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Abstract. Satellite-based aerosol products are routinely val-
idated against ground-based reference data, usually ob-
tained from sun photometer networks such as AERONET
(AEROsol RObotic NETwork). In a typical validation ex-
ercise a spatial sample of the instantaneous satellite data
is compared against a temporal sample of the point-like
ground-based data. The observations do not correspond to
exactly the same column of the atmosphere at the same time,
and the representativeness of the reference data depends on
the spatiotemporal variability of the aerosol properties in the
samples. The associated uncertainty is known as the collo-
cation mismatch uncertainty (CMU). The validation results
depend on the sampling parameters. While small samples
involve less variability, they are more sensitive to the in-
evitable noise in the measurement data. In this paper we
study systematically the effect of the sampling parameters in
the validation of AATSR (Advanced Along-Track Scanning
Radiometer) aerosol optical depth (AOD) product against
AERONET data and the associated collocation mismatch un-
certainty. To this end, we study the spatial AOD variability in
the satellite data, compare it against the corresponding values
obtained from densely located AERONET sites, and assess
the possible reasons for observed differences.

We find that the spatial AOD variability in the satellite
data is approximately 2 times larger than in the ground-based
data, and the spatial variability correlates only weakly with
that of AERONET for short distances. We interpreted that
only half of the variability in the satellite data is due to the
natural variability in the AOD, and the rest is noise due to
retrieval errors. However, for larger distances (~0.5°) the
correlation is improved as the noise is averaged out, and the
day-to-day changes in regional AOD variability are well cap-
tured. Furthermore, we assess the usefulness of the spatial

variability of the satellite AOD data as an estimate of CMU
by comparing the retrieval errors to the total uncertainty es-
timates including the CMU in the validation. We find that
accounting for CMU increases the fraction of consistent ob-
servations.

1 Introduction

Satellite-based instruments are widely used to retrieve infor-
mation on aerosols on a global scale. Aerosol retrieval algo-
rithms for satellite-based data involve several assumptions,
and the retrieval results need to be carefully validated against
ground-based data. The validation of products with a typical
resolution of several kilometers against point-like ground-
based measurements involves uncertainties. A key question
is how well the point-like ground-based measurement repre-
sents a larger area around the measurement site. To assess
this, we study the spatial variability of aerosol optical depth
(AOD) in an area covering several satellite data points around
the measurement site.

Our aim is to obtain information on the spatial variabil-
ity of AOD using the satellite data only, so that it could be
included in the satellite product as an estimate of the col-
location mismatch uncertainty (CMU) without the need of
auxiliary data sources. However, the satellite-based aerosol
data can be noisy due to retrieval errors caused by, for exam-
ple, residual clouds, varying surface reflectance, and, in the
case of dual-view retrieval techniques, collocation errors be-
tween the two viewing directions. The AOD variability ob-
tained from satellite data may contain a significant contri-
bution from these errors and needs to be evaluated against
ground-based data, such as the sun photometer data obtained
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from AERONET (AEROsol RObotic NETwork). Usually the
ground-based data are not available on a spatial scale rele-
vant to the AOD validation (< 1°), since the AERONET sites
are located far from each other. Fortunately, there are cam-
paigns that can provide ground-based AOD data with suffi-
cient spatial resolution, such as the AERONET DRAGON
(Distributed Regional Aerosol Gridded Observational Net-
work) campaign in the Baltimore region in summer 2011,
which was part of the National Aeronautics and Space Ad-
ministration’s (NASA) DISCOVER-AQ (Deriving Informa-
tion on Surface conditions from Column and Vertically Re-
solved Observations Relevant to Air Quality) field campaign.
For a review of the DRAGON campaigns and studies based
on them we refer to Holben et al. (2018) and references
therein.

The spatial variability of AOD and the related issues in
the validation of the satellite data against AERONET have
been frequently studied since the first satellite AOD products
became available. In particular, the sampling used in the val-
idation, i.e., the spatial averaging of satellite data and tempo-
ral averaging of the AERONET data, has been investigated.
Ichoku et al. (2002) validated MODerate resolution Imaging
Spectroradiometer (MODIS) AOD data against AERONET
and also compared the spatial variation of MODIS AOD to
the temporal variation of AERONET AOD. They found that
there is a correlation (R ~ 0.4) between the spatial standard
deviations of the surface reflectance at 2.1 pm and AOD at
470 and 660 nm. This suggests that the variation in the satel-
lite AOD is partly caused by varying surface reflectance (i.e.,
failure of the satellite retrieval algorithm to capture the true
surface reflectance). In this work we study systematically the
effect of the sampling parameters used in satellite AOD val-
idation and the related standard deviations. Our focus is on
the AATSR (Advanced Along-Track Scanning Radiometer)
data and the ADV (AATSR dual-view) algorithm (Kolmonen
et al., 2016), but we also apply the methods to MODIS data
to reveal possible instrument specific effects.

The validation of MODIS AOD products is described by
Levy et al. (2013) (dark target), Sayer et al. (2013, 2014)
(deep blue), and Remer et al. (2013) (3 km product). Mun-
chak et al. (2013) studied in detail the aerosol variability and
the effect of MODIS retrieval resolution on the validation
against DISCOVER-AQ field campaign data. When com-
paring the performance of the MODIS 3 and 10km AOD
products against the AERONET DRAGON campaign they
found that the 3 km product has better coverage and resolves
the aerosol gradients better, but is noisier, especially in ur-
ban areas. From the High Spectral Resolution Lidar (HSRL)
airborne lidar data collocated with satellite overpass Mun-
chak et al. (2013) found that AOD can vary by more than
0.2 within a single 10km pixel of the MODIS aerosol prod-
uct, indicating that there are large uncertainties involved
in validating large satellite footprints with the point-like
AERONET measurements. The validation of MISR aerosol
retrieval is discussed by Kahn et al. (2005, 2007, 2010).
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The comparison of a new 4.4km MISR product against
DRAGON campaign data is discussed by Garay et al. (2017).
They found that the new 4.4 km product performs better in
comparison with the DRAGON data, which they attribute to
the higher-resolution algorithm being better able to capture
the true spatial variability of aerosols.

Li et al. (2016) have studied the AERONET locations us-
ing multi-sensor satellite data and an ensemble Kalman filter
approach. They analyzed the spatial representativeness of in-
dividual AERONET sites and found that this depends on the
season and the dominant aerosol type. Lee and Son (2016)
and Sano et al. (2016) studied the variability of AERONET
aerosol optical properties during the DRAGON-Asia cam-
paign in 2012. Sano et al. (2016) concluded that due to the
high variability in AOD, the ground-based measurements
should be more frequent, and the satellite retrievals should
have a finer resolution for a proper comparison. Xiao et al.
(2016) compared AOD retrievals from several satellites to
data from the DRAGON-Asia campaign and handheld sun
photometers and concluded that the satellite products are bet-
ter at tracking the day-to-day variability than tracking the
spatial variability.

The AERONET AOD data are commonly used as a refer-
ence data for satellite AOD products, and the associated un-
certainty of 0.01-0.02 (Eck et al., 1999) is usually small com-
pared to the corresponding uncertainties in the satellite re-
trievals. However, when validating satellite products against
AERONET one should bear in mind that the AERONET data
are not errorless, and even small uncertainties in the refer-
ence data may cause biases and affect the conclusions, espe-
cially when using regression analysis, as recently discussed
by Pitkédnen et al. (2016). In this paper we show linear re-
gression lines on some plots but avoid making far-reaching
conclusions based on these.

The ADV retrieval algorithm provides an AOD uncertainty
estimate for each pixel, based on the propagation of the
reflectance measurement uncertainty through the retrieval.
Here we study the effect of the additional collocation mis-
match uncertainty in the validation. It is difficult to assess
the validity of uncertainty estimates. Two approaches are pre-
sented: the AOD correlation should be better for cases with
lower CMU, and on average the AOD error should be less
than the corresponding uncertainty. For the first case, we
study the dependence of the AOD correlation coefficient on
an AOD spatial standard deviation threshold. In the second
case, we study the relationship between error and different
uncertainty estimates, i.e., with or without the contribution
of the CMU estimate.

The rest of the paper is structured as follows. In Sect. 2 we
briefly introduce the instruments used. In Sect. 3 we discuss
the relevant features of the ADV retrieval algorithm and de-
scribe the methods used in the comparison. In Sect. 4 we
present and discuss the results of the satellite—-AERONET
comparison. Section 5 concludes the paper. A Supplement
with additional figures and tables is provided with this paper.
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2 Instruments
2.1 AATSR

The European Space Agency’s (ESA) AATSR aboard the
ENVISAT satellite measured the top-of-atmosphere (TOA)
radiance at seven wavelengths ranging from the visible to
the thermal infrared. The nominal AATSR resolution is 1 km
(L1) and the swath width is ~ 500 km, which provided a re-
visit time of 3—4 days at midlatitudes for the 10-year mission
(2002-2012). AATSR was a dual-view instrument, scanning
each pixel from a 55° forward and a near-nadir view. The
ADV aerosol retrieval algorithm, employing the dual-view
capability of AATSR, is described in Sect. 3.1.

2.2 MODIS

‘While our main focus is on AATSR data, we also use MODIS
data to study the spatial aerosol variability near AERONET
DRAGON sites. We use Collection 6 AOD data and both
the 10 and 3 km aerosol products (see, e.g., Remer et al.,
2013) and concentrate on the Terra satellite for a closer tem-
poral match with AATSR. A more thorough comparison of
MODIS and DISCOVER-AQ data has been done by Mun-
chak et al. (2013), and this effort will not be repeated here.
We focus on calculating the spatial standard deviation of
AOD from MODIS Terra and compare that to the results
from AERONET and AATSR.

2.3 AERONET

AERONET is a network of sun photometer instruments de-
ployed at several hundred locations over the world for mon-
itoring aerosols (Holben et al., 1998). The AERONET sun
photometers measure solar irradiance at several wavelengths
from UV to NIR and provide AOD with an uncertainty of
0.01-0.02 (Eck et al., 1999). In this exercise we use the
quality-assured, cloud-screened Level 2.0 AERONET AOD
data for the wavelengths 440, 675, 870, and 1020 nm. Since
these wavelengths do not match with those of the ADV
aerosol product, the Angstr‘dm exponent is used to derive
AERONET AOD values at 555 and 659 nm wavelengths.

AERONET deployed more than 40 CIMEL sun-sky ra-
diometers in the Baltimore—Washington, DC, region in the
summer 2011 for the DRAGON campaign, as part of
DISCOVER-AQ campaign (Holben et al., 2018). While sev-
eral other DRAGON measurement campaigns have been ar-
ranged since 2011, we are only able to use data from the 2011
campaign and part of the 2012 campaign (DRAGON Asia),
since the connection to ENVISAT was lost in April 2012. In
this paper we concentrate only on the 2011 campaign and
limit the AATSR data to the area limited to longitudes be-
tween 77.2 and 75.8° W and to latitudes between 38.7 and
39.8°N.

The 2011 DRAGON campaign provides a grid of
AERONET sites with a roughly 10km spacing, producing
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detailed information on aerosol spatial variability on a scale
typical of satellite retrievals (Fig. 1a). We use the DRAGON
observations to study the natural AOD variability and to eval-
uate the collocation mismatch uncertainty estimate obtained
from AATSR data. The region is interesting as it provides
different aerosol loads on a surface varying from urban to
agricultural areas as well as water. Figure 1b illustrates the
AOQOD variability in the area and the associated correlation
length. For each day in June—August 2011 we calculated the
daily correlation coefficient between each pair of sites for
temporally collocated AOD observations. With the 37 sites
in our study area and with 76 days of available data we ob-
tained 36 352 correlation coefficient values, when the cases
with less than 5 simultaneous observations per day were ex-
cluded. These values are presented in Fig. 1b as a function
of the distance between the sites. As expected, the average
correlation is high for short distances but drops below 0.4
for distances larger than 0.5°. These results give a refer-
ence scale for the comparison between the AERONET and
satellite-based AOD values.

Munchak et al. (2013) report that the MODIS 3 km AOD
product performs less well for urban areas. We used the urban
area classification from Schneider et al. (2003) (Fig. 1a) to
study this but did not find such trend in the AATSR data.
Figure 1b indicates that there are no significant differences
between the AERONET sites in urban or rural areas either.
However, an issue with the AATSR cloud screening for the
highly reflecting urban areas was discovered. On some clear
days one of the ADV cloud tests interpreted the bright urban
surfaces as clouds. The cloud test was modified to allow more
retrievals over the urban areas for this study.

3 Methods
3.1 ADV algorithm

The ADV algorithm is originally based on the work by
Veefkind and de Leeuw (1998), and the current version is
described by Kolmonen et al. (2016). The algorithm uses the
AATSR stereo view to remove the surface reflectance con-
tribution from the TOA reflectance and retrieves the best-fit
aerosol model and AOD value using inversion techniques.
The ADV algorithm is used over land surfaces and the re-
trieval product provides AOD values at three wavelengths:
555nm, 659 nm, and 1.6 um.

The AATSR L1 data at 1km resolution are first cloud
screened and resampled to a 0.1° x 0.1° grid, which is used
in the retrieval. Here we use the ADV v3.10 data, except
that one of the cloud tests has been slightly modified. It
was discovered that the urban areas in Washington, DC, and
Baltimore, which are brighter than the surroundings, were
sometimes misidentified as clouds for otherwise cloud-free
scenes. A lower threshold of 0.15 for cloud reflectance was
forced to the brightness histogram cloud test employing the
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Figure 1. (a) Map of the DRAGON 2011 area, with 21 urban AERONET sites (red symbols) and 16 non-urban (green symbols) sites with
data. The gray area is water (Chesapeake bay), and the light brown color shows urban areas. (b) Temporal correlation between different
AERONET sites in the DRAGON area as a function of the distance between the sites. The lines show average correlation for distance bins
for different area types, and the error bars show the corresponding standard deviation. Differences between urban, non-urban and mixed (both

urban and non-urban) are small.

659 nm channel to remove the misidentification issue. The
modified cloud screening was then inspected visually for
each orbit, and no signs of additional cloud contamination
were observed.

After the AOD retrieval, a further cloud post-processing is
applied to remove residual clouds and cloud edges. The post-
processing is based on thresholds on the local AOD variabil-
ity (standard deviation of AOD) and the number of neigh-
boring cloud-free pixels in a 3 x 3 pixels area (Sogacheva et
al., 2017). ADV algorithm provides a per-pixel AOD uncer-
tainty estimate based on the propagation of the assumed 5 %
uncertainty in the measured reflectance through the retrieval
(Kolmonen et al., 2016). This uncertainty estimate does not
include sampling and smoothing uncertainties, uncertainties
related to the selection of the best-fit aerosol model (Kauppi
et al., 2017), or uncertainties related to the cloud screening.
In this work we study the additional collocation mismatch
uncertainty related to the validation against AERONET.

3.2 Comparison method

The AERONET quality-assured Level 2.0 AOD data are
commonly used for validation of satellite-based aerosol
products (e.g., Kahn et al., 2010; Levy et al., 2013; de Leeuw
et al., 2015). The simplest approach in validating satellite
aerosol products against AERONET is to compare the single
satellite pixel which encloses the AERONET site to the sin-
gle AERONET measurement closest in time to the satellite
overpass, but this is not necessarily the ideal method (Ichoku
et al., 2002). Firstly, the satellite measurement always repre-
sents a spatial average over the pixel area with varying atmo-
spheric and surface conditions, and the point-like AERONET
measurement may not be representative of these conditions.
Secondly, there is usually a time gap between the observa-
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tions, and the observation axes of the measurements differ.
Hence it is a common practice to compare spatial statistics
of the satellite data to temporal statistics of the AERONET
data.

Ichoku et al. (2002) tested the use of various sampling
sizes (from 30 to 90 km?) for the AOD validation and found
that the dependence of the mean AOD on the sampling win-
dow size is small and does not have a specific trend. They end
up recommending a 50 km sampling area (5 x 5 MODIS pix-
els), corresponding roughly to 1 h of AERONET data for an
average aerosol travel velocity of 50kmh~". In the MODIS
C6 validation a spatial radius of +25km for satellite data
(~25 MODIS pixels) and a temporal window of 30 min
for AERONET is used (Levy et al., 2013). Munchak et al.
(2013) studied the validation of both MODIS 3 and 10 km
products against DRAGON 2011 data, with a 5 x5 pixel sam-
pling area (15 x 15 km? for the 3 km product and 50 x 50 km?
for the 10 km product). They also tested single pixel valida-
tion (only use the satellite pixel containing the AERONET
site) and found that the spatial averaging technique better
characterizes the performance of the retrieval algorithm, and
the single pixel method has larger representation uncertainty
since it is more sensitive to the AERONET site position. For
the MISR V22 validation, the sampling area is ~ 50 x 50 km?
(9 MISR pixels) and the temporal window is =1 h (Kahn et
al., 2010), while Garay et al. (2017) used the single pixel
and closest time approach for validation of the 4.4 km MISR
aerosol product. For AATSR AOD validation a spatial win-
dow of +£35km and temporal window of 30 min are typ-
ically used (de Leeuw et al., 2015; Popp et al., 2016). Pe-
trenko et al. (2012) found that the difference in using a circu-
lar area with 50 km radius or a squared area with 50 km sides
(5 x 5 pixels) for MODIS validation did not have a large ef-
fect, except that for the circular area there are 22 % fewer data
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points. Here we use a circular area around the AERONET
site for sampling the satellite data and a range of sampling
parameters that covers the previously used values.

In this paper we study the effect of the sampling parame-
ters, the sampling distance d for averaging the AATSR data
around an AERONET site, and the time window At for sam-
pling the AERONET data on the comparison of AATSR and
AERONET DRAGON campaign AOD data. We use 10 sam-
pling distances ranging from 0.05 to 1.0°, where the smallest
d corresponds to a single AATSR pixel coinciding with the
AERONET site location, and the largest d corresponds to
sampling almost the entire test area. For the temporal sam-
pling we use six values for At ranging from 0.1 to £2h.
A typical temporal sampling rate of the AERONET data is
15 min, so the smallest At corresponds to a single observa-
tion closest in time to the satellite overpass. It is noted that
some AERONET sites use a more frequent sampling rate, but
we assume that this has a negligible effect and have not dif-
ferentiated these sites. The number of observations for both
spatial and temporal sampling windows and the associated
standard deviation are recorded.

A simple measure of the representativeness of the point-
like AERONET observation for the larger area covered by
the AATSR data is obtained from the standard deviation of
the AATSR AOD (oaatsr) around the AERONET site. For
highly varying AOD the point-like measurement is likely to
be less representative. In this sense oaATSR serves as a quan-
titative measure of the collocation mismatch uncertainty. It
must be noted, however, that the variation of the AATSR
AQD values around a site is not necessarily due to the natu-
ral variability of aerosol loads alone but is likely affected by
ADYV retrieval errors. Hence oaarsgr 1s not a direct measure
of the collocation mismatch uncertainty. The dominant error
sources in the satellite aerosol retrieval are residual clouds
and varying surface reflectance in connection with the satel-
lite dual-view collocation uncertainties.

In this paper we use the AERONET DRAGON campaign
data to assess the spatial variability of AOD on a scale sim-
ilar to the AATSR AOD L1 product grid (~ 10km). Simi-
lar to the AATSR sampling, for each AERONET DRAGON
site we calculate the average AOD of the nearby AERONET
sites (within the sampling distance) and the corresponding
standard deviation of AOD (aggﬁg). We can then compare
this to the corresponding oaarsr for each match between
AATSR and AERONET during the DRAGON campaign. We
also calculate the temporal standard deviation of AERONET
AQOD from the observations within the temporal sampling
window for each AERONET site (0AERO)-

The number of retrieved satellite pixels in the sampling
area around an AERONET site (NaaTsr) gives a simple
measure of the sampling uncertainty. Naarsr is mainly af-
fected by cloud screening, and a large number of clouded
pixels may imply an elevated probability of residual clouds,
and thus low Naarsr indicates higher sampling uncertainty.
The number of nearby AERONET sites (NNgaR) used when
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calculating oggﬁg is also recorded and can be used as a

threshold. A third number associated in sampling the data
is the number of temporal samples for the AERONET site
(NaERO)- A low number of samples indicates weaker statis-
tics in calculating the standard deviations. The 0.1° resolu-
tion pixels used in the standard ADV AOD retrievals consist
of approximately 100 subpixels in the nominal 1 km resolu-
tion of AATSR. A representative sample of the subpixels is
selected for calculating the TOA reflectance for the 0.1° re-
trieval area, and the standard deviation of TOA reflectance
ORTOA at 555nm is recorded for quality assurance (Kolmo-
nen et al., 2016). High variability in the measured TOA re-
flectance for a retrieval area may indicate residual clouds or
variable surface reflectance, which are considered the major
sources of uncertainty in the satellite aerosol retrievals.
Figure 2 illustrates the sampling used in the satellite AOD
validation. The sampling distance d defines the radius of
the circular area around an AERONET site used for the
spatial sampling of the AATSR data. The temporal sam-
pling parameter At defines the time window used for av-
eraging the AERONET data. In this example from 22 July
2011, the Naarsr =58 AATSR pixels within the sampling
area give an average AOD of 0.40 with a standard devia-
tion oaaTsr = 0.06, while the Nagro = 6 temporal samples
at the AERONET site DRAGON-ANNEA give a tempo-
ral AOD average of 0.39 and a temporal standard deviation
oagEro = 0.02. The spatial sampling area is also used to study
the spatial variability of the AERONET data by considering
the nearby AERONET sites within the sampling distance.
The AOD values from the NNgar = 29 nearby sites are first
averaged temporally for each site, respectively, and then spa-
tially to get the spatial average AOD of 0.42 and correspond-

ing spatial standard deviation of afgﬁg =0.03.

4 Results
4.1 AOD comparison

Figure 3a shows the basic AOD comparison between
the spatially and temporally collocated AATSR ADV and
AERONET results for the DRAGON campaign. The AOD
comparison with a sampling distance of d = 0.2° and sam-
pling time window A¢ = 0.25h shows a decent agreement
with a correlation coefficient of R = 0.94 for the 210 collo-
cated matches between AATSR and AERONET. The aver-
age AOD values agree at ~ 0.2 with a slight high bias for
AATSR, and there are some outliers at larger AOD values.
Panel (b) shows the comparison using the smallest sampling
parameters, corresponding to a single satellite pixel that en-
closes the site and a single ground-based observation closest
in time to the satellite overpass. We see that the correlation
coefficient for AOD is equally good as in panel (a), but the
number of matches is significantly reduced and the data are
more scattered.

Atmos. Meas. Tech., 11, 925-938, 2018
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Figure 3. (a) Comparison of AATSR and AERONET AOD values for the 2011 DRAGON campaign, using a sampling distance d = 0.2°
and a time window At = 0.25h. (b) Comparison with d = 0.05° and a time window A¢ = 0.1 h, corresponding to closest point comparison.
The text insets show the correlation coefficient R, number of matches N, and average AOD values (standard deviations).

In Fig. 4 the effect of sampling parameters on the AOD
comparison is shown more systematically. In panel (a) we
plot the correlation coefficient R between the collocated
AOD values as a function of the sampling distance d for
several temporal sampling windows Ar. We see that for the
smallest d the correlation is poor, except for the smallest At.
The peak correlation is obtained at d = 0.4-0.6°, after which
the correlation decreases. The correlation is weaker for larger
At.

Figure 4b shows the average AOD of the collocated
matches for both AATSR and AERONET. It is emphasized
here that these averages are calculated from the collocated
matches only (not the full data sets), and the set of matches
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depends on the sampling parameters. Thus the sampling dis-
tance has an effect on the average AERONET AOD, even
though the AERONET sampling has no direct dependence
on d. Similarly, the average AATSR AOD depends indirectly
on At. It must also be noted that the same AATSR pix-
els may contribute to the samples corresponding to several
AERONET sites. We see that the average AOD increases
with increasing At. This can be understood as a cloud prox-
imity effect: some of the potential matches between AATSR
and AERONET are removed because of cloud screening by
the AERONET algorithm, when smaller At are used. When
the sampling parameters are relaxed, the additional matches
so obtained are more likely to include observations made in
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Figure 4. (a) Dependence of the AOD correlation coefficient R on the AATSR sampling distance d and AERONET sampling time window
At. (b) Dependence of the average AOD of the sampled data on d and At. The solid lines show the AATSR values and the dashed lines
of the corresponding color show the AERONET values. The line colors are the same as in panel (a). (¢) The number of matches between

AATSR and AERONET as function of d and At.

the proximity of clouds. These matches have enhanced AOD
due to either cloud contamination (cloud-affected pixels in-
terpreted as clear sky AOD) or actual enhancement of AOD
in the proximity of clouds due to, e.g., hygroscopic growth.
The enhancement of AERONET AOD in the proximity of
clouds has been studied, e.g., by Eck et al. (2014) and Arola
et al. (2017). We note that for the largest At the AERONET
data may be affected by the diurnal effects (Kaufmann et al.,
2000; Smirnov et al., 2002; Arola et al., 2013), but this does
not explain the increase in the average AATSR AOD. We also
notice that the average AOD decreases slightly with increas-
ing sampling distance. This cannot be explained by cloud
contamination. Panel (¢) shows how the number of matches
between AATSR and AERONET increases with the sam-
pling distance and temporal window size, reaching N =334
at highest. The plotted values are summarized in Table S1 (in
the Supplement).

4.2 AOD variability comparison

The comparison of AOD variability, as measured by the spa-
tial standard deviation of AOD within the sampling area
(oaop) for AATSR and AERONET, shows much less agree-
ment with R = 0.49 for a sampling distance of d = 0.5°, and
even less for d = 0.2° (Fig. 5). Here we have required at least
three samples from both data sources for calculating the stan-
dard deviations. The AATSR AOD variability (caaTsR) 1S
much larger on average than the corresponding AERONET
value (oggﬁ(}}), and there are a lot of outliers in the scatter
plot. Increasing the sampling distance improves the correla-
tion, but many outliers remain. The effect of sampling dis-
tance on the AOD variability comparison is shown systemat-
ically in Fig. 6. The average AOD variability (over the col-
located matches) increases steeply as d is increased, until it
starts to saturate at d > 0.5°. The average oaarsr is often
more than twice that of the corresponding agglfg, but the
dependence on d is similar. The larger variability of AOD
for the satellite data indicates that the noise or retrieval er-
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rors in the satellite data affect the variability estimate con-
siderably. In Fig. 6b we see that the correlation coefficient
R, between oaaTsr and aggﬁg is quite low for d = 0.15-
0.4° but increases with increasing sampling distance. For the
smallest d there is a lot of variation due to the low number
of matches. We assume that the random noise in the satel-
lite data is averaged out when the sampling distance is in-
creased. The actual aerosol variability is then better exposed,
leading to improved correlation with the ground-based data.
There also seems to be a systematic component leading to
the high bias. The temporal sampling parameter Az does not
have such a large effect on R, and the dependence on it is
not very systematic, but the smallest Ar typically give the
worst correlation. The results of the comparisons with differ-
ent sampling radii are summarized in Table S2.

The dependence of the temporal variability in the
AERONET AOD data on the sampling parameters is shown
in Fig. Sla in the Supplement. As expected, the depen-
dence on d is weak, but At has a considerable effect. Fig-
ure S1b shows the correlation coefficient between the spa-
tial variability of AATSR AOD and the temporal variability
of AERONET AOD for various sampling parameter values.
The correlation improves with increasing sampling distance
and is typically highest for Ar =0.5h. On average, some of
the air mass sampled by the satellite at the overpass time is
also sampled by the AERONET instruments in the given time
window. The fraction of the mutually sampled air mass de-
pends on the wind speed and the size of the sampling win-
dows, explaining the variation seen in Fig. S1b. Figure Slc
shows a similar comparison, but with the spatial AOD vari-
ability obtained from the nearby AERONET sites. The cor-
relation between the spatial and temporal variability is then
generally higher than when using the AATSR data. Here we
have required that the number of samples for both AATSR
and AERONET is at least three when calculating the standard
deviations. We have also removed cases where the number of
matches is low.
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Note that in studying the aerosol variability some of the
data are “double counted”: the sampling areas for nearby
AERONET sites overlap, and thus the AOD value for a par-
ticular location is used several times in the comparison, for
both AATSR and AERONET. To avoid this, we have also
made a comparison using the whole DRAGON campaign
area, i.e., for each satellite overpass we calculate the aver-
age AOD and the corresponding standard deviation for the
whole area, without spatially collocating the individual sites
and pixels. A temporal collocation with a £0.5h sampling
window for the AERONET data is used. From the 21 AATSR
overpasses during the campaign we have removed 9 days
with a limited number of data points (less than 10), when the
satellite orbit only partly overlaps with the study area or the
scene is heavily clouded. The time series constructed in this
way is shown in Fig. 7. In general there is agreement between
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AATSR and AERONET for the area as whole for both AOD
and the spatial standard deviation of AOD. oaaTSR 1S SyS-
tematically larger than afgﬁg, but they change in the same
manner. Large differences in AOD are associated with large
standard deviation in the retrieved AATSR AOD, indicating
high aerosol spatial variability (or large retrieval errors). We
have also included in the plots the MODIS 10 km AOD prod-
uct data averaged over the study area, obtained from the near-
simultaneous Terra orbits, for reference. The use of MODIS
data is discussed in Sect. 4.3. The values plotted in Fig. 7 are
summarized in Table S3.

It is noted that the use of a circular sampling area around
the sites may not always be the optimal choice for the com-
parison, since the AOD variability is not necessarily symmet-
ric due to the effects of local topography on the aerosol trans-
port. In addition, the surface reflectance variability around
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Figure 7. (a) Time series of AOD for the entire DRAGON campaign area for AATSR ADV, AERONET, and MODIS. The AERONET
data have been temporally averaged in a 1h time window centered at the AATSR overpass time for each day. Overpasses with less than
10 AATSR or MODIS data points in the area are excluded. The AERONET and MODIS data are shown only for the days when AATSR data
are available. The text inset shows the AOD correlation coefficients for three cases: MODIS against AERONET, AATSR against AERONET,
and MODIS against AATSR. (b) Corresponding plot for the spatial standard deviation oo0p. (¢) The number of AATSR and MODIS pixels

in the area for each day, and the number of AERONET sites with data close to the satellite overpass time (40.5 h).
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0.5h. We have also applied the thresholds

Napv > 2 and Nagro > 2 to ensure sufficient statistics for calculating opaTsr. The blue line shows the AOD correlation coefficient R
(left y axis), and the red line shows the corresponding number of matches N (right y axis) after an upper threshold on oaaTsR (* axis) has
been applied. Results with N < 100 (dashed horizontal black line) are shown by the dashed blue line. (b) The same for various sampling
distances. The dashed lines show results for which less than 100 matches are left.

each AERONET site may systematically affect the satel-
lite retrievals. To reveal possible issues with any of the
AERONET sites, we consider the results over the campaign
period respectively for each site in Fig. S2 and Table S4 in
the Supplement. The CMU and AOD correlation vary from
site to site, but none of the sites stand out as particularly pe-
culiar when the full range of sampling parameters is consid-
ered. We note that the low number of matches for individ-
ual sites limits the analysis; more data would be required to
study the CMU in greater detail for individual sites. Further-
more, we did not find any systematic difference between ur-
ban and non-urban sites in the spatial (AATSR) or temporal
(AERONET) standard deviation of AOD.

Next, we consider the effect of various thresholds applied
to the data before the comparison. The primary parameter
iS OAATSR, as we want to explore its usefulness as an es-
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timate of the collocation mismatch uncertainty. The idea is
that if oaaTsr describes the collocation mismatch uncer-
tainty (or the representativeness of the AERONET data in
validating satellite AOD results), then the application of an
upper threshold (aglji‘frsggld) to this parameter should improve
the correlation between AATSR and AERONET data. Fig-
ure 8 shows that this is true for a certain range of oK‘f&Shﬁld.
the threshold starts to have effect when a‘hresmld < 0.2 and
improves the AOD correlation until GK‘X?%[;T‘FN 0.1, which
is close to the average oaaTsr as seen in Fig. 6. After this,
the number of matches is quickly reduced, and the effect of
aglg?gﬁld is dubious. We note that even though applying an
upper threshold for oparsr improves the AOD correlation,
OAATSR may not describe the actual AOD variability (or col-
location mismatch uncertainty) but is affected by retrieval er-

rors. This is evident from Fig. S3, where similar thresholds

Atmos. Meas. Tech., 11, 925-938, 2018
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applied to the AOD variability obtained from the AERONET
data do not result in clear improvement in the correlation co-
efficients.

Other parameters related to the comparison statistics are
NADV, NNEAR: O ey, NAERO. OAERO. and ORTOA, as de-
scribed in Sect. 3.2. Figure S4a shows the effect of Napy,
the number of AATSR pixels within the sampling area. Naopy
can be used as a measure of fractional cloud cover. Clouded
pixels are removed in the algorithm, and a low Napy (with
respect to a maximum value when all pixels are retrieved)
indicates that clouds are present. A patchy cloud mask indi-
cates elevated probability of cloud contamination and over-
estimated AOD. A lower threshold for Napy is also crucial
when calculating oaaTsr to ensure sufficient statistics. The
same considerations apply to NNgar, the number of nearby
AERONET sites in the spatial sampling area (Fig. S4d). In
Fig. S4 we see that a more stringent threshold for Napy
or NNearR improves the agreement between AATSR and
AERONET in AOD comparison. Figure S4 show the effect
of these thresholds in the AOD variability comparisons.

In Fig. 8 we have required a minimum number of three
AATSR samples (Napy > 2) and three AERONET samples
(NNEAR > 2) for each match when calculating the standard
deviations. This is a rather low limit, and further improve-
ment in the agreement can be obtained by applying more
stringent thresholds as seen in Figs. S4 and S5. However,
this does not apply to the smallest sampling parameters, for
which the maximum number of samples is already very lim-
ited. Therefore we have used these moderate thresholds when
comparing the spatial AOD variations. Figure S4c shows the
effect of applying thresholds for orroa, the average subpixel
standard deviation of the TOA reflectance at 555 nm. Apply-
ing a orToA threshold improves the AOD comparison results
slightly, although not systematically. For the AOD variability
correlation coefficient R, the improvement is more signifi-
cant and more systematic, as seen in Fig. S5c.

The thresholds can be optimized to improve the correla-
tion between AATSR and AERONET aerosol variability es-
timates. Table S7 shows that the oaop correlation can be
brought close to 0.7 by applying a suitable set of thresholds to
the collocated, spatially averaged data. It is seen that remov-
ing the cases with a low number of AATSR and AERONET
data improves the agreement, as well as removal of cases
with high average orroa. However, such threshold sets are
usually case dependent, and further studies would be needed
for other regions with different circumstances.

4.3 Comparison with MODIS

To further test our comparison approach, we apply similar
analyses to MODIS Terra Collection 6 AOD data; i.e., we
test the effect of sampling parameters on the comparison with
AERONET. Munchak et al. (2013) compared MODIS AOD
data from Terra and Aqua to AERONET in two approaches:
single pixel comparison and spatial averaging with 50 km ra-
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dius for both 3 and 10 km AOD products. We expand this ap-
proach by using a number of sampling lengths and sampling
time windows (Fig. 9) as with AATSR. We also consider the
AQOD variability, which was not addressed by Munchak et al.
(2013).

Figure S6 shows the comparison of MODIS AOD and
oaop against AERONET. We see that agreement between
MODIS and AERONET is similar to that between AATSR
and AERONET in terms of the correlation coefficients. How-
ever, in the AOD comparison there is a large systematic pos-
itive bias for MODIS, which is specific to Terra (Levy et al.,
2013). For opop MODIS shows slightly better correlation
with AERONET. The average AOD variability for MODIS
is 0.05-0.06, for AATSR ~ 0.08, and for AERONET ~ 0.03.
The 3 km data agree less well both for AOD and for oaoop but
have more matches with AERONET, i.e., better coverage.

Figure 9a and ¢ show similarity with the AATSR results
(Figs. 4 and 6): as with AATSR, the best agreement be-
tween MODIS and AERONET AOD observations is ob-
tained with the smaller sampling distances (d = 0.2-0.4°),
while the agreement for AOD variability increases with the
sampling distance. Note that the y-axis scale is different in
Figs. 4a and 9a, since the correlation with AERONET at
short distances is lower for AATSR. Figures 4b and 9b show
that the average AOD is lowest for the smallest temporal
sampling windows, but the dependence on the sampling dis-
tance is different. For MODIS, the average AOD decreases
systematically with the sampling distance, which cannot be
explained by a cloud proximity effect. Figure S7 shows the
number of matches and the standard deviation of AOD as
function of d, as well as the effect of a opoop threshold for
the MODIS 10km product. These are largely similar to the
AATSR results. In particular, setting an upper threshold for
the spatial AOD variability calculated from the MODIS data
improves the AOD correlation slightly. Figure S8 shows the
same results for the MODIS 3 km product. There is more
variation in the correlation coefficients for the 3 km product,
but in general the dependencies on the sampling parameters
are similar.

The day-to-day changes in AOD and spatial AOD variabil-
ity for the full study area are tracked in a similar fashion by
both AATSR and MODIS, as seen in Fig. 7. Note that in this
figure we limit the consideration to the days when AATSR
has data over the area; for MODIS and AERONET there are
data for more days than shown here. We note that MODIS
AOD data are missing for the days when the AOD and AOD
variability are the highest, possibly due to more stringent
cloud screening than used for AATSR. MODIS overesti-
mates the variability less than AATSR and has slightly better
correlation with AERONET. To further compare the AOD re-
sults from the two satellite instruments, we have regridded
the MODIS 10km AOD product data to the 0.1° AATSR
grid for near-simultaneous retrievals in the study area. We
find that the collocated AOD values agree well with R = 0.89
(Fig. S10), with MODIS AOD exceeding that of AATSR by
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Figure 9. (a) Dependence of the AOD correlation R between AERONET and MODIS 10km product on the sampling distance. The colors
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from each data source to calculate opogp, and the correlation coefficient is not shown of the number of matches is less than 50.

0.06 on average. We note that to properly compare the spa-
tial variability of AOD between the two satellite instruments
would require more careful sampling, which is beyond the
scope of this study.

4.4 Total uncertainty

The uncertainty estimates related to satellite aerosol prod-
ucts are increasingly researched, as they are crucial, e.g., in
assimilating the satellite data to models. For example, the
three main AATSR algorithms all provide per-pixel uncer-
tainty estimates for AOD (de Leeuw et al., 2015; Popp et al.,
2016). Here we consider the additional value of the collo-
cation mismatch uncertainty estimate, as obtained from the
spatial standard deviation of the satellite AOD, in the AOD
validation. Again, we concentrate on the ADV algorithm and
AERONET data from the DRAGON 2011 campaign. We
compare the AOD retrieval error (AT = |TAATSR — TAERO]) tO
the uncertainty estimate in two steps. First, we use only the
standard AOD uncertainty estimate as obtained from ADV,
which is based on the observation uncertainty propagated
through the retrieval process (instrument uncertainty). Next,
we consider the total uncertainty including the collocation
mismatch uncertainty, estimated by the AATSR AOD stan-
dard deviation within the sampling area used around each
AERONET site. In the total uncertainty, the AERONET
AOD data are considered as reference data (the “ground
truth”), with a systematic AOD uncertainty of 0.01 (Eck et
al., 1999).

In order to take the uncertainties into account in the AOD
validation, we need to use other metrics in addition to the
correlation coefficient, root mean square error, and the linear
regression parameters. Adopting the approach of Immler et
al. (2010), we consider the equation

Imy —ma| < ky/u}+u3+02, (D
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where m; are the measured values (by AATSR and
AERONET, respectively), u; are the corresponding uncer-
tainties, and o corresponds to the collocation mismatch un-
certainty. The factor £ is the so-called coverage factor, which
describes the consistency of the data. In the terminology
proposed by Immler et al. (2010), when Eq. (1) holds for
k =1 the data are “consistent”, and the data are “in agree-
ment” when the equation holds for k = 2. When the equation
does not hold even for k = 3 the data are “inconsistent”. Fig-
ure 10a shows how Eq. (1) holds for the data without CMU.

The “AOD uncertainty” here is \/u} + u3 + 02, where uagro
is fixed at 0.01 and o = 0. The colored lines correspond to
k =2 (red) and k = 3 (cyan), while the dashed black line cor-
responds to k = 1. We see that for most of the points (92 %)
the “data are consistent”, i.e., below the k = 1 line, and there
are no points above the k =3 line (inconsistent data). In
Fig. 10b we have included the CMU (0 = oaarsr). The frac-
tion of the “consistent” pixels is then increased to 98 %, at the
cost of a 19 % increase in the average uncertainty. We see that
inclusion of CMU also improves the correlation coefficient R
between the AOD difference and the uncertainty, indicating
that the CMU is larger for the cases with larger error.

Unlike the AATSR algorithms, MODIS does not provide
per-pixel uncertainty estimates. Instead, expected error val-
ues, based on global validation results, are provided. For
MODIS Collection 6 over land 69.4 % of data fall within
£0.05 or £0.15 x AOD from the true value (Levy et al.,
2013). Figure S9 shows the scatter plot of MODIS “uncer-
tainty” against the AOD error (difference to AERONET).
Here we assume that the MODIS AOD uncertainty con-
sists of a constant part, 0.05, and an AOD-dependent part,
0.15 times the AOD. Figure S9b and d show the effect of
adding the collocation mismatch uncertainty obtained from
the standard deviation of the MODIS AOD within the sam-
pling area; this increases the fraction of consistent pixels
from 55 to 61 % for the 10 km product and from 42 to 57 %
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Figure 10. Scatter plot of error vs. uncertainty illustrating Eq. (1). The text inset at top left show the correlation coefficient R between the
AOD difference (|TaAATSR — TAERO|) and uncertainty estimate, the number of matches N, and the average difference and average uncertainty.
The colored lines correspond to different values of the coverage factor k (see text). The text insets on dark background indicate the number
(fraction) of pixels within each “consistency class”. (a) Uncertainty due to ADV AOD uncertainty only. (b) Total uncertainty including

collocation mismatch uncertainty estimate.

for the 3 km product. Hence the AOD variability estimates
might be useful also for the MODIS uncertainty budget.

5 Conclusions
Three main conclusions can be made.

1. The results of a satellite AOD validation against
AERONET data depend on the sampling parameters
used in the validation due to the AOD variability. For
both MODIS and AATSR data there is an “optimal”
sampling radius of ~ 0.3-0.4°, which gives the best cor-
relation coefficient. The correlation decreases when the
sampling distance increases further, as the AOD vari-
ability starts to have a larger role. The temporal sam-
pling has a less significant but non-negligible effect.
Best correlation is obtained with the shortest sampling
time window. The average AOD over all matches be-
tween the satellite and AERONET data depends on the
sampling parameters. The dependence is different for
AATSR and MODIS and requires further investigation.

2. We find that the local AOD variability obtained from
satellites and from the ground-based data correlate
only weakly for short sampling distances. The satellite-
based AOD variability can be several times larger than
its ground-based counterpart, apparently due to noise
caused by retrieval errors. The correlation can be in-
creased by using larger sampling area size, which
smooths the random noise in the satellite data. On a
day-to-day basis, the satellite-derived oaop values for
larger area follow the relative changes observed in the
AERONET data well, while the absolute values are
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high. The number of data within each sampling win-
dows is an important quality parameter in the validation.

3. The correlation mismatch uncertainty estimate obtained
from the standard deviation of satellite AOD has some
use in describing the validation results. If an upper
threshold is applied on the satellite AOD variation in
the sampling area around an AERONET site, the cor-
relation between the collocated satellite- and ground-
based AOD values is slightly improved. From another
point of view, when the collocation mismatch uncer-
tainty estimate is taken into account when comparing
the retrieval error and total uncertainty, the fraction of
consistent measurements is increased.

Data availability. A  collocated AATSR ADV v2.30 and
AERONET data set with varying sampling parameters is avail-
able via the GAIA-CLIM project at ftp:/ftp-ae.oma.be/dist/
GAIA-CLIM/D3_6/AOD/FMI/  (FMI, 2017). The ADV
v2.30 data are available from the ICARE web service,
http://www.icare.univ-lille1.fr (FMI, 2016).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/amt-11-925-2018-supplement.
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