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Abstract. We conduct Observing System Simulation Experi-
ments (OSSEs) to compare the ability of future satellite mea-
surements of atmospheric methane columns (TROPOMI,
GeoCARB, GEO-CAPE) for constraining methane emis-
sions down to the 25 km scale through inverse analyses.
The OSSE uses the GEOS-Chem chemical transport model
(0.25◦× 0.3125◦ grid resolution) in a 1-week simulation for
the Southeast US with 216 emission elements to be opti-
mized through inversion of synthetic satellite observations.
Clouds contaminate 73 %–91 % of the viewing scenes de-
pending on pixel size. Comparison of GEOS-Chem to To-
tal Carbon Column Observing Network (TCCON) surface-
based methane column observations indicates a model trans-
port error standard deviation of 12 ppb, larger than the in-
strument errors when aggregated on the 25 km model grid
scale, and with a temporal error correlation of 6 h. We find
that TROPOMI (7×7 km2 pixels, daily return time) can pro-
vide a coarse regional optimization of methane emissions,
comparable to results from an aircraft campaign (SEAC4RS),
and is highly sensitive to cloud cover. The geostationary in-
struments can do much better and are less sensitive to cloud
cover, reflecting both their finer pixel resolution and more
frequent observations. The information content from Geo-
CARB toward constraining methane emissions increases by
20 %–25 % for each doubling of the GeoCARB measure-
ment frequency. Temporal error correlation in the transport
model moderates but does not cancel the benefit of more fre-
quent measurements for geostationary instruments. We find
that GeoCARB observing twice a day would provide 70 % of

the information from the nominal GEO-CAPE mission pre-
formulated by NASA in response to the Decadal Survey of
the US National Research Council.

1 Introduction

Methane is the second most important anthropogenic green-
house gas after CO2 (Myhre et al., 2013), and plays a key
role in tropospheric and stratospheric chemistry (Thomp-
son, 1992; West and Fiore, 2005; Solomon et al., 2010).
The contributions from different source sectors and regions
to the atmospheric methane budget remain highly uncer-
tain (Kirschke et al., 2013; Saunois et al., 2016; Turner
et al., 2017). Satellite observations of atmospheric methane
columns in the shortwave infrared (SWIR) are a promising
resource for quantifying emissions through inverse analyses
(Jacob et al., 2016; Houweling et al., 2017) but can be lim-
ited by instrument precision, sampling frequency, pixel reso-
lution, cloud cover, and model transport error. Here we apply
an Observing System Simulation Experiment (OSSE) for the
Southeast US to compare the ability of new satellite instru-
ments to characterize methane emissions down to the 25 km
scale, using results from the recent SEAC4RS aircraft cam-
paign in the region as reference (Sheng et al., 2018).

SWIR methane observations from space have so far been
mainly from the SCIAMACHY instrument (2003–2013;
Frankenberg et al., 2006) and the GOSAT instrument (2009–
2016; Kuze et al., 2009, 2016). These data have proven useful
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for optimizing methane emissions on regional scales down
to∼ 100 km when averaged over several years (Bergamaschi
et al., 2013; Fraser et al., 2013; Monteil et al., 2013; Wecht
et al., 2014a; Turner et al., 2015; Alexe et al., 2015; Feng
et al., 2017), but they are too sparse to constrain methane
emissions on finer spatial or temporal scales. Our ability
to observe methane from space should be considerably im-
proved with the recent launch (October 2017) of the SWIR
TROPOMI instrument, providing daily global coverage with
0.6 % precision and 7× 7 km2 nadir resolution (Butz et al.,
2012; Hu et al., 2018). The GeoCARB geostationary mis-
sion to be launched in the early 2020s plans to observe
methane columns over North and South America with 0.6 %
precision and 3× 3 km2 resolution (Polonsky et al., 2014;
O’Brien et al., 2016). The final resolution could be coarser,
though this is not finalized yet. The observing frequency of
GeoCARB is not finalized yet and could be one–four times
per day. Other geostationary instruments still at the proposal
stage offer improved combinations of pixel size, precision,
and observing frequency, including GEO-CAPE (Fishman
et al., 2012), GeoFTS (Xi et al., 2015), G3E (Butz et al.,
2015), and CHRONOS (Edwards et al., 2018). GEO-CAPE
has been preformulated by NASA as a recommended mis-
sion from the US National Research Council (2007) Decadal
Survey on Earth Science and Applications from Space.

OSSEs are standard approaches to assess the utility of fu-
ture satellite instruments to deliver on a specific objective,
here the mapping of methane emissions. OSSEs at 50 km
spatial resolution have been conducted to evaluate the poten-
tial of future satellite observations for quantifying methane
emissions over California (Wecht et al., 2014b) and North
America (Bousserez et al., 2016). Bousserez et al. (2016) as-
sessed the benefit of geostationary multispectral (SWIR and
thermal infrared) measurements. Turner et al. (2018) con-
ducted a kilometer-resolution OSSE to explore the potential
of different satellite observing configurations to resolve the
distribution of methane emissions on the scale of an oil/gas
field, and Cusworth et al. (2018) extended that work to exam-
ine the ability of the satellites to detect anomalous high-mode
point source emitters.

Here we conduct a comparative analysis of TROPOMI,
GeoCARB, and GEO-CAPE for constraining the spatial
distribution of methane emissions at a fine regional scale
(25 km), and we investigate more generally how the infor-
mation content from different satellite observing configura-
tions depends on pixel size, observing frequency, and cloud
contamination. Of particular interest is to define observing
frequency requirements for GeoCARB to resolve regional-
scale methane sources. We focus on the Southeast US, which
accounts for about 50 % of US methane emissions includ-
ing mixed contributions from wetlands, fossil fuels, agricul-
ture, and waste (Maasakkers et al., 2016; Bloom et al., 2017).
Sheng et al. (2018) previously used boundary layer methane
observations from the NASA SEAC4RS aircraft campaign
(Toon et al., 2016) in August–September 2013 to optimize

methane emissions over the Southeast US. This offers an op-
portunity to directly compare the observing power of satellite
instruments to that from a dedicated aircraft campaign.

2 Observing System Simulation Experiments

Our OSSE framework is shown in Fig. 1. We build on the pre-
vious work of Sheng et al. (2018), who conducted a Bayesian
inverse analysis of the SEAC4RS aircraft observations with
the GEOS-Chem chemical transport model (CTM) at 0.25◦×
0.3125◦ resolution. They used the SEAC4RS data together
with prior estimates and error statistics from the gridded EPA
inventory of Maasakkers et al. (2016) and the WetCHARTs
extended ensemble wetland inventory of Bloom et al. (2017),
to optimize the spatial distribution of methane emissions in
the Southeast US for August–September 2013. We follow the
same analytical inversion framework as Sheng et al. (2018)
for our OSSE. We first simulate a methane column concen-
tration field using the GEOS-Chem CTM with prior emission
estimates (base simulation). We then sample this field fol-
lowing the specifications of the different satellite instruments
(Table 1), accounting for instrument random noise and cloud
contamination (discussed below).

For TROPOMI we assume a 7× 7 km2 pixel size, which
is the design nadir value (Butz et al., 2012); actual pixel
sizes grow toward the outer parts of the cross-track swath. On
the other hand, there are plans to deliver TROPOMI data at
finer 5.5×7 km2 pixel resolution (Ilse Aben, SRON, personal
communication, 2018). The 3× 3 and 4× 4 km2 pixel reso-
lutions assumed for GeoCARB and GEO-CAPE are generic
values for the contiguous US in the current designs. Random-
ness in the noise of synthetic observations is a standard OSSE
assumption (e.g., Wecht et al., 2014b; Bousserez et al., 2016)
but may overestimate the information in the observations if
some of the actual noise is systematic (Bousquet et al., 2018).

The sampled synthetic observations define the observation
vector y for the inversion. The sensitivity of these observa-
tions to the distribution of methane emissions over the do-
main (arranged as a state vector x) is defined by the Jacobian
matrix K= ∂y/∂x, where the ith column of K (∂y/∂xi) is
constructed from GEOS-Chem by perturbing individual state
vector elements xi to compute the resulting perturbation 1y

(relative to the base simulation). We then use this Jacobian
matrix together with prior and observational error statistics
(error covariance matrices SA and SO) to quantify the in-
formation content of observations toward constraining emis-
sions. All observations use a mean SWIR averaging kernel
from GOSAT with uniform near-unit sensitivity in the tro-
posphere (Worden et al., 2015). The OSSE is conducted for
the 1-week period of 8–14 August 2013. Although this ob-
servation period is relatively short (limited by the OSSE cost
of computing the Jacobian matrix), it provides useful com-
parison of the different satellite observing configurations and
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Figure 1. Observing System Simulation Experiment (OSSE) framework for the Southeast US to compare the ability of new satellite instru-
ments to constrain methane emissions on the 25 km (0.25◦× 0.3125◦) scale. GeoCARB is used here as an example. The panels on the right
show illustrative column concentrations and corresponding GeoCARB observations for a particular time. The column concentrations are in
units of dry molar mixing ratio (ppb). White areas indicate full cloud cover or oceans preventing GeoCARB from making any observations
on the 25 km scale. The prior error covariance matrix on emissions SA is assumed diagonal and shown here as the corresponding relative
error standard deviations. The degrees of freedom for signal (DOFS) is the trace of the averaging kernel matrix and measures the information
content from the different satellite instruments.

Table 1. Specifications of satellite instrumentsa.

Instrument Observing Pixel size Precision Cloud Reference
frequencyb (km2 ) contaminationc

TROPOMI once a day 7× 7 0.6 % 91 % Butz et al. (2012)
GeoCARB one–four times a day 3× 3 0.6 % 73 %d Polonsky et al. (2014), O’Brien et al. (2016)
GEO-CAPE once an hour 4× 4 1 % 79 % Fishman et al. (2012)

a All instruments measure atmospheric methane columns with near-uniform sensitivity in the troposphere, specified here with a typical SWIR averaging kernel (Worden
et al., 2015). b All observations are daytime only (SWIR solar backscatter instruments) and limited to the 09:00–16:00 local time (LT) window. TROPOMI observes at
13:00 LT once a day. GeoCARB observes at 13:00 LT (once a day), 11:00 and 13:00 LT (twice a day), or 09:00, 11:00, 13:00, and 15:00 LT (four times a day).
GEO-CAPE observes every hour in the 09:00–16:00 LT window (eight times a day). c Percentage of observing scenes with unsuccessful retrievals due to cloud
contamination (Remer et al., 2012). d The percentage of cloud-free pixels for GeoCARB may be lower and similar to GEO-CAPE because the actual pixel size of
GeoCARB is 2.7× 6 km2 (a comparable pixel area to that of GEO-CAPE) with partial overlap (hence 3× 3 km2 data).

their sensitivities to measurement frequency and cloud cover.
A longer observing period would provide more information.

The state vector x of emissions, representing the spatial
distribution of emissions to be resolved by the inversion, is
the same as in Sheng et al. (2018). It includes 216 Gaus-
sian mixture model (GMM) elements, where each element
is a Gaussian mode with radial basis functions (RBFs) ap-
plied to the 0.25◦× 0.3125◦ grid (Turner and Jacob, 2015).
The modes are selected on the basis of criteria including
spatial proximity and source type patterns as in Turner and

Jacob (2015). The optimization is for the amplitudes of the
216 Gaussian modes, and the corresponding solution on the
0.25◦× 0.3125◦ grid is obtained from the RBF weights. In
this manner, each 0.25◦× 0.3125◦ grid cell is individually
optimized as a linear combination of Gaussian modes with
RBFs. Figure 2 shows the resulting approximate clustering
as the grid cells whose largest RBF weights are for com-
mon Gaussian modes. We choose to optimize 216 elements
as representing the extent of information on emissions that
we may hope to achieve with 1-week observations. The use
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Figure 2. Approximate rendition of the reduced-dimension state
vector of n= 216 elements used to constrain methane emissions
in the Southeast US. This reduced-dimension state vector was ob-
tained by projecting the 3456 GEOS-Chem grid cells at 0.25◦×
0.3125◦ resolution onto a Gaussian mixture model (GMM) with
radial basis functions (RBFs), as described in the text. The colors
group together 0.25◦×0.3125◦ grid cells with the largest RBFs for
a given Gaussian mode and have no other significance. This visu-
alization of the state vector as a cluster with hard boundaries is an
approximate rendition because each 0.25◦× 0.3125◦ grid cell is in
fact individually optimized as a superimposition of the 216 Gaus-
sian modes with RBF weights.

of the GMM with RBFs allows us to resolve localized dom-
inant sources (such as oil/gas or coal mines) at high resolu-
tion while degrading resolution in areas of weak or broadly
distributed sources. The GMM also reduces errors in aggre-
gation of the state vector as compared to a simple grid coars-
ening method (e.g., 216 elements at 1◦× 1.25◦ resolution),
which would mix neighboring source types and induce larger
aggregation error.

The analytical solution to the Bayesian inversion prob-
lem includes full characterization of the information content
from the observations towards quantifying the state vector of
emissions, as computed by the degrees of freedom for sig-
nal (DOFS; Rodgers, 2000). Combining the Jacobian matrix
K constructed from GEOS-Chem together with the prior er-
ror covariance matrix SA and the observation error covari-
ance matrix SO, we compute the averaging kernel matrix
A= ∂x̂/∂x that represents the sensitivity of the optimization
(x̂) to the true state (x):

A= SAKT (KSAKT
+SO)−1 K= In− ŜSA, (1)

where In is the identity matrix of dimension n (= 216) and
Ŝ is the posterior error covariance matrix. The DOFS is then
the trace of the averaging kernel matrix:

DOFS= tr(A)= tr(I− ŜSA). (2)

The DOFS represents the number of pieces of information
provided by the observing system for quantifying the state
vector. As seen from Eq. (2), the DOFS is related to the rela-
tive reduction in error variance that would be obtained from

the ratios of the diagonal elements of Ŝ and SA. It provides,
however, a more complete characterization of information
content by accounting for error covariances. DOFS= 216
would represent perfect constraints on our state vector. The
SEAC4RS aircraft inversion of Sheng et al. (2018) achieved
DOFS= 10.

The prior error covariance matrix SA for our problem
is taken from the emission inventory error estimates of
Maasakkers et al. (2016) for anthropogenic sources and
Bloom et al. (2017) for wetlands, as described by Sheng et al.
(2018). The observational error covariance matrix SO is spe-
cific to the observing configuration, and includes contribu-
tions from model transport error in simulating the observa-
tions as well as the instrument errors given in Table 1.

We estimate the model transport error variance by the
residual error method (Heald et al., 2004) applied to the
GEOS-Chem simulation with prior emissions of hourly
observed Total Carbon Column Observing Network (TC-
CON) methane columns in Lamont, Oklahoma, for August-
September 2013 (Wunch et al., 2011; Wennberg et al., 2017).
In that method, the mean bias in the model compared to the
observations is attributed to error in the prior emissions (to be
corrected in the inversion) and the residual characterizes the
observation error including contributions from both model
transport error and instrument error. In our case, the TCCON
measurements are highly precise (precision is < 4 ppb), so
that the residual characterizes the model transport error. The
residual error distribution is shown in Fig. 3 and features an
error standard deviation of 12 ppb. This error standard devia-
tion is consistent with previous GEOS-Chem transport error
estimates by the residual error method using GOSAT obser-
vations from Wecht et al. (2014b) for California and Turner
et al. (2015) for North America. We assume therefore that it
applies over our whole domain.

Temporal correlation in the model transport error may
limit the benefit of high-frequency observations because re-
peated observations of the same scene may produce the same
model–observation differences. Here we estimate this error
correlation from the autocorrelation vs. time lag of the differ-
ence between GEOS-Chem and TCCON observations. Re-
sults in Fig. 3b show an exponential fit function with an error
correlation timescale of 6 h which we apply as off-diagonal
elements in the observational error covariance matrices for
the different satellite observing configurations. The increase
of the autocorrelation coefficients around 12 h is possibly
due to fewer observations (TCCON observations are only
available in the daytime) or neglecting to apply solar-zenith-
angle-dependent averaging kernels in the modeled column
methane, but it does not significantly affect the exponential
fit. Figure 4 is the persistence (e-folding) timescale for cloud
cover, which affects the extent to which the temporal error
correlation limits the information content of high-frequency
observations; this will be discussed in the next section.

The instrument error for individual observations is given
by the precision values in Table 1, taken from the original ref-
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Figure 3. GEOS-Chem model transport error statistics derived from the residual error method (Heald et al., 2004) applied to hourly TCCON
ground-based observations in Lamont, Oklahoma, in August–September 2013. Residuals are the differences between hourly simulated and
observed values after removal of the mean bias. Panel (a) shows the frequency distribution of residual error (GEOS-Chem minus TCCON)
and a Gaussian fit to that distribution with standard deviation 12 ppb. Panel (b) shows autocorrelation coefficients of the residual error plotted
against time lag and an exponential fit with a temporal error correlation e-folding scale of 6 h. Significance levels (p < 0.05) are shown as
dashed lines. The correlation becomes insignificant past a time lag of 16 h.

Figure 4. Persistence timescale for cloudy conditions in the GEOS-
FP assimilated meteorological data for August–September 2013.
The persistence timescale is defined as the temporal e-folding cor-
relation timescale for total cloud cover fraction in the 3 h GEOS-FP
data.

erences. The observations are averaged over 0.25◦×0.3125◦

GEOS-Chem grid cells for the purpose of the inversion, and
the instrument error standard deviation is decreased by the
square root of the number of successful retrievals averaged
over each grid cell for individual retrieval time.

Any cloud contamination within an observation pixel will
cause an unsuccessful SWIR retrieval for methane (Butz
et al., 2012). Remer et al. (2012) used high-resolution cloud
data (0.5–1.0 km) over the US for different regions and sea-
sons to infer probabilities for satellites to view clear sky as
a function of pixel size. They focused on aerosol retrievals
and here we use their same statistics for methane retrievals.
For the Southeast US in summer with an average cloud frac-
tion of 0.7, we find that cloud contamination would invalidate

91 % of retrievals for TROPOMI (7× 7 km2 pixels), 73 %
for GeoCARB (3× 3 km2 pixels), and 79 % for GEO-CAPE
(4×4 km2 pixels). Slant light paths and 3-D cloud scattering
would further decrease the frequency of successful retrievals.
Our OSSE retrieval failure rate of 91 % for TROPOMI in
the Southeast US is similar to the global mean failure rate
of 92 % for the GOSAT (10× 10 km2) full-physics retrieval
(Parker et al., 2011; Schepers et al., 2012). Sensitivity to
retrieval success rate will be discussed in the next section
through modifications of cloud cover.

Our removal of cloudy observations uses 3 h 0.25◦×
0.3125◦ fractional cloud cover information in the GEOS-FP
meteorological data driving GEOS-Chem (Lucchesi, 2013),
and then scales the removal rates regionally to match the
cloud contamination rates in Table 1. Although the satellite
data loss from cloud cover is severe, the relatively coarse
0.25◦× 0.3125◦ resolution of our inversion allows aggrega-
tion of data from a large number of observation pixels for
comparison to the model. This does not help when there is
solid cloud cover on the 25 km scale in the GEOS-FP data
(as in the white areas for the GeoCARB pseudo-observations
in Fig. 1) but it helps for fractional cloud cover. The median
number of aggregated successful pixel retrievals for a given
0.25◦×0.3125◦ grid cell at a given observation time is 3, 30,
and 15 for TROPOMI, GeoCARB, and GEO-CAPE, respec-
tively. Thus the median instrument error standard deviation
on the 0.25◦× 0.3125◦ grid scale over our inversion domain
is 6 ppb for TROPOMI and 2–4 ppb for the geostationary in-
struments. This is smaller than the 12 ppb model transport
error standard deviation (Fig. 3), so that most of the obser-
vational error is contributed by model transport. This is an
important result as it implies that inversion results are rela-
tively insensitive to instrument precision at the 25 km scale.
Turner et al. (2018) found much more sensitivity to satellite
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instrument precision when attempting to optimize emissions
at kilometer scales.

3 Results and discussion

The information content from different satellite observing
configurations is diagnosed by the DOFs, as described in
the Methods section, representing the number of pieces of
information on emissions that can be retrieved by inversion
of synthetic observations. Figure 5 shows a contour plot of
the DOFS as a function of observing frequency and pixel
resolution, assuming a fixed instrument precision of 0.6%.
As discussed in the previous section, results are relatively
insensitive to instrument precision since most of the obser-
vational error is contributed by model transport. The DOFS
increase as measurement frequency increases (more indepen-
dent observations) and as pixel size decreases (more obser-
vations aggregated in a 0.25◦× 0.3125◦ grid cell). The ben-
efit of increasing measurement frequency eventually weak-
ens at high values because of temporal correlation in the
GEOS-Chem model transport error. The benefit of increas-
ing pixel resolution also weakens below 4 km because the
inversion does not try to resolve emissions to resolution finer
than 0.25◦×0.3125◦. Even so, the maximum DOFS of 70 in
Fig. 5 that could be achieved by a very high-resolution sys-
tem (1 km pixel size and hourly observations) are much less
than the ideal value of 216, representing full characterization
of the emission field. This is because we only use 1 week of
observations.

DOFS for TROPOMI, GeoCARB (one–four measure-
ments per day) and GEO-CAPE are indicated on the contour
map. The TROPOMI inversion has 26 DOFS, higher than
the SEAC4RS aircraft campaign (DOFS= 10; Sheng et al.,
2018). The geostationary GeoCARB and GEO-CAPE obser-
vations achieve higher DOFS, reflecting their higher observ-
ing frequency and pixel resolution (greater density of obser-
vations). The GeoCARB information content increases by
about 20 % when going from one to two measurements for
day, and another 20 % when going from two to four measure-
ments per day. GEO-CAPE provides higher DOFS than Geo-
CARB, despite coarser pixels, because it measures hourly.
We see from Fig. 5 that an instrument measuring hourly
with 7× 7 km2 pixels would provide the same information
as GeoCARB measuring four times per day with 3× 3 km2

pixels, and GeoCARB measuring twice a day would pro-
vide about 70 % of information content obtained from GEO-
CAPE hourly measurements. Again, this result depends on
the spatial resolution of the inverse problem (here ∼ 25 km).
A focus on resolving emissions on finer scales would place a
larger premium on decreasing pixel size.

Figure 6a examines further the sensitivity of the DOFS
to observing frequency for GeoCARB, and the role of the
model transport error correlation in limiting the gains from
increasing measurement frequency. Without model transport

Figure 5. Information content of different satellite observing con-
figurations for constraining the distribution of methane emissions
in the Southeast US. The figure shows the degrees of freedom for
signal (DOFS) for a 1-week observation period aiming to constrain
216 emission elements in the Gaussian mixture model character-
izing the distribution of emissions at up to 25 km resolution. The
configurations are defined by their observing frequency and pixel
resolution. The DOFS for the TROPOMI, GeoCARB (one, two, and
four measurements per day), and GEO-CAPE observations are in-
dicated.

error correlation the DOFS increase roughly as the square
root of the measurement frequency (about 40 % for each
doubling), as would be expected from the central limit the-
orem. Temporal error correlation significantly reduces but
does not eliminate the gain from increasing observing fre-
quency. Thus we find that the DOFS increase by 20 %–25 %
instead of 40 % for each doubling of the measurement fre-
quency when temporal error correlation is taken into account.
Beyond increasing data density, an advantage of more fre-
quent measurements for a region is to increase the opportu-
nity for observing clear-sky scenes (“cloud clearing”), par-
ticularly if clouds are more transient than the 6 h error cor-
relation timescale (in which case multiple observations over
that timescale would increase the chance of obtaining a clear-
sky value). Cloud cover in the GEOS-FP meteorological data
used to drive GEOS-Chem has a persistence timescale typi-
cally longer than 6 h (Fig. 4), which moderates this cloud-
clearing benefit of high-frequency observations.

All satellite observing configurations considered in our
work have low retrieval success rates because of cloud con-
tamination of individual pixels (Table 1), as determined from
the Remer et al. (2012) clear-sky probability statistics for
the Southeast US. These statistics are for summer (regional
cloud cover of 70 %), but Remer et al. (2012) also give statis-
tics for other seasons with regional cloud cover for the South-
east US, ranging from 55 % to 81 %. Figure 6b shows the
effects of these different cloud statistics on the DOFS for
the TROPOMI, GeoCARB, and GEO-CAPE configurations.
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Figure 6. Effects of observing frequency and regional cloud cover on the information content (DOFS) from different satellite observing
configurations in constraining methane emissions on the 25 km scale. Panel (a) shows the sensitivity of the DOFS to observing frequency
for the GeoCARB instrument, with and without accounting for temporal correlation in the model transport error (e-folding timescale of 6 h).
Panel (b) shows the sensitivity of the DOFS to regional cloud fraction, as a percentage decrease relative to clear sky, using the combination
of the GEOS-FP cloud cover data and clear-sky probabilities as a function of pixel size (Remer et al., 2012).

Figure 7. Diagonal elements of the averaging kernel matrix from our OSSE using TROPOMI synthetic observations under cloudy (cloud
fraction= 0.7; a) and clear-sky conditions (b), representing the ability of the observations to constrain local emissions (see text). The sum of
these values (trace of the average kernel matrix) is the DOFS of the inversions.

TROPOMI (7×7 km2) is strongly sensitive to regional cloud
cover because of its coarse pixel size and (to a lesser extent)
its infrequent return time. The geostationary systems are far
less sensitive to cloudy conditions. The effects of clouds on
the information content of TROPOMI are further illustrated
in Fig. 7 with the averaging kernel sensitivities (diagonal el-
ements of the averaging kernel matrix) relative to clear-sky
conditions. The loss of information varies by region depend-
ing on the extent of cloud cover.

4 Conclusions

We performed Observing System Simulation Experi-
ments (OSSEs) to compare the ability of low-Earth orbit
(TROPOMI) and geostationary (GeoCARB, GEO-CAPE)

satellite instruments for constraining methane emissions
through inverse analyses. The OSSEs use the GEOS-Chem
chemical transport model (0.25◦× 0.3125◦ grid resolution)
in a 1-week simulation for the Southeast US with 216 emis-
sion state vector elements. The information content from the
different satellite instrument configurations towards quanti-
fying the state vector of emissions is computed as the degrees
of freedom for signal (DOFS) using a Bayesian analytical in-
version framework.

We find that inverse analysis of TROPOMI observations
of atmospheric methane columns should provide a success-
ful regional characterization of methane emissions, though
with limited spatial resolution. The information content from
TROPOMI is strongly dependent on cloud cover, due to lim-
ited cloud-clearing capability (coarse pixels, infrequent re-
turn time). Geostationary observations can perform much
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better, with less dependence on cloud cover, due to a com-
bination of finer pixel resolution and more frequent returns.
GeoCARB gains 20 %–25 % in information content for each
doubling of its measurement frequency from once a day to
eight times per day. GeoCARB measuring twice a day can
deliver 70 % of information content from the GEO-CAPE
configuration (hourly observations). The benefit of increas-
ing observation frequency is moderated by the 6 h temporal
error correlation in the transport model.
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