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Abstract. Satellite remote sensing of the Earth’s atmospheric
composition usually samples irregularly in space and time,
and many applications require spatially and temporally av-
eraging the satellite observations (level 2) to a regular grid
(level 3). When averaging level 2 data over a long period to
a target level 3 grid that is significantly finer than the sizes of
level 2 pixels, this process is referred to as “oversampling”.
An agile, physics-based oversampling approach is developed
to represent each satellite observation as a sensitivity dis-
tribution on the ground, instead of a point or a polygon as
assumed in previous methods. This sensitivity distribution
can be determined by the spatial response function of each
satellite sensor. A generalized 2-D super Gaussian function
is proposed to characterize the spatial response functions of
both imaging grating spectrometers (e.g., OMI, OMPS, and
TROPOMI) and scanning Fourier transform spectrometers
(e.g., GOSAT, IASI, and CrIS). Synthetic OMI and IASI ob-
servations were generated to compare the errors due to sim-
plifying satellite fields of view (FOVs) as polygons (tessella-
tion error) and the errors due to discretizing the smooth spa-
tial response function on a finite grid (discretization error).
The balance between these two error sources depends on the
target grid size, the ground size of the FOV, and the smooth-

ness of spatial response functions. Explicit consideration of
the spatial response function is favorable for fine-grid over-
sampling and smoother spatial response. For OMI, it is ben-
eficial to oversample using the spatial response functions for
grids finer than ∼ 16 km. The generalized 2-D super Gaus-
sian function also enables smoothing of the level 3 results by
decreasing the shape-determining exponents, which is useful
for a high noise level or sparse satellite datasets. This phys-
ical oversampling approach is especially advantageous dur-
ing smaller temporal windows and shows substantially im-
proved visualization of trace gas distribution and local gra-
dients when applied to OMI NO2 products and IASI NH3
products. There is no appreciable difference in the compu-
tational time when using the physical oversampling versus
other oversampling methods.

1 Introduction

Since the launch of the ESA Global Ozone Monitoring
Experiment (GOME) in 1995, satellite observations have
tremendously advanced our understanding of the processes
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governing the atmospheric composition, greenhouse gas
emissions, and air quality (Martin, 2008; Streets et al.,
2013; Jacob et al., 2016). Global distributions of atmo-
spheric species that play critical roles in atmospheric chem-
istry and air pollution, such as ozone (e.g., Bak et al.,
2017), NO2 (e.g., Krotkov et al., 2017), SO2 (e.g., Li et al.,
2017a), formaldehyde (HCHO; e.g., González Abad et al.,
2015), glyoxal (CHOCHO; e.g., Chan Miller et al., 2014),
and BrO (e.g., Suleiman et al., 2018), have been retrieved
from the backscattered solar UV–visible spectra observed
by generations of polar-orbiting satellite sensors, includ-
ing GOME (Burrows et al., 1999), SCIAMACHY (Bovens-
mann et al., 1999), OMI (Levelt et al., 2018), GOME-
2 (Munro et al., 2016), OMPS (Rodriguez et al., 2003), and
TROPOMI (Veefkind et al., 2012). A constellation of geosta-
tionary satellites will provide hourly measurements of these
species over North America, Europe, and Asia in the near
future (Zoogman et al., 2017). Observations of the backscat-
tered shortwave infrared solar spectra also enable the re-
trieval of CO2, CH4, and/or CO from SCIAMACHY (Buch-
witz et al., 2005), GOSAT (Yoshida et al., 2011), OCO-
2 (Eldering et al., 2017), and TROPOMI (Borsdorff et al.,
2018; Hu et al., 2018). Moreover, many atmospheric species
have strong spectroscopic signatures in the mid-infrared and
can be retrieved from the Earth’s thermal emission spectra
collected by satellite sensors such as MOPITT (Drummond
et al., 2010), AIRS (Aumann et al., 2003), TES (Bowman
et al., 2006), IASI (Clerbaux et al., 2009), and CrIS (Han
et al., 2013). One species of particular significance to tropo-
spheric chemistry and air quality is NH3 (Baek et al., 2004;
Paulot and Jacob, 2014), which has been successfully re-
trieved from TES (Shephard et al., 2011; Sun et al., 2015a),
AIRS (Warner et al., 2016), IASI (Clarisse et al., 2010; Whit-
burn et al., 2016a; Van Damme et al., 2017), and CrIS (Shep-
hard and Cady-Pereira, 2015; Dammers et al., 2017).

The retrieval results from satellite sensors are usually to-
tal or partial (e.g., tropospheric or planetary boundary layer,
PBL) column density at individual satellite pixels, i.e., the
level 2 product. However, the pixel geometry may vary sig-
nificantly even for the same sensor (see Fig. 1 for example),
and data quality screening (by cloud coverage, solar zenith
angle, surface albedo, thermal contrast, etc.) often leaves
only small and patchy fractions of useful level 2 pixels for
any given orbit. As such, the level 2 data over many orbits
are often projected to a regular spatial grid to better represent
the spatiotemporal variations of the target species through a
gridding algorithm. These “level 3” products help to average
out the observational noise that can be significant for individ-
ual level 2 retrieval and make satellite data more accessible
for scientific studies and the general public. These products
may also lead to additional discoveries, such as emission and
lifetime estimates (Beirle et al., 2011; Valin et al., 2013; Zhu
et al., 2014; de Foy et al., 2015; Fioletov et al., 2015, 2017;
Whitburn et al., 2015, 2016b; Liu et al., 2016), source iden-
tification (McLinden et al., 2012, 2016; Kort et al., 2014),

trend analyses (Russell et al., 2012; Lamsal et al., 2015; Dun-
can et al., 2016; Warner et al., 2017; Zhu et al., 2017b), as-
sessment of environmental exposure for public health (Ged-
des et al., 2016; Zhu et al., 2017a), and satellite data valida-
tion (Zhu et al., 2016).

The operational level 3 products are typically provided at
grid sizes of 0.25◦× 0.25◦ or even 1◦× 1◦, which are too
coarse for regional heterogeneous emission sources (e.g., ur-
ban areas), especially for species with short lifetimes. These
level 3 products are provided at fixed temporal intervals (e.g.,
daily, monthly, and annually). To customize the temporal
and spatial sampling intervals, one often needs to regrid the
level 2 data.

Various gridding algorithms have been developed to gen-
erate level 3 maps at a regional scale with much finer grids
(0.05–0.01◦) than the sizes of level 2 pixels, and this pro-
cess is generally referred to as “oversampling” (de Foy et al.,
2009; Russell et al., 2010). In this work, we present an
agile, physics-based oversampling approach that represents
each level 2 satellite pixel as a sensitivity distribution on the
Earth’s surface (e.g., the spatial response function), instead of
a point or a polygon as assumed in previous methods. A gen-
eralized 2-D super Gaussian function is used to characterize
the spatial response functions of both imaging grating spec-
trometers (e.g., OMI, OMPS, and TROPOMI) and scanning
Fourier transform spectrometers (FTSs; e.g., GOSAT, IASI
and CrIS). Applications to multiple existing satellite datasets
are also highlighted.

2 Satellite observations

2.1 OMI

The OMI instrument aboard the Aura satellite launched in
2004 is a push-broom UV–visible imaging grating spectrom-
eter. It has a daytime equatorial crossing at∼ 13:42 LT (local
time). During normal global observation mode, the backscat-
tered sunlight from the Earth is imaged by a telescope onto
a rectangular entrance slit perpendicular to the flight direc-
tion. The light coming through the slit, which corresponds
to an across-track angle of 115◦, or 2600 km on the ground,
is dispersed by optical gratings and mapped on two 2D
CCD detectors. Each detector image is aggregated across-
track (along the length of the slit) into 60 spectra, corre-
sponding to 60 across-track spatial pixels for the UV2 (307–
383 nm) and visible (349–504 nm) bands, as shown by Fig. 1.
Although the spatial response functions of OMI pixels are
nonuniform (de Graaf et al., 2016; Sihler et al., 2017), the
OMI pixels are widely characterized as quadrilateral poly-
gons defined by 75 % of the energy in the along-track field
of view (FOV) and the halfway points of the across-track
FOV (the 75 FOV pixel edges from the OMPIXCOR prod-
uct; Kurosu and Celarier, 2010). These OMI pixel poly-
gons are close to rectangles, ranging from 14km× 26km at
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nadir (or 13km× 24km if assuming nonoverlapping pixels)
to 28km×160km at the swath edges. Alternatively, OMI pix-
els can be represented as tiled polygons with no overlap be-
tween adjacent pixels. These tiled pixels produce a seamless
swath image but are less accurate, especially in the along-
track direction. OMI is a highly successful mission with long
data records, and most of the successor missions follow a
similar design (Levelt et al., 2018). The oversampling tech-
nique demonstrated here can be readily adopted for a range of
OMI products and OMI’s successor missions, such as OMPS,
TROPOMI, and TEMPO.

2.2 IASI

The IASI instrument is an FTS with an across-track scan-
ning range of 2200 km (Fig. 1). It has a daytime equatorial
crossing time of∼ 09:30 LT. The first IASI instrument (IASI-
A) was launched aboard the MetOp-A satellite in 2006, with
the launch of IASI-B following in 2012 and IASI-C in 2018.
IASI scans across the track with 30 mirror positions, or fields
of regard (FORs), and each FOR is composed of a 2×2 array
of pixels, or FOV. Each FOV projected on ground is a 12 km
diameter circular footprint at nadir and elongates to ellipses
towards the swath edges (Clerbaux et al., 2009). To simplify
the ground pixel calculation, we represent each pixel as an
ellipse with the major and minor axes and rotation angle in-
terpolated from a lookup table based on latitude and FOR
and FOV number.

We use the most recent neural network (NN) IASI NH3
retrieval based on calculation of a hyperspectral range in-
dex (HRI) and subsequent conversion to NH3 columns via a
neural network (Whitburn et al., 2016a; Van Damme et al.,
2017). The IASI NH3 datasets are publicly available for
both IASI-A and IASI-B, with the version 2 (Van Damme
et al., 2017) presenting significant improvements over ver-
sion 1 (Whitburn et al., 2016a), including the negative values
that are crucial for observational error averaging near the de-
tection limit.

2.3 CrIS

The CrIS instrument, which is aboard the Suomi NPP satel-
lite and the series of JPSS satellites, is a step-scan FTS with
2200 km across-track width (Fig. 1). It has a daytime equa-
torial crossing time of ∼ 13:30 LT. It has the same number
of FORs as IASI, but each FOR contains 9 FOVs (3× 3 ar-
ray), providing a better spatial coverage. Each CrIS FOV is
14 km at nadir, slightly larger than IASI. Due to the mount-
ing angle of the scanning mirror, the FOR rotates differently
at each scanning angle. Similar to IASI, each CrIS pixel is
represented as a rotated ellipse.

The CrIS fast physical retrieval (CFPR) NH3 retrieval
product is based on the TES optimal estimation approach
that minimizes the differences between spectral radiances

and a simulated fast forward line-by-line model (Shephard
and Cady-Pereira, 2015).

3 Existing gridding methods

This section reviews existing gridding methods that map
level 2 pixels to level 3 grids. Oversampling conventionally
refers to the cases where level 3 grid is much finer than the
level 2 pixel size.

3.1 Spatial interpolation

The spatial interpolation methods generate continuous data
fields from observations made at discrete locations. The main
difference between interpolation and the point- and polygon-
based oversampling approaches discussed in Sect. 3.2 and
3.3 is that the values at grid cells that are not covered by
satellite observations can be estimated. Therefore, the spa-
tial interpolation methods are more commonly used for satel-
lite datasets with significant spatial gaps or requiring ad-
ditional smoothing. Common spatial interpolation methods
include nearest neighbors, piecewise 2-D linear interpola-
tion, spline interpolation, and various kriging methods. The
moving window block kriging method has been proposed
to generate global level 3 products for satellite observations
of long-lived species, such as CH4 and CO2 (Tadić et al.,
2015, 2017). A comprehensive review of available spatial
interpolation methods for environmental variables is pro-
vided by Li and Heap (2014). There are relatively few ap-
plications of spatial interpolation methods to regional fine-
grid oversampling, where each target grid cell usually re-
ceives a large number of overlapping satellite observations.
Kuhlmann et al. (2014) proposed an interpolative gridding
algorithm that reconstructs the trace gas distribution by a
continuous parabolic spline surface, defined on the lattice
of tiled satellite pixels. This approach produces smooth re-
gional level 3 maps for the OMI NO2 products with specifi-
cally tuned smoothing parameters but has not been tested in
non-tiled observations with significant numbers of missing
values (e.g., IASI and CrIS).

3.2 Satellite observations as points

The simple “drop-in-the-box” gridding method can be clas-
sified into this category, as each satellite observation is as-
sumed to be a point on the surface. The value for each tar-
get grid cell is the average of all screened satellite observa-
tions with the center of the FOV falling inside the grid cell
boundaries. A conventional oversampling approach has been
developed based on the drop-in-the-box method; instead of
only averaging “in the box”, it includes satellite observations
within a certain radius (much larger than the grid size) from
the center of each grid cell. This averaging radius is chosen
to balance the smoothing and noise but is also somewhat ar-
bitrary. For example, McLinden et al. (2012) used a radius
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Figure 1. Across-track (xtrack in figure) ground pixel geometry for IASI, CrIS, and the UV2 and VIS (visible) bands of OMI.

of 8 km to oversample the OMI NO2 tropospheric columns
and a larger radius of 24 km to oversample the OMI SO2
total columns near the Canadian oil sands region; Fioletov
et al. (2011) used 12 km to oversample the OMI SO2 to-
tal columns over the US; and Zhu et al. (2014) used 24 km
to oversample the HCHO total columns near Houston, TX.
This oversampling approach is referred to as “point oversam-
pling” hereafter, as the pixel geometry is not considered. The
pixel-specific observational errors are also not taken into ac-
count.

Figure 2 reconstructs a point oversampling process for an
arbitrary target grid point (red star) located near Denver, CO.
OMI NO2 data (Krotkov et al., 2017) over the year 2005
are used in this demonstration. Pixels with a cloud fraction
≥ 30 % or a solar zenith angle ≥ 75◦ are screened out. Only
across-track positions with relatively small pixel areas (6–
55 out of 1–60) are included, a common practice to over-
sample OMI data. Adding pixels at the swath edges would
induce more “false negative” cases, as shown below. The
screened satellite pixel centers that fall within a 12 km ra-
dius (dashed circle) are plotted as black points and red tri-
angles. The red triangles are “false positive” observations
because the corresponding pixel quadrilaterals, provided by
the OMPIXCOR product, do not cover the target grid point.
The pixel geometry of an extreme false positive case is illus-
trated by the pixel quadrilateral, featuring the largest separa-
tion between its boundary and the target grid point. Like-
wise, the false negative observations are plotted as purple
squares, whose pixel centers fall outside the averaging cir-
cle (and hence not averaged), but these pixels cover the tar-
get grid point. An extreme case of the false negatives is also
illustrated. For this example, there are 243 pixels within the
12 km radius, of which 54 are false positives (22 %). There
are 92 false negatives (38 %) not included in the point over-
sampling. Typically, false positives are pixels closer to nadir,
whereas false negatives are pixels away from nadir. In com-
bination, the oversampled value at this grid location has con-
tributions from a much different set of satellite observations
than what should be represented. A larger averaging radius

will decrease the occurrence of false negative cases but in-
crease that of false positive cases. Because the OMI pixel
dimension is larger at the across-track direction, these sam-
pling biases differ in direction; observations in the across-
track direction of the target grid point are more likely to be-
come false negatives, and observations in the along-track di-
rection are more likely to become false positives.

In reality, the OMI ground pixel footprints are not as sharp
as quadrilateral boundaries (de Graaf et al., 2016), so the
false positive and negative cases are not as well defined as
in Fig. 2. This will be discussed in Sect. 4.1.

3.3 Satellite observations as polygons (i.e., tessellation)

This approach assumes that each satellite observation foot-
print is a polygon on the surface, and calculates the areal
proportions of grid cells inside each polygon. Because calcu-
lating these overlapping areas requires filling irregular satel-
lite footprint polygons with rectangular grid cells, it is also
known as the “tessellation” approach. The contribution of
each satellite observation to a given grid cell is weighted by
the overlapping area and inversely weighted by the total pixel
polygon area and the observational uncertainty, as shown by
the following equations (modified from Zhu et al., 2017a):

C(j)= A(j)/B(j), (1)

where

A(j)=
∑
i

�(i)S(i,j)

σ (i)p
∑
jS(i,j)

, (2)

B(j)=
∑
i

S(i,j)

σ (i)p
∑
jS(i,j)

. (3)

In the equations above, C(j) is the oversampled result for
destination grid cell j ; �(i) is the variable to be oversam-
pled (e.g., total column) associated with the satellite pixel i;
S(i,j) is the overlapping area between pixel i and grid cell
j , and hence

∑
jS(i,j) is the total area of pixel i, assuming

that the grid extends beyond all pixel boundaries. When the
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Figure 2. Centers of screened OMI pixels in 2005 over a target
grid point (red star) near Denver, CO. Pixels that overlap with the
target grid point with the pixel center falling within the averaging
radius (dashed circle) are plotted as black points (correct oversam-
pling, 40 %). Pixels that overlap with the target grid point with the
pixel center falling outside the averaging radius are plotted as pur-
ple squares (false negative, 38 %). Pixels that do not overlap with
the target grid point with the pixel center falling in the averaging ra-
dius are plotted as red triangles (false positive, 22 %). Extreme cases
of false positives or negatives are illustrated by OMI pixel quadrilat-
erals. The percentages of correct oversampling, false positive, and
false negative pixels are labeled in the legend.

destination grid is regular with constant grid cell area, it is
convenient to normalize S(i,j) by the grid cell area, lead-
ing to overlapping fractions. We will follow this convention
hereafter, and hence S(i,j) is always a dimensionless num-
ber. These equations take into account the extent of a pixel
and give more weight to a nadir observation than to an ob-
servation at the edges of the satellite swath, where the infor-
mation is more smeared out. The variable σ(i)p is the uncer-
tainty term, and the power p has been assumed to be 1 (Zhu
et al., 2017a) or 2 (Spurr, 2003; Van Damme et al., 2014)
by different studies. If we assume each observation �(i) is a
measurement of a constant true value with Gaussian random
error σ(i), p = 2 yields the maximum likelihood estimate of
the true value. However, the true measurement and sampling
errors often show heavier tails than a Gaussian distribution.
In this study we adopt p = 1, following Zhu et al. (2017a).
The oversampled results are generally similar for both cases.
Unlike the point oversampling discussed in Sect. 3.2 where
C(j) is simply the average of �(i) within a circle, the tes-
sellation approach fully utilizes the geometry and error infor-
mation for each satellite observation. It has been adopted by
many operational level 3 products and oversampling stud-
ies (Liu et al., 2006; Wenig et al., 2008; Krotkov, 2013;

Van Damme et al., 2014; de Foy et al., 2015; Duncan et al.,
2016; Kim et al., 2016; Zhu et al., 2017a; Li et al., 2017b).

It is sometimes convenient to define

D(j)=
∑
i

S(i,j) (4)

to quantify the total number of overlapping pixel polygons
used in averaging for grid cell j . Unlike the point oversam-
pling, this number does not have to be an integer due to the
consideration of partial overlaps. Because the location and
size of these pixels vary day by day, averaging a large num-
ber of pixels reveals spatial patterns at scales finer than the
satellite pixel scales, if these patterns are consistent through
the averaging time period.

Figure 3 illustrates the tessellation process for OMI (a)
and IASI (b) pixels, where the elliptical IASI pixel is rep-
resented by a 100-vertex polygon calculated from its mi-
nor/major axes and rotational angle lookup tables. The des-
tination grid size is 5 km× 5 km, and the overlapping areas
are normalized by the grid cell area (25 km2), as labeled in
each grid cell.

4 Proposed method

4.1 Satellite observations as sensitivity distributions

The tessellation approach discussed in Sect. 3.3 inherently
assumes that the satellite observation is uniformly sensitive
to the scene inside the pixel polygon and has no sensitiv-
ity outside it. However, depending on target grid size and
the spatial response function of specific satellite observa-
tions, this may be too strong of an assumption. For exam-
ple, Schreier et al. (2010) characterized the complex spa-
tial response function of the AIRS instrument and used it
to improve the comparison of radiances measured by AIRS
and MODIS. de Graaf et al. (2016) and Sihler et al. (2017)
derived an in-flight spatial response function of OMI us-
ing collocated MODIS radiance. The operational Sentinel-5
Precursor, Sentinel-5, and Sentinel-4 cloud processors also
rely on the spatial response functions of the imaging grat-
ing spectrometers to accurately calculate the cloud coverage
within each FOV using collocated high-resolution cloud im-
agers (Siddans, 2017).

For imaging grating spectrometers like OMI, the spatial
response function depends on the diffraction of the fore op-
tics, the instantaneous field of view (i.e., the instantaneous
projection of the slit on the ground from the point of view of a
native detector pixel), the numbers of across- and along-track
bins, and the along-track movement of subsatellite point dur-
ing the integration time. The satellite movement only af-
fects the along-track direction, generally making the spatial
response in the along-track direction smoother than that in
the across-track direction. de Graaf et al. (2016) and Sih-
ler et al. (2017) fitted the OMI spatial response function us-
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Figure 3. Tessellation process for OMI (a) and IASI (b) pixels. The IASI pixel is approximated by a 100-vertex polygon. The overlapping
area (S(i,j)) between satellite pixel i and grid cell j is labeled at grid cell center, normalized by grid cell area (25 km2). Across-track: xtrack.

ing a 2-D super Gaussian function to parameterize the dif-
ferent smoothness in the along- and across-track directions.
To standardize the representation of spatial response func-
tions for diverse satellite sensors, we generalize the 2-D su-
per Gaussian function as

S(x,y)= exp

−(∣∣∣∣ xwx
∣∣∣∣k1

+

∣∣∣∣ ywy
∣∣∣∣k2
)k3

 , (5)

where

wx =
FWHMx

ln(2)1/(k1k3)
, (6)

wy =
FWHMy

ln(2)1/(k2k3)
. (7)

In these equations, x and y are distances to the center of
ground FOV in orthogonal directions, usually transformed
by geometric projections of the across- and along-track di-
rections. FWHMx and FWHMy are full widths at half max-
imum of the spatial response function, S(x,y), in the direc-
tions of x and y. The three exponential terms, k1, k2, and k3,
control the distribution of spatial response, as illustrated by
Fig. 4. When k3 = 1 (Fig. 4a and c), Eq. (5) becomes the 2-D
super Gaussian function used by de Graaf et al. (2016) and
Sihler et al. (2017) to characterize the OMI spatial response:

S(x,y)= exp

(
−

∣∣∣∣ xwx
∣∣∣∣k1

−

∣∣∣∣ ywy
∣∣∣∣k2
)
. (8)

For OMI, k1 ∼ 4 and k2 ∼ 2 (de Graaf et al., 2016).
For FTS systems with stop-and-stare sampling, like IASI

and CrIS, the spatial response function (also known as point
spread function by the community) is more simply defined
by the circular aperture and some diffraction around the edge.
The nadir FOV is circular with no difference between across-
and along-track directions, and hence the spatial response
function can be characterized by a 1-D super Gaussian func-
tion rotating around the nadir point. This rotating super Gaus-
sian function is another special case of the generalized 2-D

super Gaussian (Eq. 5) with k1 = k2 = 2 and wx = wy :

S(x,y)= exp

(
−

∣∣∣∣Rw
∣∣∣∣2k3

)
, where

R =

√
x2+ y2 and w = wx = wy . (9)

The smoothness of the rotating super Gaussian is controlled
by only one exponent, which equals to 2×k3. The elongated
spatial response functions for off-nadir angles can be readily
characterized by different values for wx and wy (Fig. 4a–b).
The spatial response function of IASI is rather sharp at the
edge with little variation at the top, close to a super Gaus-
sian with an exponent of ∼ 18 (CNES, 2015). The spatial
response function of CrIS is relatively smoother at the edge,
best fit by a super Gaussian with an exponent of ∼ 8 (Wang
et al., 2013). Details on the spatial response functions of IASI
and CrIS can be found in Appendix A.

In the generalized 2-D super Gaussian function (Eq. 5),
k1× k3 and k2× k3 are the exponents in the x and y direc-
tions, respectively, and determine the sharpness of the spatial
response in the corresponding direction. An exponent of 2
leads to a standard Gaussian function; the larger exponents
produce a top-hat shape, converging to a boxcar shape when
the exponent approaches infinity (Beirle et al., 2017). Redis-
tributing the contributions from k1/k2 and k3 makes hybrid
spatial response functions that may have sharp edges in sen-
sitivity but rounded corners in space, as in the case of OMPS
(Glen Jaross, personal communication, 2017). The difference
between this hybrid case and conventional 2-D super Gaus-
sian is illustrated by Fig. 4c–d.

The projection of a rectangular FOV for imaging grating
spectrometers like OMI on the surface at large viewing an-
gles leads to distorted quadrilateral footprints, as shown by
the polygon ABCD in Fig. 5a. To account for this effect, a
geometric transformation function is determined by the OMI
pixel corner points (ABCD in Fig. 5a) and the corresponding
rectangle (A′B′C′D′ in Fig. 5b) defined by the distances be-
tween the middle points of opposing edges of the OMI pixel
quadrilateral. The spatial response function is first calculated
according to Eq. (5) with FWHMx =|A′D′| and FWHMy
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Figure 4. (a) Standard 2-D Gaussian function. It is both a rotating super Gaussian with an exponent of 2 and a 2-D super Gaussian function
with the x and y direction exponents equal to 2. (b) Rotating super Gaussian with an exponent (2×k3) of 18. (c) 2-D super Gaussian function
with an exponent of 18 in the x direction and an exponent of 6 in the y direction. (d) A hybrid case between a rotating super Gaussian and a
2-D super Gaussian, featuring rounded corners. In all cases, FWHMx = 1.618×FWHMy . The grid size is 5 % of FWHMy .

=|A′B′| as shown in Fig. 5b and then projected to match
the OMI pixel corners ABCD (Fig. 5a) using the geomet-
ric transformation function. This algorithm is implemented
using both the OpenCV library in Python and the Image Pro-
cessing Toolbox in MATLAB.

The proposed oversampling approach represents each
satellite observation as a sensitive distribution, instead of a
point or a polygon. If the true satellite spatial response func-
tion is used as the sensitive distribution, this approach is the
theoretically optimal solution to the oversampling problem,
and is hence referred to as “physical oversampling” hereafter.
It follows the same equations as the tessellation approach as
in Eqs. (1)–(4), except that the fractional overlapping area
S(i,j) is generalized to the integration of the spatial response
function of satellite observation i, S(x,y|i), over the grid
cell j :

S(i,j)=

∫∫
grid jS(x,y|i)dx dy∫∫

grid jdx dy
, (10)

where the denominator is the grid cell area. Similar to the
tessellation approach, S(i,j) is always a dimensionless num-
ber between 0 and 1. By normalizing the grid cell area, this
accurate form of S(i,j) can be directly replaced by approx-

imating values such as S(x,y|i) evaluated at the grid cen-
ter. S(i,j)/

∑
jS(i,j) is just the normalized spatial response

function for observation i so that its spatial integration is
unity. If the spatial response is uniform inside the pixel poly-
gon and zero outside the polygon, this integration of the spa-
tial response function within the grid cell is equivalent to the
fractional overlapping area used in the tessellation approach.
As such, the tessellation is just the extreme case where the
spatial response function is a perfect 2-D boxcar. This corre-
sponds to k1× k3→∞ and k2× k3→∞ in Eq. (5).

This physical oversampling approach can also be con-
sidered as a spatial interpolation method as discussed in
Sect. 3.1 because the spatial response function can be de-
fined beyond the satellite pixel boundaries and theoretically
on the entire 2-D space. Moreover, instead of the exact form
of spatial response function, the satellite observations can be
represented by similar (with the same FWHM) but smoother
sensitivity distributions to enhance the quality of the over-
sampling results. This possibility will be demonstrated in
Sect. 5.2.
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Figure 5. (a) OMI pixel corners (ABCD) for across-track position 60 out of 1–60 and spatial response function with k1 = 4, k2 = 2, and
k3 = 1. (b) The same OMI pixel transformed to a rectangle (A′B′C′D′) and the corresponding transformed spatial response function. The
horizontal and vertical axes are in different scales to demonstrate that the OMI pixel is not exactly a parallelogram. As a result, the geometric
transformation function is projective (not exactly affine).

4.2 Balancing the errors from tessellation and
discretization of spatial response

The tessellation approach is perfect if the spatial response of
satellite observation is a boxcar, but otherwise it will intro-
duce some error in the oversampled results (referred to as
“tessellation error” hereafter). When the satellite spatial re-
sponse function is smooth (instead of a boxcar), the exact
solution is to calculate S(i,j) as the integration of the spa-
tial response of satellite observation i over the area covered
by the target grid cell j (Eq. 10). It is computationally de-
manding to numerically integrate the spatial response of all
satellite pixels over each grid cell. To simplify it, one may
discretize the spatial response function to the target oversam-
pling grid and use the spatial response value at the grid center
to approximate the integration. As such, the spatial response
function only needs to be evaluated once per pixel per grid
cell. To improve this simple discretization scheme, we cal-
culate a weighted average of the spatial response values at
the grid center and grid corners (as proposed for MODIS by
Yang and Wolfe, 2001). Because the grid corners are shared
by neighboring grid cells, this approach only doubles the spa-
tial response calculation but significantly reduces the error
induced by discretization (“discretization error” hereafter).
Appendix B gives a detailed comparison of different dis-
cretization schemes.

The satellite sensors have very different spatial responses.
The target grid size for level 3 data ranges from 0.25◦

(∼ 25 km) for many global operational products to 0.01◦

(∼ 1 km) for regional oversampling. The discretization error
decreases as the size of the target grid cells becomes finer and
the spatial response of satellite observations becomes better
resolved. At any fixed target grid size, spatial response func-
tions with smoother edges are better approximated by the
discretization scheme. As such, it is essential to balance the
tessellation and discretization errors based on the target grid

cell size and the smoothness of the satellite spatial response
so that the most accurate and efficient approximating method
can be chosen.

Figure 6 compares the tessellation and discretization er-
rors when oversampling synthetic OMI observations to a grid
of 1 km (∼ 0.01◦). A checkerboard pattern is used as the
“true” concentration distribution (alternating values of zeros
and ones with a spatial period of 20 km× 20 km, as shown in
Fig. 6a; it also shows OMI pixel polygons at across-track po-
sition no. 1 in red and across-track position no. 30 in cyan).
Synthetic OMI observations are generated by sampling the
checkerboard pattern using the OMI spatial response func-
tion, simplified using Eq. (8) with k1 = 4, k2 = 2 and dis-
cretized at a very fine grid (0.05 km, or ∼ 0.0005◦) so that
the spatial response distribution is always fully resolved. The
locations of OMI observations are from the real OMI NO2
products (Krotkov et al., 2017), filtered by cloud fraction
< 25 % and solar zenith angle < 75◦ for 2005–2006. Instead
of NO2 columns, the synthetic OMI observations at these lo-
cations are oversampled. The oversampled area is in the north
midlatitude (∼ 40◦). In Fig. 6b, the oversampling is con-
ducted at a native grid size (0.05 km), and then the result is
block-averaged to the 1 km target grid size to represent ideal
OMI observations, as in Eq. (10). One should note that this
discretization at 0.05 km is used to get the true map of OMI
observation where the discretization error is negligible. It is
unnecessary to oversample at this fine grid in general. Fig-
ure 6c and e show the results for tessellation and discretiza-
tion of the spatial response at 1 km grid, where S(i,j) is ap-
proximated by fractional overlapping area and the discretiza-
tion scheme, respectively. They both reproduce the checker-
board pattern in general, but the tessellation method gener-
ates errors up to 40 % (Fig. 6d) relative to the peak-to-trough
value of the ideal observation because the OMI spatial re-
sponse is smooth (Fig. 5) instead of boxcar. In contrast, the
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Figure 6. Oversampling a synthetic checkerboard pattern, shown in panel (a), at a spatial scale smaller than the OMI pixels to a grid size
of 1 km. The pattern in panel (a) is the ground truth of the concentration distribution. The ideal OMI observation in panel (b) is generated
using spatial response function defined in Fig. 5 at very fine grids and then co-added back to 1 km. The pattern in panel (b) represents the
ideal observation by OMI because no errors are introduced during the oversampling process. Panel (c) shows the result from the tessellation
method (assuming S(i,j) is equal to the overlapping area between satellite pixel i and grid cell j ). Panel (d) shows the difference between
tessellation and the ideal observation. The values in panel (d) are equal to the values in panel (c) minus the values in panel (b). Panels (e,
f) show the oversampling result by discretizing the spatial response function and its difference from the ideal observation. The values in panel
(f) are equal to the values in panel (e) minus the values in panel (b).

discretization error is much smaller (Fig. 6f) because of the
small size of the target grid cells (1 km).

The analysis for Fig. 6 is repeated for a range of target grid
sizes (1–50 km, or about 0.01–0.5◦) and different smoothness
of the spatial response functions using the same OMI obser-
vation locations. The spatial response function is assumed to
be 2-D super Gaussian (Eq. 8). The exponent in the along-
track direction (k2) is tuned from 2 to 64, whereas the ex-
ponent in the across-track direction (k1) is set to be 2× k2.
Figure 7a shows, for satellite observations with a quadrilat-
eral FOV, the contour of the ratio between the discretiza-
tion error and the tessellation error, calculated as the root-
mean-squares of the differences between the ideal observa-
tion and the simplifications using tessellation and spatial re-
sponse discretization, respectively. The contour line of unity
divides the regimes where tessellation and discretization er-
rors are dominant: discretization of the spatial response is
more accurate for fine-grid oversampling of satellite obser-
vations with smooth spatial responses (small k1 and k2); tes-
sellation is more accurate for coarser target grids and sharper
spatial responses. Tessellation is perfect if k1 and k2 both ap-
proach infinity. The case of OMI (k1 = 4, k2 = 2) lies at the
left edge (red vertical dashed line in Fig. 7a), and its inter-
sect with the unity contour line is located at the target grid
size of ∼ 16 km. In other words, it is beneficial to explicitly

consider the spatial response of OMI observation for target
oversampling grids finer than ∼ 16 km (about 0.15◦).

Similarly, Fig. 7b shows the ratios between discretization
and tessellation errors for satellite observations with circular
FOVs. The pixel dimensions and locations of IASI observa-
tions for 2015–2016 are used with standard data screening,
and the spatial response function is assumed to be a rotat-
ing super Gaussian (Eq. 9). The exponential term (equal to
2× k3) varies from 2 to 64. When characterizing the IASI
spatial response as a rotating super Gaussian function, the
exponent is about 18, intersecting the unity contour line at
the target grid size of ∼ 2 km. If the IASI instrument had the
same spatial response as CrIS (the exponent is about 8), the
intersect would be at the target grid size of ∼ 4 km. The re-
sults would be very similar when using the CrIS observation
locations instead of IASI because the exact locations of any
observations are averaged out and the IASI and CrIS pixel
sizes are similar.

As shown by Fig. 7, the balance between tessellation and
discretization errors depends on both the target grid size and
the deviation of satellite spatial response function from an
ideal 2-D boxcar shape. The uncertainty in the knowledge
of the spatial response functions is not considered here, but
the spatial response function can be characterized prelaunch
and validated on orbit (Schreier et al., 2010; de Graaf et al.,
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Figure 7. (a) The ratio between discretization and tessellation errors for different combinations of spatial response function shapes and target
grid size. The unity contour line delineates the regime where the tessellation error is larger than the discretization error (blueish contours)
and the regime where the discretization error is larger than tessellation error (reddish contours). The red vertical dashed line indicates the
approximate spatial response for OMI. The red star marks the threshold target grid size where the tessellation and discretization errors are
equal for OMI. (b) Similar to panel (a) but the IASI pixel shapes and locations are used instead of OMI. The spatial response function
exponents for CrIS and IASI and their intersects with the unity contour line are marked.

2016; Sihler et al., 2017). For all three cases, the tessella-
tion error significantly outweighs the discretization error at
1 km oversampling grid size by a factor of 4 for IASI and
over 200 for OMI. Therefore, we recommend discretization
of the spatial response function at a 1 km (or 0.01◦) grid for
regional scale oversampling of OMI, IASI, and CrIS data
and then co-adding to coarser grids if necessary. The thresh-
old grid size where tessellation and discretization errors bal-
ance also depends on the ground size of satellite FOV. For
the OMI successor missions with significantly smaller pix-
els (e.g., TROPOMI, TEMPO), the threshold grid size is ex-
pected to be finer.

4.3 Spatial resolution and spatial sampling

The difference between resolution and sampling density for
1-D spectral data has been thoroughly discussed in the liter-
ature (e.g., Chance et al., 2005). However, for 2-D, spatially
resolved data, it is common to refer to both the sizes of the
level 2 pixels and the size of the level 3 grid as the spatial
“resolution” of the data. To avoid confusion, it is emphasized
here that the true spatial resolution is limited by the sizes of
level 2 pixels. The size of level 3 grid only determines the
density of spatial sampling, which does little to enhance the
true resolving power of the data after reaching a certain point.
For example, the oversampling results using synthetic OMI
data at 1 vs. 0.05 km grids are very similar (Fig. 6). Nonethe-
less, it is still beneficial to oversample, i.e., make level 3 grid
size significantly smaller than level 2 pixel sizes, as demon-
strated by Fig. 8. As the ground truth, an array of 2-D Gaus-
sian functions are generated with FWHM ranging from 1 to

16 km (the second column of Fig. 8) and peak height of unity,
and this true field of concentration is measured by an imag-
inary sensor whose spatial response function is a 2-D su-
per Gaussian (Eq. 8) with FWHM = 10 km and k1 = k2 = 8
(the first column and the white boxes inserted in the third
column). The third column shows the oversampling results
using 10 000 randomly located observations. The fine struc-
tures in the ground truth are clearly smoothed, limited by the
spatial resolution that is inherent to the level 2 pixel sizes
(10 km). However, by oversampling at a fine grid (0.2 km for
the first row vs. 5 km for the second row), the spatial gradi-
ents are better recovered, and spatial features finer than indi-
vidual level 2 pixels can be identified. Additionally, the de-
tails in the spatial response function is better resolved with
a finer target grid, which is particularly beneficial when col-
locating with higher resolution measurements (e.g., a cloud
imager). As such, although the spatial resolving power is ulti-
mately determined by the spatial extent of satellite pixels, the
physical oversampling approach helps in enhancing the visu-
alization of spatial gradient and the identification of emission
sources.

5 Applications to satellite datasets

5.1 Physical oversampling using OMI data

Figure 9 compares the drop-in-the-box method, point over-
sampling, tessellation, and physical oversampling using OMI
NO2 tropospheric vertical column density (TVCD) within a
200 km× 200 km square centered around a power plant in
Arizona. The first column shows the simple drop-in-the-box
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Figure 8. First column: spatial response function of an imaginary sensor discretized at 0.2 km (a–c) and 5 km (d–f) grids. Second column:
ground truth spatial distribution generated as an array of 2-D Gaussian functions of same height (the top and bottom panels are the same).
The FWHM of each Gaussian is labeled. Third column: physical oversampling results using 10 000 randomly generated observations and
discretized at 0.2 km (a–c) and 5 km (d–f) grids. The pixel size, which determines the spatial resolution, is labeled as the inserted white
boxes.

method on a 10 km grid. The second column averages OMI
observations within a 12 km radius of each grid center. These
two approaches assume OMI observations as points without
consideration of pixel geometry and retrieval uncertainties.
The third column shows results using the tessellation ap-
proach, and the fourth column shows the physical oversam-
pling using the OMI spatial response functions as a 2-D su-
per Gaussian function with k1 = 4 and k2 = 2. The target grid
size is 1 km for the last three approaches. The first and third
rows show the oversampled results (C(j) in Eq. 1) using
5 days (1–5 July 2005) and 5 months (May–September 2005)
of data, respectively. The second and fourth rows show the
corresponding numbers of pixels included in the averaging
for each grid cell (D(j) in Eq. 4). For the drop-in-the-box
approach, the total number of satellite observations included
for each grid cell is much smaller and shown with a different
color scale for the 5-month averaging.

The drop-in-the-box approach shows significant data gaps
(5-day averaging) and high level of noise (5-month averag-
ing), even when its target grid is 10 times coarser than the
other oversampling approaches. There are two gaps where
no observation is available for point oversampling over the
5 days (column 2, rows 1–2 in Fig. 9), which is an example
of false negatives as these gaps are actually covered by OMI
pixels (column 3, rows 1–2 in Fig. 9). The physical oversam-
pling in the fourth column consistently shows the smoothest
results with clear identification of the point source at the cen-
ter of the domain, because the spatial response function of

OMI is properly incorporated. The oversampled NO2 TVCD
is biased high for the point oversampling approach because
all observations within the averaging radius are averaged
equally, but larger observation values generally are associ-
ated with larger uncertainties. The results from tessellation
become increasingly similar to those from physical oversam-
pling for longer averaging times, because the tessellation er-
ror is randomly distributed and will eventually be averaged
out. The physical oversampling also does not require more
computational resources than point oversampling and tessel-
lation, making it suitable for a wide range of spatial scales
and target grids.

5.2 Physical oversampling using IASI data with
smoother spatial sensitivity distributions

Although the physical oversampling using the true satellite
spatial response functions produces the optimal estimation,
the result is sometimes noisy and even unphysical, espe-
cially when the observations are noisy and sparse. In these
cases, some spatial interpolation or smoothing methods are
often needed. In addition to the specialized interpolation and
smoothing methods discussed in Sect. 3.1, some smoothing
can be applied within the oversampling framework. For ex-
ample, the level of smoothing can be adjusted by the averag-
ing radius in the point oversampling approach. Barkley et al.
(2017) used a Gaussian filter to smooth tessellation results
for OMI HCHO and CHOCHO products. When using the
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Figure 9. Level 3 results using the drop-in-the-box method (10 km grid, a, e, i, m), point oversampling (averaging radius: 12 km, 1 km grid,
b, f, j, n), tessellation (pixel corners from the OMPIXCOR product, 1 km grid, c, g, k, o), and physical oversampling (2-D super Gaussian
with k1 = 4 and k2 = 2, 1 km grid, d, h, l, p). The domain size is 200 km× 200 km. The first and third rows show the oversampled NO2
TVCD for 5 days and 5 months, and the second and fourth rows show the corresponding numbers of OMI observations used in the averaging
for each grid cell. Note that panel (m) is on a different color scale than the other panels in the same row.

generalized 2-D super Gaussian function to characterize the
satellite spatial response function (Eq. 5), it is also simple
to tune the exponents (k3 in the cases of circular FOVs such
as IASI and CrIS and k1 and k2 in the cases of quadrilateral
FOVs such as OMI) so that the assumed satellite spatial sen-
sitivity distribution is smoother than the true spatial response
function. This often leads to better visualization and identifi-
cation of local hot spots, especially for products with a high
noise level or sparse spatial sampling. The advantage of this
approach is that the smoothing is applied at the satellite pixel
level (level 2) instead of grid level (level 3), so the geom-
etry and error information for each satellite observation are
preserved.

Figure 10 shows similar oversampling results as Fig. 9,
but using IASI NH3 total column density data (Van Damme
et al., 2017) for 2015 in eastern Colorado, centered around
a large cattle feedlot. The drop-in-the-box approach is not
shown for IASI. The results from point oversampling, tes-
sellation, and physical oversampling to a 1 km grid are pre-
sented in the first three columns. The true IASI spatial re-
sponse functions have rather sharp edges (see Appendix A),

so the physical oversampling shown in the third column of
Fig. 10 is very similar to tessellation shown in the second
column. Although this is the optimal estimation based on the
physics of IASI observation, the spatial gradients are hard
to identify for 5-day averaging and noisy for 5-month aver-
aging. Instead of applying smoothing after the oversampling
process, the fourth column uses a smooth spatial sensitivity
distribution of a 2-D standard Gaussian function (2k3 = 2,
rather than the true IASI spatial response function with 2k3 ∼

18). As illustrated by the first row in Fig. 10, the physical
oversampling using smoother spatial sensitivity distributions
provides the best results by clearly identifying the central
point source using only sparse (5-day) data. The third row in
Fig. 10 demonstrates that with 5 months of averaging, the lo-
cal NH3 gradients are well resolved. The point oversampling
using a 12 km radius overly smooths the results, making the
central hot spot artificially larger, whereas the general spa-
tial gradients are still noisy (column 1, row 3). The overall
number of IASI observations used in point oversampling is
also significantly higher than tessellation and physical over-
sampling, as shown by the fourth row. This is because the
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Figure 10. Similar to Fig. 9 using IASI NH3 total column product for 2015. The drop-in-the-box approach is not included. Instead, the
physical oversampling results using a smoother version of the IASI spatial response function are shown in panels (d, h, l, p). The true IASI
spatial response function has much sharper edges than OMI, such that the physical oversampling results (c, g, k, o) are very similar to
tessellation results (b, f, j, n).

12 km averaging circle is much larger than most IASI foot-
prints, and hence many IASI observations are double counted
as false positives. The smoothing based on physical oversam-
pling is much more effective in suppressing the noise, and the
spatial gradients are adequately preserved (column 4, row 3).
This is because each satellite FOV keeps the same FWHM
and overall weight, and only the distribution of sensitivity
becomes more spread out.

Oversampling based on Eqs. (1)–(3) also provides a flex-
ible way to categorize the results according to environmen-
tal and temporal variables. The conventional way is to save
the averaging weights for each level 2 observation (i.e., the
level 2G product, where level 2 pixels are assigned to points
of the latitude and longitude grid), but the averaging weights
can only be defined for a specific grid. When representing
each level 2 observation as a spatial sensitivity distribution
(the actual instrument spatial response function or a smoother
version of it), A(j) and B(j) can be calculated at fine spatial
and temporal grids and then aggregated spatially and/or tem-
porally. The level 3 map C(j) is just the grid-by-grid ratio of

the aggregated A(j) and B(j). Similarly, A(j) and B(j) can
be calculated according to environmental variables such as
wind and temperature at fine intervals and binned to coarser
categories as needed. Figure 11 shows the physical oversam-
pling of NH3 total column under southerly winds (meridional
wind component > 0, panels a and c) and northerly winds
(meridional wind component < 0, panels b and d) and high
PBL temperature (> 15 ◦C, panels a and b) and low PBL
temperature (< 15 ◦C, panels c and d). Here the PBL tem-
perature is the average air temperature from the surface to
the top of the PBL, weighted by pressure. The average wind
speed and wind direction under each category are labeled in
the corresponding panels. IASI-A daytime data from 2008
to 2017 over northeastern Colorado are included in the over-
sampling, and a 2-D standard Gaussian is used as the spa-
tial sensitivity distribution to smooth the results. The 3-D
wind field, atmospheric temperature, surface pressure, and
PBL height are interpolated from the North American Re-
gional Reanalysis (NARR; Mesinger et al., 2006) from their
native resolutions of 32 km and 3 h to the IASI pixel loca-
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Figure 11. Physical oversampling results using IASI-A NH3 total columns under southerly wind (a, c) and northerly wind (b, d) and high
PBL temperature (> 15 ◦C, a, b) and low PBL temperature (< 15 ◦C, c, d). The text arrows show the average wind speed and wind direction
at the locations and times of all IASI observations in each category. The size and location of large CAFOs are overlaid.

tions and overpass time. Using the concentrated animal feed-
ing operation (CAFO) locations (colored dots; data courtesy
of Daniel Bon, Colorado Department of Public Health and
Environment) as a spatial reference, the downwind disper-
sion of the total NH3 column under different wind directions
is clearly seen. The close match between large cattle CAFOs
and the NH3 hot spots seen from space confirms that they are
the dominant source of atmospheric NH3 in this region. The
overall abundance of NH3 is significantly higher at warmer
temperatures, in agreement with the previous in situ quan-
tification of CAFO NH3 emissions in the same region (Sun
et al., 2015b).

6 Conclusions

A physics-based approach is developed to oversample di-
verse satellite observational products to high-resolution des-
tination grids. It represents each FOV as a sensitivity distri-
bution on the ground, which is physically a more realistic
representation of satellite observations. This sensitivity dis-

tribution can be determined by the spatial response function
of each satellite sensor. We propose a generalized 2-D super
Gaussian function that can standardize the spatial response
functions of many satellite sensors with distinct observation
mechanisms and viewing geometries. This generalized 2-D
super Gaussian function can be reduced to a rotating su-
per Gaussian to characterize the circular FOV of IASI and
CrIS or a 2-D super Gaussian to characterize the quadrilat-
eral FOV of OMI and its successors. It can also represent hy-
brid cases where the FOV is quadrilateral but with rounded
corners. When the shape-determining exponents in the gen-
eralized 2-D super Gaussian function approach infinity, the
FOV is equivalent to a polygon, as assumed in the tessella-
tion approach.

Synthetic OMI and IASI observations were generated as-
suming the spatial response functions are perfectly known
to compare the tessellation error and the discretization error.
The balance between these two error sources depends on the
target grid size, the ground size of FOV, and the smoothness
of spatial response functions. The proposed oversampling
approach is generally more accurate for fine-grid oversam-
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pling of satellite observations with smooth spatial responses,
whereas tessellation is more accurate for coarse grids and
sharper spatial responses. For OMI, CrIS, and IASI, the
threshold target grid size where both errors are equal are at
∼ 16, ∼ 4, and ∼ 2 km, respectively. Therefore, it is recom-
mended to oversample to 1 km (0.01◦) and then co-add to
coarser grids if necessary for regional studies. The tessel-
lation may be more desirable for generating global level 3
products with coarse grids. The generalized 2-D super Gaus-
sian function also enables smoothing of the level 3 results by
decreasing the shape-determining exponents, useful for high
noise levels or sparse satellite datasets. This smoothing per-
formed at each observation is more physically realistic than
arbitrarily tuning the averaging radius and the spatial filter-
ing of the level 3 map as the weightings of level 2 pixels are
unchanged.

The new physical oversampling approach is applied to
OMI NO2 products and IASI NH3 products, showing sub-
stantially improved visualization of trace gas distribution and
local gradients. With proper consideration of the spatial re-
sponse functions, this approach can be applied to multiple
previous, current, and future satellite datasets, which will
help to create long-term consistent data records for atmo-
spheric composition.

Code availability. A MATLAB implementation of the physical
oversampling is available at https://github.com/Kang-Sun-CfA/
Oversampling_matlab/, last access: 5 December 2018 (Sun, 2018).
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Appendix A: Spatial response functions of IASI and
CrIS as rotating super Gaussian functions

The spatial response functions of IASI are tabulated at https:
//iasi.cnes.fr/en/IASI/A_caract_instr.htm, last access: 10 De-
cember 2017, for each of its four detector pixels. They are
very close to ideal circular FOV with some smoothing at
the edge and weak non-homogeneity at the top response, as
shown by Fig. A1.

Figure A2 shows a rotating super Gaussian function
(Eq. 9) fitted to the tabulated spatial response function at
detector pixel no. 2 and the fitting residual. With only two
parameters (the width and exponent of the super Gaussian),
the spatial response function can be well reconstructed by the
rotating super Gaussian function.

Figure A3a shows the fitting of the across-track cross sec-
tion of the spatial response function of IASI detector pixel
no. 2 using a 1-D super Gaussian function. The FWHM is
11.6 km on the ground and the exponent is ∼ 18. The de-
tailed information on the spatial response of CrIS detectors
is proprietary, but Wang et al. (2013) provides the spatial
response values at a few angles; i.e., the angles of 1.2380,
1.1000, 0.9420, and 0.8735◦ correspond to 3 %, 10 %, 50 %,
and 70 % of the peak response. Based on this information, a
1-D super Gaussian can be fitted with FWHM= 13.6 km on
the ground and an exponent of 7.93, as shown by Fig. A3b.
The CrIS orbit height is assumed to be 824 km above the
ground.
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Figure A1. IASI spatial response functions (also known as point spread functions) defined at the viewing angular space. The corresponding
ground distance at nadir is shown in the axis on the right. The IASI orbit height is assumed to be 817 km above the ground.

Figure A2. Fitting a tabulated IASI spatial response function for pixel no. 2 using rotating super Gaussian. The fitted exponent is 18.5.

Figure A3. Slices of spatial response functions for IASI (a) and CrIS (b). Super Gaussian functions are fitted with the exponent ∼ 18 for
IASI and ∼ 8 for CrIS. The spatial response functions are projected on ground to reflect actual nadir pixel sizes.
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Appendix B: Comparison of discretization schemes

To compare different discretization schemes, we first con-
struct an ideal spatial response function using OMI pixel
boundaries but sharper edges (k1 = 12, k2 = 6, see Fig. B2a)
and zoom in to a single grid cell of 5 km× 5 km (Fig. B1a).
The true value of S(i,j) should be the integration of the spa-
tial response function over the grid cell area as in Eq. (10).
A simple discretization scheme is to use the spatial response
value at the grid center, C (Fig. B1b):

S(i,j)= S(C), (B1)

where S(C) denotes the evaluation of continuous spatial re-
sponse function S(x,y) at the coordinates of the grid center
C. A more advanced discretization scheme is to calculate the
spatial response values at both the grid center and the grid
corners ABDE (Fig. B1c) and approximate the integration as
the sum of the volumes of four triangular prisms (i.e., ABC,
BDC, DEC, and EAC):

S(i,j)=
S(A)+ S(B)+ S(C)

12
+
S(B)+ S(D)+ S(C)

12

+
S(D)+ S(E)+ S(C)

12
+
S(E)+ S(A)+ S(C)

12

=
S(A)+ S(B)+ S(D)+ S(E)+ 2S(C)

6
. (B2)

Hence it is a weighted average with the weight for grid cen-
ter twice that of the weight for grid corners. For complete-
ness, the assumption of tessellation is also shown in Fig. B1d,
where spatial response is assumed to be unity inside the pixel
boundary and zero outside. S(i,j) is calculated as the frac-
tional area covered by the portion of pixel polygon within the
grid cell.

In Fig. B2, both discretization schemes and tessellation
are applied to calculate S(i,j) for all grid cells near the
satellite FOV. Figure B2b–d shows the distribution of er-
rors from these three approximation methods, where the true
S(i,j) is the numerical integration of the high-resolution
spatial response function shown in Fig. B2a. The errors in
both discretization schemes (discretization only at grid cen-
ter, Fig. B2b, and weighted averaging of grid center and grid
corners, Fig. B2c) and the tessellation error are shown as the
root-mean-square of the error distribution. The discretization
scheme using both grid center and grid corner values signifi-
cantly reduces the error, which in this case is also lower than
the tessellation error. For a realistic OMI spatial response
function (k1 = 4, k2 = 2), the discretization errors in both
cases are significantly lower than the tessellation error at this
grid size (5 km).

Figure B1. (a) An ideal spatial response function constructed us-
ing OMI across-track no. 30 pixel boundary and relatively sharp
edges (k1 = 12, k2 = 6, k3 = 1). Only the overlapping portion with
a 5 km× 5 km grid cell (square ABDE) is shown. C is the grid cen-
ter. (b) Simple discretization scheme, where the grid cell value is
approximated by the spatial response at central position C. (c) The
spatial response is discretized at both grid center and grid corners.
See text for details. (d) Tessellation, where the spatial response is
assumed to be unity inside the pixel boundary and zero outside. The
polygons are color-coded by the spatial response values.
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Figure B2. (a) An ideal spatial response function constructed using OMI across-track no. 30 pixel boundary (red rectangle) and relatively
sharp edges (k1 = 12, k2 = 6, k3 = 1). The destination grid of 5 km× 5 km is also shown. (b) Errors induced by discretization only at grid
centers (discretized values− true values). The true value for each 5 km× 5 km grid is calculated by numerical integration using the high-
resolution spatial response shown in panel (a). (c) Errors induced by discretization at both grid centers and grid corners. (d) Tessellation
errors. RMSE is the root-mean-square of the error distribution.
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