ Basin, there is a significantly larger agri-
cultural industry in and around the DJ Basin. SJ Basin sam-
pling sites spanned a range of elevations, including some that
were higher and some that were lower than the BAO tower,
coinciding with a wide range of atmospheric pressure at the
distributed sampling sites.
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Table 4. Relative timing and parameter coverage between model training and test deployment dataset pairs. Incomplete coverage of time
occurred if training only took place before or after the test data period and not before and after (before and after). Incomplete coverage
of location occurred when training took place in one location and testing took place in another. Incomplete coverage of parameters, or
extrapolation of models, including the target gas mole fraction, temperature, time, and pressure occurred when the values observed during
training did not encompass the values observed during testing. Extrapolation in time occurred when training only took place after the test
period (after model training timing). Extrapolation in location occurred when a model was trained in one location and then applied to data
collected in a new location.

Case study Summary Training timing Extrapolation during test

Dawson summer 2014 Urban calibration moved to rural/peri-urban
setting

Before/after Location, O3

SJ Basin spring 2015 DJ Basin calibration moved across the state to
SJ Basin sampling sites

After Location, pressure, time

SJ Basin summer 2015 DJ Basin calibration moved across the state to
SJ Basin sampling sites

Before/after Location, pressure

BAO summer 2015 DJ Basin calibration applied to same location Before/after None
BAO summer 2016 DJ Basin calibration moved 60 km across the DJ

Basin
After Location, time

GRET fall 2016 DJ Basin calibration applied to same location After Time
GRET spring 2017 DJ Basin calibration applied to same location Before/after None

Figure 5. Scatter plots of U-Pod CO2 vs. reference CO2 and over-
laid histograms of U-Pod CO2 residuals for (a) BAO and BAO,
(b) BAO and Bloomfield, and (c) BAO and Fort Lewis. A 1 : 1
single-weight reference line is included in each scatter plot along
with double-weight lines of best fit for U-Pods at each sampling lo-
cation. Data from U-Pod BC at BAO are plotted in black along with
U-Pods BJ, BB, and BD at BAO, Fort Lewis, and Bloomfield, re-
spectively. Sensor signal inputs include eltCO2, temp, and absHum.
(d) Overlaid histograms of model residuals with respect to reference
CO2.

We began by testing the best-performing CO2 model, as
determined in our previous work (Casey et al., 2018), on data
from this case study, during the summer of 2015. ANNs were
trained for each U-Pod using data from the BAO tower with
the following inputs from each U-Pod: eltCO2 (ELT S-300
CO2 sensor), temp (temperature), and absHum (absolute hu-
midity); the ANNs were then tested on data collected at the
BAO tower and at sampling sites in the SJ Basin. The per-
formance of these ANNs when applied to the test data is pre-
sented in Figs. 5 and 6. Figure 5 shows scatter plots of U-Pod
CO2 vs. reference CO2 during the test data period for sensors
located at BAO as well as sensors that were located at dis-
tributed sampling sites throughout the SJ Basin. The scatter
plots show that while there was generally a smaller dynamic
range of CO2 at the SJ Basin sites relative to BAO, model
performance did not appear to be impacted or degraded by
spatial extension to these locations in the SJ Basin. The line
of best fit for the Fort Lewis site (periwinkle) is even closer
to the 1 : 1 than the lines of best fit for two U-Pods located
at BAO (black and grey). Overlaid histograms of residuals
in the bottom right corner of Fig. 5 show that CO2 residuals
from each of the SJ Basin U-Pods are generally centered and
evenly distributed about zero with similar spread.

U-Pod CO2 average residuals during this test period, us-
ing the best-performing ANNs from our previous study, are
plotted according to time of day and date in Fig. 6. While the
use of ANNs in place of LMs reduces U-Pod CO2 residuals
significantly with respect to temperature, some daily period-
icity in the residuals for all four U-Pods is apparent in the
upper plot in Fig. 6 that shows residuals by date. The lower
plot in Fig. 6, showing residuals by time of day, demonstrates
that CO2 from three of four U-Pods was generally underpre-
dicted during early hours of the morning and generally over-
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Figure 6. U-Pod CO2 residuals by (a) data and (b) time of day and throughout the duration of the deployment period. Sensor signal inputs
include eltCO2, temp, and absHum.

predicted during afternoon and evening hours. Interestingly,
this trend in residuals by time of day is more pronounced for
the two U-Pods that remained at BAO. Upon examination
of overlaid histograms showing distributions of parameters
during model testing and training periods, in Fig. S12, and
model time series and residuals plots in Fig. S3, there is no
indication of model extrapolation at the BAO site, nor the
sites in the SJ Basin (with the exception of pressure due to
sampling site altitudes) and no significant trends of concern
with respect to residuals and model inputs.

Next we evaluated the best model type and set of inputs
for CO2 based on this specific case study. Differing from our
previous findings, for this group of training and testing data
pairs from the summer of 2015 at the BAO and SJ Basin
sites, the inclusion of the e2vVOC (e2v MiCS-5521) and al-
phaCO (Alphasense CO-B4) sensor signals noticeably im-
proved the RMSE in the quantification of CO2. While the
inclusion of these two secondary sensor signals did not re-
sult in the best performance in our previous study, using data
from the GRET site (Casey et al., 2018), their inclusion did
not degrade performance relative to the models that included
just eltCO2, temp, and absHum signals as inputs; thus in-
cluding these sensor signals may be appropriate as a general
rule in areas that are strongly influenced by oil and gas pro-
duction activities. Generally, using RH vs. absHum signals
as ANN inputs did not have a measurable impact on model
performance, though linear models were sometimes found to
perform better when the absHum signal is used instead of
the RH signal. From Fig. S2, it is apparent that inputs in-

cluding e2vCO (e2v MiCS-5525), temp, RH, e2vVOC, and
alphaCO sensor signals resulted in the lowest RMSE for U-
Pods at BAO as well as at the two SJ Basin sites. Plots anal-
ogous to those presented in Figs. 5 and 6, but with this best-
performing set of inputs for the present dataset pairs, are pre-
sented in the Supplement in Figs. S24 and S25, respectively.

For O3, we similarly began by testing the model that was
found to perform the best from our previous study on data
from this case study. O3 was quantified using data from
the two U-Pods deployed at BAO and seven of the U-Pods
deployed at SJ Basin sampling sites using ANNs with the
following inputs: e2vO3 (e2v MiCS-2611), temp, absHum,
e2vCO, e2vVOC, figCH4 (Figaro TGS 2600), and figCxHy
(Figaro TGS 2602). These same inputs and model config-
uration were also found to be the best performing for the
U-Pods at the BAO site and the majority of SJ Basin 2015
dataset pairs as noted in Fig. S2. Interestingly though, LMs
with this same set of inputs performed competitively well for
three of the seven U-Pods in the SJ Basin in terms of RMSE
and r2. The observation that LMs performed competitively
well at a subset of SJ Basin sites is likely connected to the rel-
ative abundance of hydrocarbons and other potentially inter-
fering oxidizing and reducing gas species at individual sam-
pling sites, diverging from conditions present during model
training at the BAO site. ANNs can better represent the in-
fluence of these interfering species than LMs during training,
but appear to have lost their ability to do so for this subset of
microenvironments in the SJ Basin.
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Figure 7. Scatter plots of U-Pod vs. reference O3, comparing U-Pod BC at BAO, in black, with (a) U-Pod BJ at BAO, (b) U-Pod BA at
Navajo Dam, (c) U-Pod BB at Fort Lewis, (d) U-Pod BD at Bloomfield, (e) U-Pod BE at Bondad, (f) U-Pod BF at the Sub Station, (g) U-Pod
BH at Shiprock, and (h) U-Pod BI at Ignacio. (i) Overlaid histograms of model residuals with respect to reference O3.

Scatter plots and trends in residuals are presented in Figs. 7
and 8 for O3. These plots show the performance of U-Pods at
BAO relative to those at SJ Basin sites in the quantification
of O3 during the test data period. U-Pod O3 measurements at
Fort Lewis, Navajo Dam, and the Sub Station did not agree
with reference measurements as well as U-Pod O3 measure-
ments from the other four SJ Basin sites. As noted earlier, U-
Pods at the Navajo Dam and Sub Station sites had faulty RH
sensor data, so humidity from the U-Pod located at the Igna-
cio site was used in place of their humidity signals. Since the
Ignacio site was located approximately 35 and 80 km away
from the Navajo Dam and Sub Station sites, respectively, this
could have introduced some additional error into the applica-
tion of a calibration equation, particularly since we showed
earlier that O3 ANNs like the ones we employed here are
very sensitive to humidity inputs (Casey et al., 2018). Spa-
tial variability in humidity across tens of kilometers could be
significant as isolated storms (which are on average 24 km
in diameter) propagate throughout the region in the summer.
At the Fort Lewis site, a 2B Technologies model 202 O3
analyzer was employed as a reference instrument, differing
from the Thermo Scientific 49i, Thermo Scientific 49is, and
Teledyne API T400 instruments utilized for reference mea-
surements elsewhere in the SJ Basin, and the Thermo Sci-
entific 49c that was operated at the BAO site and used for
model training. Of all the reference instruments, only the

2B Technologies model 202 O3 at the Fort Lewis site was
operated in a room that was not temperature controlled, as
such, some bias may have been introduced to the Fort Lewis
O3 reference measurements. Different instruments, opera-
tors, calibration, and data quality checking procedures could
have contributed to observed discrepancies. It is also possible
that the microenvironment at each of these three sites con-
tributed to lower model performance. Figure S1 shows that
differences among U-Pod O3 performance during the test de-
ployment period were larger than those observed during the
training period among the same U-Pods. Therefore, the in-
congruous field calibration performance phenomena we ob-
served seem to be connected to unique characteristics asso-
ciated with humidity sensor signal replacement or individual
sampling site characteristics, possibly relative abundance of
oxidizing and reducing molecules in the local atmosphere,
which could interfere with sensor responses to their target
gas species, as opposed to the quality of individual gas sen-
sors in each of those U-Pods.

All SJ Basin U-Pod O3 measurements systematically over-
estimate lower levels of O3 each night, a trend apparent in the
scatter plots in Fig. 7 and in the plot of residuals by time of
day in Fig. 8. Upon examination of the scatter plots in Fig. 7,
U-Pods at some sampling sites had positive bias for higher
O3 measurements as well (Shiprock, Ignacio, Sub Station,
and Bloomfield), while for others, bias at the higher end of
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Figure 8. Residuals of U-Pod O3 spanning of the deployment period, by (a) date, (b) time of day, and (c) temperature.

O3 distributions did not appear to be present (Navajo Dam,
Fort Lewis, and Bondad). The plot of residuals by time of day
in Fig. 8 shows that the two U-Pods at BAO did not have sig-
nificant trends in their residuals according to the time of day,
but that U-Pods deployed at SJ Basin sites consistently over-
estimated nighttime O3. The residuals are also plotted with
respect to temperature in Fig. 8, where all U-Pods, even those
at BAO to a lesser extent, appear to overpredict O3 at lower
temperatures, which generally occurred at night. In general,
the times of day that correspond to the highest O3 levels had
the lowest residuals, with some exceptions at the Fort Lewis
and Navajo Dam sites.

Figure 8 includes a plot of the residuals across the dura-
tion of the deployment period, showing no significant sensor
drift in measurements for any of the U-Pods. This plot also
shows that the highest residuals observed generally occurred
over short periods in time, particularly for the Fort Lewis
(blue) and Sub Station (magenta) sites. In order to further
explore the performance of field calibration models for O3 at
SJ Basin sites relative to BAO, the combined parameter space
of temperature with O3 reference mole fractions and tem-
perature with absolute humidity are presented in Fig. 9. The

combined temperature and reference O3 parameter space ap-
pears to be similar for all of the U-Pods, at both the BAO and
the SJ Basin sites. However, there appears to be some outly-
ing combined temperature and humidity parameter space at
the Sub Station site and at the Navajo Dam site. Brief excur-
sions, lasting approximately 2–4 h, of high humidity (up to
0.025 kgkg−1, relative to the upper bound of absolute humid-
ity observed at other sampling sites of 0.013 kgkg−1) may be
connected to some of the large short-term residuals observed
at these two sampling sites.

The majority of U-Pods stopped logging data, unfortu-
nately, at one point or another during these deployments. Pe-
riods of missed data during the month-long deployment in-
cluded approximately 1 day at the Shiprock site, 2 days at
the Bloomfield site, 4 days at the Sub Station site, 9 days
at the Fort Lewis site, and 17 days at the Navajo Dam site.
We carried out frequent sampling site visits (on a weekly or
fortnightly basis as logistics and travel to remote locations in
some cases allowed) in order to identify and fix problems as
they arose during field deployments. Operational issues were
predominantly attributable to power supply problems associ-
ated with BNC (Bayonet Neill–Concelman) bulkhead fittings
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Figure 9. Scatter plots showing the combined parameter space of (a) absolute humidity with temperature and (b) reference O3 with temper-
ature for each of the U-Pod sampling sites at BAO and the SJ Basin.

and corrupted micro SD cards. The periods of missing data
are reflected in the plots of residuals by date in Fig. 6 for CO2
and in Fig. 8 for O3. Fortunately, no drift over the course of
the deployment period was observed in these plots.

3.2 Insight from additional case studies of field
calibration extension to new locations

3.2.1 Urban calibration moved to rural/peri-urban
setting: Dawson summer 2014

The Boulder County deployment in the summer of 2014 was
used to test how well a field calibration for sensors in one
U-Pod, generated in a busy urban area (at CAMP in down-
town Denver), could be extended to a peri-urban setting (at
Dawson School in eastern Boulder County). Training took
place at CAMP for several days each month, before and after
each approximately month-long deployment period at Daw-
son School over the course of 4 months. Figure S7 shows the
performance of a number of ANN- and LM-based CAMP
field calibrations with different sets of inputs at this Daw-
son School test site. In this case study, LMs performed better
than ANNs across all sets of sensor inputs. Unlike findings
from our previous study (Casey et al., 2018), including sec-
ondary metal-oxide-type sensors as inputs did not help to im-
prove model performance. The best-performing set of inputs
included just e2vO3, temp, and absHum signals. The very
different relative abundance of various oxidizing and reduc-
ing compounds in downtown Denver relative to the Dawson
School site, surrounded by open grassy fields, and in closer
proximity to oil and gas production activities, may be the rea-
son why including additional gas sensors as model inputs and
the use of ANNs failed to improve the quantification of U-
Pod O3 in this case. Relatively short training durations could
also contribute to this finding, based on findings from our
previous work (Casey et al., 2018).

The fact that LMs performed better than ANNs in this case
(with an r2 of 0.95 and RMSE of 0.35 ppb for LMs, as op-
posed to an r2 of 0.9 and an RMSE of 5.1 ppb for ANNs)
may have to do with the general expectation that LMs be

more resilient to extrapolation than ANNs. Notably though,
neither ANNs nor the LMs captured the highest levels of O3
at Dawson School well. We attribute the poor performance at
high levels of O3 at this site, those in exceedance of about
70 ppb, to extrapolation of the O3 mole fractions encom-
passed during the training period. The LM generally per-
formed well within the O3 levels covered during the train-
ing period. Across applications, ANNs have been found to
be unreliable when extrapolated, due to the nonlinear nature
and complexity of the relationships they represent. Though
LMs are generally expected to be more robust to extrapola-
tion than ANNs, increased uncertainty in measurements can
also be introduced to LMs when parameters are extrapolated.
In order to have high confidence in measurements of uncom-
monly high mole fractions of a target gas, the model training
period has to encompass the full possible range. Combining
both field calibration and lab calibration data together in a
training dataset could accomplish this type of coverage. If
extrapolation is expected to occur with respect to the tar-
get gas mole fraction, as in this case study, the use of an
inverted LM may yield better results than LMs or ANNs.
We describe inverted LMs and their potential advantages in
our previous work (Casey et al., 2018). Keeping in mind this
finding about O3 extrapolation, for ambient measurements in
the DJ Basin, for subsequent deployments, we selected field
calibration sites that were more representative of distributed
sampling site locations, outside of the dense urban environ-
ment in downtown Denver, where O3 did not get as high,
likely due to increased titration of O3 at night in connection
with abundant NOx compounds.

3.2.2 After-only calibration moved across the state: SJ
Basin spring 2015

We also examined model performance that was subject to ex-
trapolation in time and temperature. We present O3 model
performance data from four U-Pods that were co-located
with reference instruments in the SJ Basin in the spring of
2015, at the Navajo Dam, Sub Station, and Bloomfield sites.
Two U-Pods at the Bloomfield site provide a set of dupli-
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cate measures. Figure S4 shows the performance of a number
of ANN- and LM-based BAO field calibrations with differ-
ent sets of inputs at these SJ Basin test sites in the spring of
2015, just prior to the summer 2015 BAO training period. U-
Pod O3 was quantified for these deployments using training
data from the same co-location period at BAO that was used
toward quantification of the summer 2015 SJ Basin deploy-
ment, described in Sect. 3.1.

The addition of time as a model input did not seem to im-
prove the performance of either ANNs or LMs and ANNs
generally outperformed LMs. Gas sensor manufactures do
not clearly define sensor lifetimes, but sensors are gener-
ally expected to lose sensitivity over time. For example, Al-
phasense CO-B4 electrochemical sensors are expected to
have 50 % of their original sensitivity after 2 years (Al-
phasense, 2015). The heater resistance in a given metal-
oxide-type sensor is expected to drift over time, influencing
sensor measurements (e2v Technologies Ltd., 2007). Masson
and colleagues observed a significant drift in a metal oxide
sensor heater resistance over the course of a 250-day sam-
pling period in a laboratory setting (Masson et al., 2015).
While we did not measure and record metal oxide sensor
heater resistance for sensors included in U-Pods, we have
investigated eltCO2 and e2vO3 sensor signal drift from the
summer of 2015 through the summer of 2017. These data
are presented in Fig. S26. Systematic downward drift in all
eltCO2 sensor signals is apparent over this time frame. A
clear and consistent pattern of systematic drift over this time
period is less apparent for e2vO3 sensors. Since the train-
ing data were collected immediately after the test data pe-
riod and since the test data period was relatively short (ap-
proximately 1 month), sensor drift could be negligible across
the combined training and testing time frame. U-Pods expe-
rienced colder temperatures during this spring deployment
than were subsequently encompassed in the BAO training
period. Linear models generally resulted in more bias than
ANNs. Again, the model for O3 that was found to perform
best in our previous study (Casey et al., 2018), an ANN with
temp, absHum, and all metal oxide sensor signals as inputs,
performed the best at sites included in this case study, with
one exception. At the Sub Station site the inclusion of the
figCxHy sensor signal decreased model performance. Addi-
tionally, the performance of all models tested at the Sub Sta-
tion site during the SJ Basin spring 2015 deployment was sig-
nificantly worse in terms of MBE than model performance at
other sites, both LMs and ANNs with different sets of inputs.
Since this sensor signal input augmented model performance
at the same sampling location during the summer deploy-
ment period, this finding could be attributable to the extrap-
olation with respect to temperature that occurred during the
test period of this case study. As discussed in the introduc-
tion, metal oxide sensor sensitivity to different gas species
can vary along with sensor surface temperature. Models were
trained to use the figCxHy sensor signal, across the ambi-
ent temperatures encompassed by the training data, to help

account for the influence of confounding gas species at the
BAO site. We think it is possible that the different temper-
atures in combination with the unique mix of gas species
present at the Sub Station site, which the figCxHy sensors are
highly sensitive to, caused the ANN to perform worse. The
Sub Station site is close to two large coal-fired power plants,
indicated in Fig. 11 by orange markers in the SJ Basin pane.
It is possible that emissions from the San Juan Generating
Station (north) and/or the Four Corners Power Plant (south)
uniquely influenced the response of this particular Figaro
sensor in ways that are not well represented at BAO in the DJ
Basin or present at other SJ Basin sampling sites. Several-
hour-long enhancements or spikes are apparent in the raw
eltCO2 and alphaCO sensor signals in the U-Pod deployed
at the Sub Station site, indicating the presence of a nearby
combustion-related emissions source. Another indication of
a near-field power plant plume across the deployment area is
apparent, in the form of several-hour-long enhancements of
reference measurements of NO and NO2 at the site.

3.2.3 After-only calibration moved 60 km across the DJ
Basin: BAO summer 2016

In testing the performance of field calibrations that were gen-
erated using data collected at the GRET site in 2017 and ap-
plied for the quantification of O3 at BAO in 2016, across the
DJ Basin, we were interested to find that again, the inclusion
of time as a model input did not yield any improvements in
calibration equation performance, even though model train-
ing took place several months after the test period. Figure S5
shows the performance of a number of ANN and LM-based
GRET field calibrations with different sets of inputs at this
BAO test site the previous summer. Another interesting find-
ing from this training and testing dataset pair was that the
addition of secondary metal-oxide-type gas sensors did not
seem to help improve the performance of field calibration
equations either. Figure S5 shows that ANNs performed bet-
ter than LMs and that the most useful set of inputs included
just e2vO3, temp, and absHum. Similarly, the performance
of field calibration equations for CO2 generated at GRET in
2017 and applied to data from BAO in the summer of 2016
did not seem to be augmented by the inclusion of additional
gas sensor signals, though the inclusion of time as a predic-
tor was useful. In the case of CO2, LMs outperformed ANNs,
which could be largely attributable to notable instability as-
sociated with the performance of ANNs when time was in-
cluded as an input. For CO2, we expected the inclusion of
time as an input to be useful to model performance across
this time frame, owing to observed trends of decreased CO2
sensor sensitivity in time. To keep the power requirements
for the U-Pod sensor systems low, and to keep systems quiet,
fans as opposed to pumps were used to exchange air in the
enclosures. As a result, the air entering the enclosures was
not filtered, and sensors were exposed to some dust over
time. This dust exposure is likely largely responsible for ob-
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Figure 10. Target diagrams demonstrating performance of a previously determined best-performing model across all new test datasets.
(a) CO2 and (b) O3 LM performance when only the primary gas sensor, temperature, and humidity are inputs. (c) CO2 and (d) O3 ANN
performance with inputs that were found to perform best at the GRET site in the spring of 2017 (Casey et al., 2018). Model input definitions:
eltCO2 (ELT S-300 CO2 sensor), e2vO3 (e2v MiCS-2611 sensor), temp (temperature), and absHum (absolute humidity).

Figure 11. Target diagrams demonstrating performance of a previously determined best-performing model across all new test datasets.
(a) CO2 and (b) O3 ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 (Casey et al.,
2018). Model input definitions: eltCO2 (ELT S-300 CO2 sensor), e2vCO (e2v MiCS-5525 sensor), e2vVOC (e2v MiCS-5521 sensor), e2vO3
(e2v MiCS-2611 sensor), figCH4 (Figaro TGS 2600 sensor), figCxHy (Figaro TGS 2602 sensor), temp (temperature), and absHum (absolute
humidity).

served decreases in CO2 sensor sensitivity over time, shown
in Fig. S26. Decreases in infrared lamp intensity over time
may also play a role. In the case of CO2 sensors, the im-
plementation of pumps to draw new, filtered air into sensor
enclosures could likely significantly reduce loss rates in the
sensitivity of an individual sensor over periods of continu-

ous deployment in an ambient environment. While we are
not sure why ANN performance tended not to benefit from
the addition of a time input, while LM performance did, it is
likely attributable to the extrapolation of the time input, since
only data that were collected significantly subsequent to the
test data period were used for training. ANNs are expected
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to be able to better represent time decay trends if data from
measurements both prior and subsequent to the test period
are used in training, so that there is no extrapolation with re-
spect to the time input.

3.2.4 After-only calibration applied to the same
location: GRET fall 2016

To investigate if reduced performance from these GRET to
BAO field calibration tests was more connected to the new
deployment location or to the significant extrapolation with
respect to time of the calibration models, we generated cali-
bration equations based on similarly long training periods at
GRET and applied them to data collected prior to the train-
ing period at GRET in the fall of 2016. We could not draw
strong conclusions from this comparison, unfortunately, be-
cause of an issue with humidity sensors, described in Sect. 2
and below. Figure S6 shows the performance of a number
of ANN- and LM-based GRET field calibrations with dif-
ferent sets of inputs at the GRET test site during fall of the
previous year. For O3 models, the best-performing ANN in-
puts for this dataset pair were the same ones that we found
in our previous study (Casey et al., 2018), with the excep-
tion of the humidity signal. The fall 2016 GRET test period
coincided with the time period U-Pod absolute humidity was
replaced using mixing ratios from a co-located Picarro due to
missing humidity sensor data. Interestingly, when this “bor-
rowed” humidity signal was not included as an input, the
model performance markedly increased and became compet-
itive with other “same location” test deployment case studies.
In our previous work, we showed that O3 models were very
sensitive to the humidity signal input (Casey et al., 2018). In
this case study, it seems that replacing actual humidity sig-
nals with closely approximated humidity signals negatively
influenced model performance. In order to investigate this
observation further, we tested the influence of replacing hu-
midity data in the same manner, using mixing ratios from
the same co-located Picarro, on test data from the GRET
spring 2017 case study. A comparison of model performance
under normal and this borrowed RH circumstance is pre-
sented in Fig. S27 in the Supplement. O3 model performance
was negatively impacted when borrowed RH values based on
Picarro data replaced U-Pod RH sensor signals. From these
findings, it seems likely that the inclusion of multiple metal-
oxide-type sensors, which all respond strongly to humidity
fluctuations as inputs in the model, helped the ANN to ef-
fectively represent the influence of humidity in the system,
more so than including a borrowed RH signal from another
instrument. We tested models with multiple gas sensor sig-
nals and no humidity signal as inputs for a number of other
case studies as well (as seen in Figs. S2, S4, and S5), when
good humidity data from U-Pod enclosures were available,
but they did not turn out to be the best-performing model in
any of these other tests.

3.3 Evaluation of models across training and testing
dataset pairs

For each of the case studies, we compare the relative
model performance under three governing model training
paradigms. The first of these paradigms includes linear mod-
els with only the primary gas sensor signal, along with
temperature, and absolute humidity signals as inputs. Per-
formance of these models is shown in Fig. 10. The next
paradigm includes models that were found to perform best
for each trace gas in our previous work. Performance of these
models is shown in Fig. 11. The third paradigm includes
models that were optimized for each case study specifically.
Performance of these models is shown in Fig. 12. Tables 5
and 6 show the mean and standard deviation of model per-
formance metrics for each of the case studies presented. Ta-
ble 7 shows the percent change in model performance met-
rics when one model training paradigm is used in place of
another, highlighting relative benefits associated with the im-
plementation of different models for O3 and CO2.

Figures 10, 11, and 12 contain target plots showing the
MBE and CRMSE of models from each dataset pair in terms
of absolute mole fractions and mole fractions normalized
uniformly by the standard deviation of reference data dur-
ing the spring 2017 GRET deployment. In the Supplement,
Fig. S23 contains target diagrams equivalent to those pre-
sented in Fig. 12, but with individually normalized MBE and
CRMSE, according to the standard deviation of reference
measurements during each individual test period. The outer
circle’s radius in each of these target diagrams denotes an
error-to-signal ratio of 1. The inner circle’s radius in each of
these target diagrams encompasses the performance of mod-
els when they were tested at the same location where they
were trained and when training data bookended the test pe-
riod, so that there was no extrapolation of the model across
time or deployment location. We present our findings in the
form of these target diagrams in order to compare our find-
ings with those presented in several particularly relevant pre-
vious studies focused on the field calibration of low-cost sen-
sors (Spinelle et al., 2015, 2017; Zimmerman et al., 2017).

Figures 10 and 11 show that for CO2, ANN models gener-
ally performed slightly better than LM models with the same
set of inputs, though models that were extrapolated more than
several months in time were the exception. For O3, ANNs
that included multiple secondary metal oxide sensor signals
as inputs were also found to generally perform slightly bet-
ter than the relatively simple LMs that did not include any
secondary gas sensors as inputs over all (with exceptions for
individual case studies). This can be seen in Table 7 and in
Figs. 10 and 11, with all plot markers falling within the outer
radius in Fig. 11 (ANNs) but some plot markers falling out-
side the outer radius in Fig. 10 (LMs). Models that were not
moved to a new location for the test period gained the most
benefit in their performance when ANNs were used instead
of LMs, resulting in a smaller inner radius in the target plots
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Table 5. O3 model performance metrics.

Case study N R2 RMSE MBE Standard Standard Standard
(ppb) (ppb) deviation deviation deviation

R2 RMSE MBE

O3 models

Best O3 model (Casey et al., 2018)
ANN with inputs: e2vO3, temp, absHum, e2vVOC, e2vCO, FigCH4, FigCxHy

Dawson summer 2014 1 0.83 6.46 −0.91 0.00 0.00 0.00
SJ Basin spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78
SJ Basin summer 2015 7 0.85 7.03 4.89 0.10 1.10 1.73
BAO summer 2015 2 0.93 4.26 1.45 0.00 0.31 0.07
BAO summer 2016 2 0.92 12.21 −11.14 0.00 0.31 0.07
GRET fall 2016 2 0.96 12.87 12.02 0.01 2.30 2.35
GRET spring 2017 2 0.98 2.59 1.49 0.00 0.69 1.02

Simple model (single gas sensor)
LM with inputs: e2vO3, temp, absHum

Dawson summer 2014 1 0.95 3.59 −0.46 0.00 0.00 0.00
SJ Basin spring 2015 4 0.83 17.95 16.09 0.06 6.10 5.83
SJ Basin summer 2015 7 0.86 6.30 3.53 0.06 1.40 2.06
BAO summer 2015 2 0.87 5.50 0.94 0.00 0.78 1.56
BAO summer 2016 2 0.89 5.78 −2.71 0.00 0.78 1.56
GRET fall 2016 2 0.93 12.73 11.92 0.01 0.62 0.88
GRET spring 2017 2 0.89 6.00 −3.19 0.00 0.73 1.38

Models optimized for case studies

Dawson summer 2014 1 0.95 3.59 −0.46 0.00 0.00 0.00
SJ Basin spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78
SJ Basin summer 2015 7 0.85 7.03 4.89 0.10 1.10 1.73
BAO Summer 2015 2 0.93 4.26 1.45 0.02 0.51 1.54
BAO summer 2016 2 0.87 6.25 −0.20 0.02 0.51 1.54
GRET fall 2016 2 0.95 3.99 2.14 0.00 0.28 0.89
GRET spring 2017 2 0.98 2.59 1.49 0.00 0.69 1.02

in Fig. 11 relative to Fig. 10 for both O3 and CO2. The tar-
get diagrams in Figs. 10 and 11 show some degradation in
performance when models were applied to data in new lo-
cations and when training data took place only after the test
period. The target plots in Figs. 10 and 11 demonstrate that
bias was introduced when field calibration models were ex-
trapolated in terms of time, when training periods only en-
compassed data after the test data period and not prior. Inter-
estingly, there are noticeable similarities between the target
plots for CO2 in Figs. 10 and 11 and the target plots for O3
in Figs. 10 and 11.

The relative performance of models among training and
test dataset pairs remained fairly consistent across the differ-
ent models employed in data quantification. These systematic
trends highlight the importance of model training and test-
ing circumstances relative to specific field calibration model
types and inputs. For the BAO summer 2016 case study,
when time was extrapolated significantly, and when models
were moved across the DJ Basin, CO2 and O3 were both bet-

ter represented by LMs than ANNs. CO2 and O3 models did
not benefit from additional gas sensors added as inputs either
for this case study. In Fig. 11, of models that performed best
for each species as determined in our previous study, models
that were not extrapolated in time for CO2 and all O3 mod-
els, plot markers fall within the outer radius, meeting perfor-
mance standards framed by previous studies (Spinelle et al.,
2015, 2017; Zimmerman et al., 2017). In Fig. 12 the best field
calibration model performances for each case study all fall
within the outer radius, showing good performance and indi-
cating that incomplete coverage of parameter space in terms
of atmospheric chemistry, weather patterns, sampling loca-
tion, and sampling timing can be addressed to some extent
by tailoring field calibration models and their inputs to spe-
cific training and testing datasets pairs.

For CO2 we found that field calibration models generally
extended with good performance to new locations. ANNs
outperformed LMs when training took place before and after
a test deployment. When training only took place after a test
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Table 6. CO2 model performance metrics.

Case study N R2 RMSE MBE Standard Standard Standard
(ppm) (ppm) deviation deviation deviation

R2 RMSE MBE

CO2 models

Best CO2 model from Casey et al. (2018)
ANN with inputs: eltCO2, temp, absHum

SJ Basin summer 2015 2 0.65 8.42 −0.62 0.00 1.81 1.41
BAO summer 2015 2 0.75 9.98 −2.60 0.05 13.00 13.89
BAO summer 2016 2 0.69 54.38 48.37 0.05 13.00 13.89
GRET fall 2016 2 0.74 42.37 39.58 0.02 2.44 2.57
GRET spring 2017 2 0.83 6.31 0.59 0.03 0.13 2.61

Simple model (single gas sensor)
LM with inputs: eltCO2, temp, absHum

SJ Basin summer 2015 2 0.71 7.84 0.27 0.01 1.43 0.42
BAO summer 2015 2 0.69 10.62 −1.26 0.06 1.52 10.67
BAO summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67
GRET fall 2016 2 0.82 8.62 −3.46 0.00 0.69 1.45
GRET spring 2017 2 0.55 9.88 −0.33 0.03 0.29 1.91

Models optimized for case studies

SJ Basin summer 2015 2 0.72 7.45 −0.11 0.04 2.06 0.31
BAO summer 2015 2 0.80 8.85 −2.29 0.10 6.47 7.08
BAO summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67
GRET fall 2016 2 0.82 8.62 −3.46 0.00 0.69 1.45
GRET spring 2017 2 0.83 6.31 0.59 0.03 0.13 2.61

deployment LMs performed better. LMs seem to be better
at extrapolating in time. Over time, ELT NDIR CO2 sensors
seem to lose sensitivity and/or drift. When CO2 models were
extended back in time, significant bias resulted when time
was not included as an input. ANNs were not able to extrap-
olate in time with any success and their performance became
very unstable when time was added as an input, an occur-
rence that is apparent in Figs. S5 and S6. Models performed
better when they were extended spatially, all the way across
Colorado from the DJ Basin to the SJ Basin, than they did
when they were extended back in time. Extension of a LM
back in time and across the DJ Basin (from GRET in 2017
to BAO in 2016) resulted in a significant MBE relative to the
other case studies. The inclusion of multiple additional gas
sensors augmented model performance when extended back
in time at the same location as training took place, but not at
a new location.

For O3 we found that ANNs with the same set of inputs
worked best across a number of case studies, informed by
all the metal oxide sensor signals as well as temperature
and humidity. The extension of models to new locations of-
ten resulted in increased MBE or systematic error, and in
some cases increased CRMSE or random error. Some ob-
served bias in the extension of models to new locations could
be attributable to different reference instruments with dif-

ferent operators and/or different calibration and data quality
measures employed. O3 model extension to new locations
seemed to be more impactful than extension back in time.
Interestingly, additional metal oxide sensor signals remained
helpful when models were extended all the way across Col-
orado, from BAO to the SJ Basin, but these additional gas
sensor signals did not remain helpful when O3 models were
extended across a county line, from Adams County (CAMP)
to Boulder County (Dawson) or from Weld County (GRET)
to Boulder County (BAO). ANNs generally performed bet-
ter than LMs for O3, with the exception of these two Front
Range case studies (Dawson summer 2014 and BAO sum-
mer 2016). In our previous study we found that shorter train-
ing times led to decreased performance in ANNs and some-
times increased performance in LMs. The training time used
in the CAMP to Dawson case study was relatively short,
which could have contributed to the superior performance of
LMs over ANNs. For the BAO summer 2016 case study, both
ANN and LM markers are included (each with the same in-
puts: e2vO3, temp, and absHum). LMs had a smaller random
error but ANNs had smaller bias, highlighting an important
consideration in the application of one or the other to inform
specific research or measurement goals.
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Table 7. Relative benefits associated with the implementation of different models for O3 and CO2.

Case study Mean % Mean % Mean % Mean % Mean % Mean %
increase decrease decrease increase decrease decrease

in R2 in RMSE in MBE in R2 in RMSE in MBE

CO2 models O3 models

Benefit of models optimized for case studies over the best models from Casey et al. (2018)

Dawson summer 2014 14.51 44.42 50.00
SJ Basin spring 2015 0.00 0.00 0.00
SJ Basin summer 2015 10.56 11.52 82.60 0.00 0.00 0.00
BAO summer 2015 5.84 11.27 11.95 0.00 0.00 0.00
BAO summer 2016 5.72 78.27 98.49 −5.01 48.82 98.19
GRET fall 2016 11.17 79.66 108.73 −0.54 68.99 82.22
GRET spring 2017 0.00 0.00 0.00 0.00 0.00 0.00

Benefit of the best models from Casey et al. (2018) over simple linear models

Dawson summer 2014 −12.67 −79.92 −99.99
SJ Basin spring 2015 3.20 56.88 77.09
SJ Basin summer 2015 −8.41 −7.29 331.39 −1.34 −11.53 −38.41
BAO summer 2015 8.70 6.05 −106.48 6.79 22.48 −53.85
BAO summer 2016 −5.41 −360.09 −6543.84 2.57 −111.22 −310.71
GRET fall 2016 −10.05 −391.73 1244.99 2.88 −1.12 −0.86
GRET spring 2017 51.92 36.13 278.55 10.00 56.90 146.65

Benefit of models optimized for case studies over simple linear models

Dawson summer 2014 0.00 0.00 0.00
SJ Basin spring 2015 3.20 56.88 77.09
SJ Basin summer 2015 1.26 5.06 140.25 −1.34 −11.53 −38.41
BAO summer 2015 15.04 16.64 −81.80 6.79 22.48 −53.85
BAO summer 2016 0.00 0.00 0.00 −2.57 −8.10 92.59
GRET fall 2016 0.00 0.00 0.00 2.33 68.64 82.07
GRET spring 2017 51.92 36.13 278.55 10.00 56.90 146.65

4 Conclusions

Several previous studies have shown that multiple gas sensor
signals and the implementation of supervised learning tech-
niques can improve the performance of field calibration of
low-cost sensors in the quantification of a number of atmo-
spheric trace gas mole fractions. We investigated how well
a supervised learning technique (ANNs) held up when sen-
sors were moved to a new location, different from where
calibration model training took place. We tested the spatial
and temporal transferability of field calibration models for
O3 and CO2 under a number of different circumstances us-
ing data from multiple reference instrument co-locations, us-
ing the same sensors over the course of several years, when
sensors were deployed in two oil and gas production basins,
along with urban and peri-urban sites. We found that the best-
performing field calibration models for both O3 and CO2
were not consistent across all training and testing deploy-
ment pairs, though some patterns emerged in terms of model
type and inputs in association with the spatial and temporal
extension of calibration equations, from training to testing

performed in oil and gas production areas. The performance
of O3 models generally benefited from the inclusion of mul-
tiple metal oxide sensor signals in addition to the primary
e2vO3 sensor signal, while the performance of CO2 mod-
els relied more heavily on temperature and humidity inputs.
CO2 model performance was impacted more by temporal ex-
tension than spatial extension. In contrast, O3 model perfor-
mance was impacted more by spatial extension than temporal
extension.

While ANNs and other supervised learning techniques
have been shown to consistently outperform linear models in
previous studies when training and testing took place in the
same location, we find that this trend does not always hold
when field calibration models are applied in a new location,
with significantly different local emissions source signatures
for O3 models, or when model training of data takes place
more than several months subsequent to the model applica-
tion period for CO2 models. We find that the implementation
of calibration models that were well suited to specific train-
ing and test data pairs resulted in generally good test per-
formance in terms of centered root-mean-squared error and
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Figure 12. Target diagrams for (a) CO2 and (b) O3 calibration model performance for the best-performing model for each particular case
when tested on data from a number of field deployments. Model input definitions: eltCO2 (ELT S-300 CO2 sensor), e2vCO (e2v MiCS-5525
sensor), e2vVOC (e2v MiCS-5521 sensor), e2vO3 (e2v MiCS-2611 sensor), figCH4 (Figaro TGS 2600 sensor), figCxHy (Figaro TGS 2602
sensor), alphaCO (Alphasense CO-B4 sensor), temp (temperature), absHum (absolute humidity), RH (relative humidity), and time (absolute
time).

mean biased error, scaled by reference measurement standard
deviation, reported in target diagrams in previous studies.
For example, when models were significantly extrapolated
in time and transferred to a new location, a well-suited set
of sensor inputs would generally not include secondary gas
sensor signals.

LMs with just one primary gas sensor signal as well as
temperature and humidity were found to outperform ANNs
when models were applied to a location with different domi-
nating sources of pollution in the case of O3, like downtown
Denver relative to eastern Boulder County. These three-input
LMs also outperformed ANNs when models were signifi-
cantly extrapolated in time. While these LMs seemed to be
more stable under circumstances of significant extrapolation
in terms of local air chemistry and timing, we found that they
did not extrapolate well in terms of the O3 mole fraction, re-
sulting in underproduction of O3 values during the test period
that exceeded those encompassed in the training data.

Field calibration models tested in new locations often re-
sulted in the introduction of additional bias relative to field
calibration models that were tested in the same location they
were trained in. As seen in Fig. 12, plot markers from all case
studies have very similar CRMSE values, but plot markers
from case studies in which models were tested in new loca-
tions have larger MBE values than models that were tested
in the same location as they were trained. Finding ways to
effectively mitigate bias associated with new field deploy-
ment locations would further improve the performance of
field calibrations toward quantification of atmospheric trace
gases using arrays of low-cost sensors. Such improvements
in the field of low-cost sensors will help to enable densely
distributed networks of low-cost sensors to inform air qual-
ity in oil and gas production basins. The following findings
from this work, and associated recommendations, are made
to help inform the logistics of future studies that employ field
calibration methods of low-cost gas sensors.

www.atmos-meas-tech.net/11/6351/2018/ Atmos. Meas. Tech., 11, 6351–6378, 2018



6374 J. G. Casey and M. P. Hannigan: Performance of field calibration techniques for low-cost gas sensors

1. Finding. For O3 models, LMs perform better than
ANNs when the chemical composition of local emis-
sions sources is significantly different in the model
training location relative to the model application loca-
tion. We found that when models were trained in an ur-
ban area with significant mobile sources and then tested
in a peri-urban area, more strongly influenced by oil
and gas emissions, the differences in local sources of
pollution were significantly different enough that LMs
outperformed ANNs. Alternatively, when models were
trained in one oil and gas production region and tested
in another the different composition of local emissions
(lighter vs. heavier hydrocarbons) was not significant
enough for LM performance to surpass the performance
of ANNs, though some positive bias was evident in pre-
dicted O3 mole fractions.

Explanation. ANNs are very effective at compensating
for the influence of interfering gas species through pat-
tern recognition of a training dataset. However, if differ-
ent patterns, in terms of the relative abundance of var-
ious oxidizing and reducing compounds in the air, are
present in the testing location relative to the training lo-
cation, ANNs may not be able to compensate for the
influence of interfering gas species as effectively. The
relative abundance of interfering oxidizing and reduc-
ing compounds is not included as a model parameter,
but ANN performance is challenged by these circum-
stances.

Recommendation. When measuring O3 or other gas
species with a metal-oxide-type sensor, if the nature of
dominant emissions sources at the model training loca-
tion is significantly different than the nature of dominant
emissions sources in the model application location, use
a LM instead of an ANN. For the best performance,
try to train models in locations with similar emissions
sources to a desired sampling location. If the nature of
dominant emissions sources at the model training and
application locations are similar, signals from an array
of multiple unique metal oxide sensors will likely aug-
ment model performance.

2. Finding. For CO2 models, LMs perform better than
ANNs when model training occurs significantly (more
than several months) prior to or subsequent to the model
application period.

Explanation. CO2 sensors drift over time in terms of
sensitivity and baseline response. When models are ex-
trapolated in time (when training takes place more than
several months prior or subsequent to the model appli-
cation period), ANN performance can be compromised
to a greater extent than LM performance. ANNs are
able to represent relationships during training very ef-
fectively, and with significantly more complexity and
nonlinear relationships among time and other model in-

puts than LMs. The more complex the model, the less
likely it can be extrapolated effectively. LMs, with no
interaction terms like we employ in this work, are not
able to fit data and potentially complex patterns inher-
ent in sensor drift over time during training as closely
as an ANN, but the simple linear relationships they rep-
resent between the time input and the target gas mole
fraction over the course of training are more likely to
hold prior or subsequent to the training period.

Recommendation. When measuring CO2 with a NDIR
sensor, if model training data are only available more
than several months prior or subsequent to the model
application period, use a LM instead of an ANN. For the
best model performance, use training data that are col-
lected directly before or after the model application pe-
riod, and preferably data from both before and after the
model application period. Training models using data
from both before and after a given model application
period help encompass sensor drift over time as well
as increase the likelihood of covering the full range of
environmental parameter space that occurs during the
model application period so that extrapolation of these
parameters is avoided.

3. Finding. Extrapolation of an O3 or CO2 model in time,
and especially significant extrapolation in time, can
change both the type of model that is most effective and
the specific model input signals that are most effective.

Explanation. Low-cost sensors change over time, in
terms of both their baseline response and their sensitiv-
ity to target and interfering gas species. Different sensor
types drift due to different physical phenomena so a fur-
ther generalization across sensor types is difficult.

Recommendation. Use training data collected directly
before and after the model application period in or-
der to implement a best-performing model for each gas
species that can be applied using data from different
model training and application pairs.

4. Finding. ANNs yield less bias and more accurate gas
mole fraction quantification than LMs, even when trans-
ferred to a new location under the following circum-
stances: (a) extrapolation of training parameters is
avoided during the model application period, (b) train-
ing takes place for several weeks to a month prior and
subsequent to the model application period, and (c) the
dominant local emissions sources are similar in the
model training and application locations.

Explanation. Our previous study and multiple other am-
bient and laboratory-based experiments have shown ar-
rays of low-cost sensors in combination with ANN re-
gression models can support useful quantification of
gases in mixtures and in the ambient environment be-
cause ANNs can more effectively represent complex
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nonlinear relationships among environmental variables
and signals in a sensor system like a U-Pod than LMs.
With this work, we have explored limitations associated
with these methods when challenged in different ways,
as we present with a number of case studies.

Recommendation. If minimizing error and bias in mea-
surements of gas mole fractions using low-cost sensors
systems is a primary goal, design sensor system train-
ing and field deployment experiments so that extrapola-
tion of model training parameters is avoided during the
model application period, training takes place for sev-
eral weeks to a month directly prior and directly sub-
sequent to the model application period, and the dom-
inant local emissions sources are similar in the model
training and application locations. When these condi-
tions are satisfied, ANNs can be robustly implemented,
with better performance than LMs.

It is also imperative that sensor users keep in mind the pri-
mary importance of minimizing extrapolation of tempera-
ture, humidity, and sensor signal from model training to ap-
plication. We show that field normalization trace gas quan-
tification models can more readily be transferred across a
large state from one oil and gas production area to another
than from an urban to oil and gas production basin that are
in closer proximity to each other. We also show that before
and after model training, directly prior to and after field site
deployment, is generally much more effective than before
or after model training alone, especially when the training
takes place significantly before or after the deployment pe-
riod. Along with these findings and general guidelines for
future studies, we recommend further validation efforts in
the extension of quantification of atmospheric trace gases
using low-cost gas sensor arrays in oil and gas production
basins and toward other ambient measurement applications.
The findings presented here may be applicable and general-
izable in the use of low-cost metal oxide, electrochemical,
and nondispersive infrared sensor arrays in various configu-
rations and sampling regions to characterize mole fractions
of a number of atmospheric trace gases. Future studies ex-
ploring the sensitivity of our findings to these factors are
recommended. In order to account for unique variations in
sensor responses, in each individual sensor system, due to
variations in manufacturing along with elapsed time and spe-
cific exposure subsequent to manufacturing, we present mod-
els that are generated for each sensor system on an individual
basis. Future studies exploring the potential for universal cal-
ibration models would be very useful to the field.
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