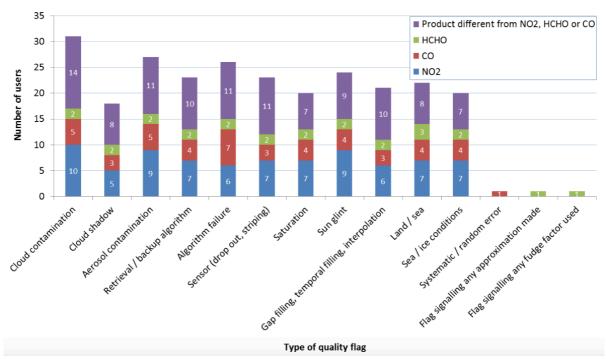


Supplement of

Improving algorithms and uncertainty estimates for satellite NO₂ retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project

K. Folkert Boersma et al.

Correspondence to: K. Folkert Boersma (boersma@knmi.nl)


The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplement to:

Improving algorithms and uncertainty estimates for satellite tropospheric NO₂ retrievals from the Quality Assurance for Essential Climate Variables (QA4ECV) project

1. User needs and expert recommendations

The NO₂ users, mostly from academia and policy support, responded that NO₂ data products available at the time generally provide quality flags, but that the information is limited. They recommended that the data products should include more detailed quality flags describing the condition of low quality measurements, along with a master flag ('use' or 'do not use') for quick inspection. Figure 1 indicates that NO₂ data users ask for information on whether scenes are affected by cloud and aerosol contamination, sun glint, sensor status (e.g. row anomaly), and whether measurements were done over land or over sea, or over snow/ice.

Figure S1. Response to the user survey question 'What additional information would you like to see provided as a quality flag?' in a NO₂ satellite data product (blue bars).

Current NO_2 data products often contain information on algorithm uncertainty on a per-pixel basis, but users indicated that they need specific information on the systematic and random error parts contributing to the stated uncertainties, on long-term stability of the data record, and on the dependence of the uncertainties on the ancillary parameters cloud fraction, cloud pressure, surface albedo, aerosols, and temperature. Users said they needed this information in inverse modeling and data assimilation experiments in order to apply realistic weights to the observations and the modeled fields, and for weighting and filtering in trend analyses and mapping.

Respondents also stated that it was important to provide traceability information and processing information along with the NO₂ data product. Full schematic details of a processing chain for the NO₂ satellite data product should be provided. When asked why they needed such information, the most common answers were: "to understand the data", "to identify sources of uncertainty" (in the retrieval algorithm), to apply appropriate "data filtering", and "to account for uncertainty in further processing" of the NO₂ data for their own purposes. Traceability information would have to be made available at a point of central access, along with other documentation on the data processing, such as an Algorithm Theoretical Baseline Document (ATBD) and a Product Specification Document (PSD) with guidance on how to use or not use the data.

Last but not least, the users found a systematic validation of the NO₂ data product with coherent independent reference data to be desirable, especially if the independent reference data itself is properly quality-assured. Information on the validation status of the product would preferably be gathered in a central access point, along with the traceability information. Within the QA4ECV project, these recommendations have led to the development of a so-Quality Assurance (QA) System. Within this called system (available at: http://www.qa4ecv.eu/qa-system), data producers have the possibility to provide all these pieces of information, and users can obtain a quick overview of the maturity and completeness of the data product.

2. Producer requirements

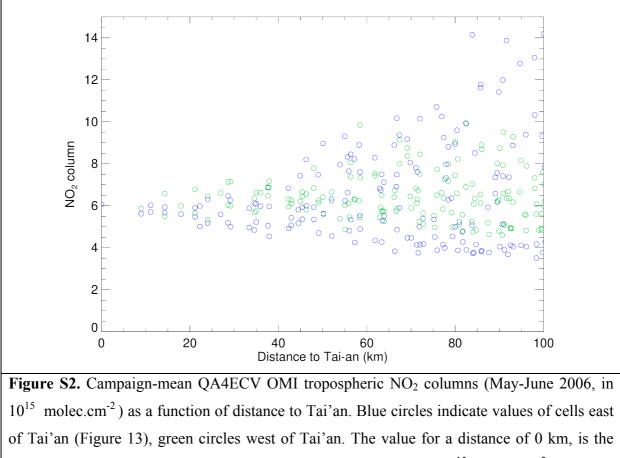
We did a survey of data producer requirements for quality assurance in satellite data records. We interviewed producers of satellite data other than those involved in QA4ECV. The response told us that satellite data producers recognize that traceable input (ancillary data) files, read-in software, sensitivity analysis documentation, and publications are not always provided along with the data, but preferably should be. Data producers stated that direct communication with their data users is important, mostly on issues including read-in software, product format, flagging and filtering procedures, and the uncertainty budget. In general, data

producers thought that the necessary traceability and quality information is in principle available, but cannot always be easily found. These recommendations helped shape the QA4ECV QA System [Nightingale et al., 2018]. Within this system, data producers have the possibility to provide all these pieces of information, and users can obtain a quick overview of the maturity and completeness of the data product. Data producers were generally positive about benchmarking their satellite data product against other scientific standards, such as from cross-calibrated global validation networks. They noticed that quality information for independent reference data is often not available. For more detailed outcomes of the ECV data producer survey, please see QA4ECV Deliverable 1.1 [Nightingale et al., 2015].

3. GCOS guidelines for generation of NO₂ ECV datasets

The guidelines established in GCOS report 138 [GCOS, 2010] are paraphrased below in Table S1, together with the response by the QA4ECV NO₂ consortium.

	CCOS guidalina Addrassad haw?		
	GCOS guideline	Addressed how?	
1.	Full description of all steps	This paper, QA4ECV D4.2 (Muller et al. [2016]),	
	taken in the generation of the	QA4ECV D4.5 (Muller et al. [2018]), QA4ECV D6.1	
	QA4ECV NO ₂ product,	(Compernolle et al. [2018]).	
	including algorithms used,		
	and characteristics and		
	outcomes of validation		
	activities.		
2.	Application of appropriate	This paper, QA4ECV D4.2 (Muller et al. [2016]),	
	calibration/validation	QA4ECV D5.6 (Compernolle et al. [2017])	
	activities.		
3.	Statement of expected	This paper (section 6, Section 2.3)	
	accuracy, stability and	QA4ECV D5.5 (Boersma et al. [2017])	
	resolution (time, space) of		
	the product, including, where		
	possible, a comparison with		
	the GCOS requirements.		
4.	Assessment of long-term	QA4ECV D6.3 (Boersma et al. [2018]), Zara et al.	


Table S1. Summary documenting point-by-point the extent to which GCOS guidelines for the generation of an ECV dataset [GCOS, 2010] has been followed, here for NO₂.

	stability and homogeneity of	[2018]
	the product.	
5.	Information on the scientific	This paper (section 4), QA4ECV D4.2 (Muller et al.
	review process related to	[2016]), Lorente et al. [2017], Zara et al. [2018]
	FCDR/product construction	
	(including algorithm	
	selection), FCDR/product	
	quality and applications	
6.	Global coverage of products	Global coverage is achieved in 1 or more days,
	where possible	depending on the sensor. See daily QA4ECV NO ₂ maps
		on www.qa4ecv.eu/ecv/no2-pre/data.
7.	Version management of	Thusfar a QA4ECV NO ₂ ECV algorithm v1.0 and v1.1
	products, particularly in	have been developed. The former contained a bug in the
	connection with improved	stratospheric correction, and was superseded with v1.1,
	algorithms and reprocessing.	which constituted the final product. v1.1 is publicly
		available from www.qa4ecv.eu/ecv/no2-pre/data, and
		via digital object identifiers.
8.	Arrangements for access to	QA4ECV NO ₂ ECV data are freely available via the
	the products and all	project website (www.qa4ecv.eu/ecv/no2-pre/data), and
	documentation.	relevant documentation including a Product
		Specification Document and the DOI's is provided along
		with the data.
9.	Timeliness of data release to	Data for July 1995 – November 2017 has been released.
	the user community to enable	
	monitoring activities.	
10.	Facility for user feedback	The QA4ECV website contains a so-called 'NO ₂ ECV
		Forum' (<u>http://www.qa4ecv.eu/forum/267</u>), where users
		can ask questions and provide feedback.
11.	Application of a quantitative	A maturity matrix analysis has been carried out twice for
	maturity index if possible	the QA4ECV OMI NO ₂ products, once via self-
		assessment in the QA4ECV Quality Assurance Report
		(<u>http://ec2-52-56-155-184.eu-west-</u>
		2.compute.amazonaws.com/#/summary-
		reports?id=04335219574c), and once by EUMETSAT in

		QA4ECV D6.1 (Compernolle et al. [2018]).
12.	Publication of a summary (a	This table.
	webpage or a peer-reviewed	
	article) documenting point-	
	by-point the extent to which	
	this guideline has been	
	followed.	

4. Mapping QA4ECV OMI NO₂ columns to the MAX-DOAS location of Tai'an

In our validation of OMI QA4ECV NO₂ columns with independent MAX-DOAS data, we account for the location of the pixel relative to Tai'an. Figure S2 below shows the average (June 2006) OMI NO₂ columns as a function of distance to Tai'an. It shows that, on average, OMI pixels within 20 km of Tai'an are within the $5-7 \times 10^{15}$ molec. cm⁻² range, i.e. within 1×10^{15} molec. cm⁻² of the June 2006 average value at Tai'an. This shows that the correction factor in Eq. (6), the ratio of the climatological column at Tai'an to the climatological column at the location of the individual OMI pixel, is always in the range 0.85-1.15.

campaign-mean tropospheric NO₂ column over Tai'an itself (6.06×10^{15} molec.cm⁻²).

References

Boersma, K. F., De Smedt, I., George, M., Compernolle, S., Eskes, H. J., Zara, M., van Geffen, J., Lorente, A., Richter, A., Peters, E., Hilboll, A., Yu. H., Van Roozendael, M., Beirle, S., Dörner, S., Wagner, T., Nightingale, J., Lambert, J.-C., Coheur, P.-F., and Clerbaux, C.: Report on the assessment and characterization of uncertainties in the retrieval algorithms for Atmosphere ECV records, 71 pp., http://www.qa4ecv.eu/sites/default/files/D5.5_v1.0.compressed.pdf, last access: 12 April 2018, 2017.

Boersma, K. F., Eskes, H. J., Ding, J., van der A, R. J., Miyazaki, K., Visser, A., Ganzeveld, L. Georgoulias, A., Bauwens, M., Stavrakou, T., Compernolle, S., Verhoelst, T., Hubert, D., Hendrick, F., Lambert, J.-C., Goerge, M., Coheur, P.-F., Clerbaux, C., and Van Roozendael, M.: Report on the impact of Atmospheric ECV records on model evaluation, data assimilation, emission and trend estimates, 68 pp., http://www.qa4ecv.eu/sites/default/files/D6.3_v1.0.pdf, last access: 12 April 2018, 2018.

Compernolle, S., Lambert, J.-C., Pinardi, G., Niemeijer, S., Rino, B., Granville, J., Hubert, D., Keppens, A., and Verhoelst, T.: Product validation and intercomparison report for QA4ECV NO₂ OMI 1.0, QA4ECV HCHO OMI 1.0, IASI FORLI CO v20100815 + v20140922, 100 pp., http://www.qa4ecv.eu/sites/default/files/Attachment_0.pdf, last access: 12 April 2018, 2018.

Compernolle, S., Lambert, J.-C., Boersma, K. F., Schulz, J., Müller, J.-P., Coheur, P.-F., De Smedt, I., Van Roozendael, M., Blessing, S., George, M., and Gobron, N.: Report on the compliance of ECV records with GCOS and user requirements (QA4ECV Deliverable 6.1), 69 pp., http://www.qa4ecv.eu/sites/default/files/QA4ECV_D6p1_FINAL%2BSMM.pdf, last access: 12 April 2018, 2018.

GCOS: Implementation plan for the Global Observing System for climate in support of the UNFCC (2010 Update), <u>https://library.wmo.int/opac/doc_num.php?explnum_id=3851</u>, last access: 12 April 2018, GCOS-138, 180 pp., 2010.

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal, L. N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle,

S., Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., Eskes, H. J., and Krol, M.: Structural uncertainty in air mass factor calculation for NO₂ and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759-782, https://doi.org/10.5194/amt-10-759-2017, 2017.

Müller, J.-P., Kharbouche, S., Gobron, N., Scanlon, T., Govaerts, Y., Danne, O., Schulz, J., Lattanzio, A., Peters, E., De Smedt, I., Beirle, S., Lorente, A., Coheur, P. F., George, M., Wagner, T., Hilboll, A., Richter, A., Van Roozendael, M., and Boersma, K. F.: Recommendations (scientific) on best practices for retrievals for Land and Atmosphere ECVs (QA4ECV Deliverable 4.2 version 1.0), 186 pp., http://www.qa4ecv.eu/sites/default/files/D4.2.pdf, last access: 12 April 2018, 2016.

Müller, J.-P., Kharbouche, S., Danne, O., Blessing, S., Gobron, N., Boersma, K. F., De Smedt, I., Richter, A., Zara, M., George, M., and Coheur, P.-F.: Multi-decadal ECVs for Atmosphere ECV precursors (1995-2016) and Land ECVs (1982-2016) (QA4ECV Deliverable 4.5, version 4.0), 37 pp., http://www.qa4ecv.eu/sites/default/files/D4.5_QA4ECV-Products_v10.pdf, last access: 12 April 2018, 2018.

Nightingale, J., De Rudder, A., Boersma, F., Scanlon, T., Farquhar, C., Muller, J.-P., and Fox, N.: Results from the QA4ECV user requirements survey on quality assurance in satellite data products (QA4ECV Deliverable 1.1 version 2.0), 16 pp., <u>http://www.qa4ecv.eu/sites/default/files/QA4ECV_D.1.1_survey_report_V2.0_20150922.pdf</u>, last access: 10 April 2018, 2015.

Nightingale J., Boersma, K. F., Muller, J.-P., Compernolle, S., Lambert, J.-C., Blessing, S., Giering, R., Gobron, N., De Smedt, I., Coheur, P., George, M., Schulz, J., and Wood, A.: Quality Assurance Framework Development Based on Six New ECV Data Products to Enhance User Confidence for Climate Applications, *Remote Sensing*, 10(8), 1254; doi: 10.3390/rs10081254, 2018.

Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., Van Geffen, J. H. G. M., Beirle, S., Wagner, T., Van Roozendael, M., Marchenko, S., Lamsal, L. N., and Eskes, H. J.: Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterization, and trends, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-453, in review, 2018.