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Abstract. Single-footprint Atmospheric Infrared Sounder
spectra are used in an optimal estimation-based algorithm
(AIRS-OE) for simultaneous retrieval of atmospheric tem-
perature, water vapor, surface temperature, cloud-top temper-
ature, effective cloud optical depth and effective cloud parti-
cle radius. In a departure from currently operational AIRS
retrievals (AIRS V6), cloud scattering and absorption are
in the radiative transfer forward model and AIRS single-
footprint thermal infrared data are used directly rather than
cloud-cleared spectra (which are calculated using nine ad-
jacent AIRS infrared footprints). Coincident MODIS cloud
data are used for cloud a priori data. Using single-footprint
spectra improves the horizontal resolution of the AIRS re-
trieval from ∼ 45 to ∼ 13.5 km at nadir, but as microwave
data are not used, the retrieval is not made at altitudes below
thick clouds. An outline of the AIRS-OE retrieval procedure
and information content analysis is presented. Initial compar-
isons of AIRS-OE to AIRS V6 results show increased hori-
zontal detail in the water vapor and relative humidity fields
in the free troposphere above the clouds. Initial comparisons
of temperature, water vapor and relative humidity profiles
with coincident radiosondes show good agreement. Future
improvements to the retrieval algorithm, and to the forward
model in particular, are discussed.

Copyright statement. The author’s copyright for this publication is
transferred to the California Institute of Technology. U.S. Govern-
ment sponsorship acknowledged.

1 Introduction

An advantage of hyperspectral nadir measurement in the
thermal infrared over the microwave is higher vertical reso-
lution of retrieved temperature and water vapor. Operational
instruments such as the Atmospheric Infrared Sounder on
the EOS Aqua platform (AIRS; Aumann et al., 2003), the
Infrared Atmospheric Sounding Interferometer on Metop-A
and -B (IASI; Blumstein et al., 2004) and the Cross-track In-
frared Sounder on the Suomi National Polar-orbiting Partner-
ship (NPP) platform (CrIS; Han et al., 2013) provide global
radiance data for assimilation into weather forecasting and
reanalysis models and profile retrievals for process studies.
Perhaps the largest complication for global retrievals (and as-
similation) using infrared spectra is near-ubiquitous, highly
variable cloud absorption and scattering in the instrument
field of view (FOV). This is illustrated in Fig. 1, which shows
sample brightness temperature spectra observed by AIRS in
nine adjacent footprints from level 1b data (that is, radiance
data calculated from the raw counts on the AIRS detectors).
Most of the variation between the spectra is from differences
in cloud-top temperature and cloud optical depth, and to a
lesser extent, cloud particle radius as seen on the AIRS foot-
print. Two general approaches have been used in obtaining
profile retrievals from cloudy infrared spectra. The first was
“cloud clearing,” which means the temperature and trace gas
fields (including water vapor) are treated as constant across
adjacent thermal infrared footprints, and only the cloud field
varies. A level 2 cloud-free infrared spectrum is calculated
from these cloudy level 1b spectra and then used for profile
retrievals over a larger field of regard (FOR; e.g., Susskind
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Figure 1. AIRS level 1b brightness temperature observations of adjacent cloudy spectra. Data are from daytime Granule 44, 6 September
2002. Average cloud-top temperatures and cloud optical depths are estimated from coincident MODIS L2 retrievals, averaged on the AIRS
spatial response function (see Sect. 3.2.2 in text).

et al., 2011). Cloud clearing simplifies (and speeds) calcula-
tions, as the forward model does not incorporate scattering
or absorption by clouds. However, by combining retrieval
footprints and assuming constant non-cloud quantities, cloud
clearing can mask significant horizontal gradients, particu-
larly in water vapor, which can have a much shorter horizon-
tal length scale than temperature, especially at low latitudes
and midlatitudes (e.g., Kahn and Teixeira, 2009).

The other approach that accounts for clouds includes cloud
absorption and scattering in a retrieval forward model. Ad-
vances in efficient cloud-scattering algorithms and ever in-
creasing computing power hold the promise of incorporat-
ing explicit cloud effects in forward models for routine op-
erational retrievals. Several methods and software packages
have been developed for the calculation of outgoing radiance
in the presence of clouds: optimal spectral sampling (OSS;
Moncet et al., 2015), The Havermann–Taylor Fast Radiative
Transfer Code (HT-FRTC; Havermann et al., 2006), the prin-
cipal component-based radiative transfer model (PCRTM;
Liu et al., 2005), discrete ordinate algorithm for radiative
transfer (DISORT; Laszlo et al., 2016), vector linearized dis-
crete ordinate radiative transfer (VLIDORT; Spurr, 2006),
the community radiative transfer model (CRTM; Han et al.,
2005), the Radiative Transfer for the Television Infrared
Observation Satellite (TIROS) operational vertical sounder
algorithm (RTTOV; Saunders et al., 2013), the standalone
AIRS radiative transfer algorithm (SARTA) coupled to a
parameterization of clouds for longwave scattering in at-
mospheric models (PCLSAM; SARTA two-slab; DeSouza-
Machado et al., 2017) and, as used in this work, a SARTA

with delta-four-stream approximation (SARTA-D4S; Ou et
al., 2013).

While incorporating cloud effects usually makes for a
more complicated and computationally expensive radiative
transfer calculation, the horizontal resolution of retrieved
species can be improved compared to cloud-cleared re-
sults. Several methods have been employed for direct use
of cloudy infrared spectra in atmospheric retrievals. Among
them are combining channel radiances into “super-channels”
using empirical orthogonal functions (Liu et al., 2009), neu-
ral networks (Blackwell, 2005) and parameterizations of
frequency-dependent nonscattering optical depths (Kulawik
et al., 2006a). Recently, DeSouza-Machado et al. (2018) pre-
sented an optimal estimation scheme using their SARTA
two-slab forward model. Here we describe a new retrieval
scheme, an optimal estimation retrieval system (AIRS-OE)
that can use the level 1b radiances of single AIRS footprints,
without cloud clearing for the retrieval of temperature pro-
files (Tatm), H2O volume mixing ratio profiles, skin temper-
atures (Tsfc), effective cloud optical depths over an AIRS
field of view (τeff), cloud-top temperatures (Tcldtop) and ef-
fective particle radii (reff). CO2 and O3 profiles, while not
the primary constituents examined or validated here, are also
retrieved to improve the spectral fitting and temperature re-
sults. The goal is to improve the horizontal resolution of re-
trievals by using the less processed level 1b AIRS infrared ra-
diance (at ∼ 13.5 km nadir horizontal resolution) rather than
the ∼ 45 km resolution level 2 cloud-cleared radiance pro-
duced by the currently operational version 6 (AIRS V6) re-
trieval algorithm (Susskind et al., 2003, 2014). Additional
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Table 1. A priori covariances used for retrievals.

Constituent Covariance along diagonal Covariance
off-diagonal

length scale (km)

Temperature profile (Tatm) (2 K)2 0.5
H2O [loge(1.4)]2 from ground to 100 mb then gradually 0.5

reduced to [loge(1.01)]2 at 50 mb and above
Surface temperature (Tsfc) (2 K)2 n/a
O3 [loge(1.1)]2 from ground to 100 mb then gradually 3.0

increasing to [loge(1.2)]2 at 50 mb and above
CO2 [loge(1.02)]2 3.5
Cloud optical depth (τeff) [loge(2.)]2 n/a
Cloud-top temperature (Tcldtop) (4 K)2 if cloud-top temperature can be calculated n/a

from MODIS; (25 K)2 if cloud-top temperature cannot
be calculated from MODIS, but MODIS data indicate thin cirrus

Cloud particle radius (reff) [loge(2.)]2 n/a

n/a: not applicable.

differences of AIRS-OE from the current AIRS V6 retrieval
include the following:

1. Cloud optical depth, effective particle radius and cloud-
top temperature are now explicitly in the forward model
and are retrieved along with temperature and water
vapor profiles. A priori cloud information for cloud
retrieval is calculated from the MYD06 data set of
the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument, co-located on the EOS-Aqua plat-
form (Platnick et al., 2003, 2017).

2. For a priori temperature profiles, skin temperature
and water vapor profiles, we use European Center
for Medium-Range Weather Forecasting (ECMWF) 6 h
analyses linearly interpolated by time and space to the
AIRS observation, where the AIRS V6 retrieval uses a
neural network trained on AIRS radiances and ECMWF
reanalyses (Blackwell, 2005). Emissivity is retrieved in
AIRS V6. For AIRS-OE, emissivity is currently taken
from monthly tables (over land) and formulae (over
ocean) and not retrieved (see Sect. 3.2.3), although
emissivity retrieval may occur in future versions.

3. In a departure from the singular-value-decomposition
technique of AIRS V6, which does not use an a priori
covariance, the new retrieval uses an optimal estimation
scheme (e.g., Rodgers, 2000) similar to that of the nadir-
sounding Tropospheric Emission Sounder (TES; Bow-
man et al., 2006).

4. Retrievals of atmospheric constituents are made simul-
taneously rather than sequentially as in AIRS V6.

5. AIRS-OE uses only the thermal infrared data from
AIRS and does not use ∼ 45 km nadir-resolution mi-
crowave data from the co-located Advanced Microwave

Sounding Unit (AMSU). Profiles cannot be retrieved
below IR-opaque clouds effectively covering a pixel.
However, unlike AIRS V6, temperature, water vapor,
etc. are not assumed to be uniform across the nine AIRS
footprints in an AMSU field of regard (FOR).

In this paper, we give a very brief overview of the AIRS and
MODIS instruments, and outline the retrieval and the infor-
mation content analysis. Some sample cloud property results
are presented, and we show an initial comparison with near-
coincident measurements by Cloudsat/CALIPSO. We then
compare temperature, water vapor and relative humidity re-
sults to those of the operational AIRS V6 retrieval and with
sets of near-coincident high-quality radiosondes.

2 Instrument and spectral data

The Atmospheric Infrared Sounder (AIRS) instrument is
a thermal infrared grating spectrometer, with 2378 chan-
nels between 3.7 and 15.4 µm. In a sun-synchronous, po-
lar orbit on the EOS Aqua satellite, AIRS delivers approx-
imately 2.9 million spectral observations every 24 h. AIRS
was designed for co-located measurements with the Ad-
vanced Microwave Sounding Unit (AMSU) microwave in-
strument, with nine AIRS observations (each with nadir hor-
izontal resolution of ∼ 13.5 km) in a 3× 3 grid over a sin-
gle AMSU observation with a nadir horizontal resolution of
∼ 45 km (Aumann et al., 2003). AIRS was designed to pro-
vide global data on weather and climate processes and is a
key antecedent to the IASI and CrIS spectrometers.

As noted, operational level 2 data from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) are used as a
priori data for cloud-top temperature, and during daytime ob-
servation, cloud optical depth and particle radius. Co-located
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Figure 2. Simplified block diagram of AIRS-OE retrieval algorithm for cloudy scenes. Blocks are annotated with section numbers from this
paper for further information.

with AIRS on EOS-Aqua, MODIS observes in 36 spectral
bands from 0.4 to 14.4 µm with horizontal resolutions (de-
pending on band) ranging from 250 m to 1 km at nadir. De-
tails on the MODIS cloud optical properties in the MYD06
data set are found in Platnick et al. (2017). Prior to use, the
MODIS cloud data are mapped and weighted over the AIRS
footprint as described below in Sect. 3.2.2.

3 3 AIRS-OE retrieval overview

Figure 2 shows a simplified block diagram of the AIRS-OE
retrieval procedure. For convenience to the reader, blocks are
annotated with the section numbers of this paper, where more
detailed descriptions can be found. Input parameters are de-
scribed below in Sect. 3.1 to 3.5. A brief description of the
retrieval itself is in Sect. 3.6, followed by information content
analyses (3.7) and quality control filters (3.8).

3.1 Optimal estimation cost function

The mathematical basis for optimal estimation retrievals is
described by Rodgers (2000). Implementation is similar to
that of TES (Bowman et al., 2006) with significant differ-
ences in the treatment of clouds. The retrieval algorithm min-
imizes the difference between an observed and a forward-
modeled radiance, subject to a quadratic constraint, through

the cost function:

C =
(
y−F(x̂,b)

)
S−1
ε

(
y−F(x̂,b)

)−1

+
(
ẑ− za

)
S−1

a
(
ẑ− za

)−1
, (1)

where y is the vector of measured radiances, F(x̂, b) is the
forward-model radiance, x̂ is the full state vector, described
below, b contains additional variables needed (but not re-
trieved) and observational metadata (e.g., scan angle) for cal-
culating radiances, ẑ is the retrieval state vector, described
below, za is the a priori retrieval state vector, S−1

ε is the in-
verse radiance noise covariance, and S−1

a is the inverse co-
variance of the a priori za. (Note that we accent a retrieved
quantity with a caret, e.g., ẑ, to distinguish it from the “true”
quantity, z.) The measurement error covariance, Sε, contains
the radiance noise error covariance from the instrument. It
can also contain other random radiance error sources, such as
those from forward-model calculations, although these have
not been included in this study. We discuss the measurement
error covariance used below in Sect. 3.3. The a priori state
vector, za, is also the first guess in a retrieval. The full state
vector, x̂, has as many elements for each retrieved profile
constituent (Tatm, H2O, O3 and CO2) as there are layers in the
forward model at or above ground, plus those for retrieved
scalar quantities, Tsfc, Tcldtop, τcld and reff. There is a max-
imum of 100 layers in our forward model from the surface

Atmos. Meas. Tech., 11, 971–995, 2018 www.atmos-meas-tech.net/11/971/2018/



F. W. Irion et al.: Single-footprint retrievals of temperature 975

upwards, on its fixed-pressure grid with level pressures from
1100 to 0.1 mb (as described in Strow et al., 2003). The pres-
sure layers are constructed as the log mean of the upper and
lower pressures levels:

Player =
P2−P1

ln(P2/P1)
. (2)

Following Bowman et al. (2006), the forward-model layer
gridding must be fine enough for calculation of the observed
radiance but is usually much finer than the vertical resolu-
tion of a retrieved profile. The retrieval state vector, z, has
a reduced number of layers, which varies by constituent, to
reflect a lower vertical resolution. (A maximum 42 layers are
retrieved for Tatm, 28 for H2O, 10 for CO2 and 9 for O3.) The
retrieved state vector, ẑ, is mapped to the full state vector, x̂,
when the forward model is called to calculate a radiance:

x̂ =Mẑ. (3)

In our retrieval, the matrix M performs a piecewise linear
interpolation by log pressure from the lower number of layers
in ẑ to the higher number of layers in x̂. For gas profiles, τcld,
and reff, logarithmic quantities are used in the state vector to
ensure that their linear values always remain positive as input
to the forward model during retrieval iterations. Retrievals
for Tatm, Tsfc and Tcldtop are linear quantities. The state vector
thus usually contains both linear and logarithmic elements.
Description and determination of the different elements of
the cost function are described in the sections below.

3.2 A priori information

3.2.1 Temperature profile, water vapor, surface
temperature, ozone and carbon dioxide

Initial guess profiles for Tatm, H2O, Tsfc and surface pres-
sure (the latter remaining fixed during the retrieval) are de-
rived from ECMWF analysis data at 0.25◦ and 6 h resolu-
tion, linearly interpolated in time and space to that of the ob-
served footprint, with vertical profiles linearly interpolated
by the logarithm of the retrieval pressure gridding. Initial O3
profiles are calculated from the climatology of McPeters et
al. (2007). A priori CO2 profiles are calculated by formu-
lae developed by Geoff C. Toon (personal communication,
2016) and are similar to those used by the Total Carbon Col-
umn Observing Network (Wunch et al., 2011).

3.2.2 MODIS cloud a priori information and mapping
to AIRS footprint

For a priori data on Tcldtop, τcld and reff in each AIRS obser-
vation, weighted averages of MODIS level 2 data are made
over the AIRS spatial response function (SpatialRF). An av-
erage AIRS SpatialRF is first calculated for the observation
(see Schreier et al., 2010). The SpatialRF varies by scan an-
gle and spectral channel, and we make a simple average of

the SpatialRF using only the channels used in the retrieval.
Using formulae described by Pagano et al. (2015), the spatial
response is mapped over the target scene with an approx-
imate resolution of 0.5 km at nadir. MODIS data from the
MYD06_L2 (Aqua) product are then mapped in the vicinity
of the AIRS observation. These data have a horizontal reso-
lution of about 1 km at nadir. The mapped AIRS SpatialRF is
then spatially interpolated onto this MODIS horizontal map-
ping and normalized to sum to unity.

Once the AIRS and MODIS footprints are co-located,
MODIS retrieval fields for 1 km cloud-top temperature,
cloud optical thickness and cloud effective radius are ex-
tracted and mapped (as data are available). Figure 3 illus-
trates a sample MODIS Tcldtop, τcld and reff field overlaid by
the AIRS SpatialRF. Weighted averages and weighted stan-
dard deviations of the MODIS Tcldtop and reff are then calcu-
lated on the interpolated AIRS SpatialRF, excluding MODIS
cloud-free pixels. Calculations are similar for τcld, but cloud-
free pixels are included in the averaging calculation with an
optical depth of zero. From the MODIS Cloud_Mask_1km
field, we extract and similarly map the cloud mask status (0
is undetermined, 1 is determined), cloud mask cloudiness (0
is confidently cloudy or fill if status flag is 0, 1 is probably
cloudy, 2 is probably clear, 3 is confidently clear) and thin
cirrus flags (0 is yes or fill if status flag is 0, 1 is no). The
weighted averages of these flags over the AIRS scene are
used to decide (a) whether the scene is clear; (b) that a cirrus
cloud too thin for a confident MODIS retrieval of its cloud-
top temperature is in the scene, but the retrieval by AIRS
should be attempted using assumed cloud-top temperature a
priori information; or (c) that a retrieval in a cloudy scene
will be attempted using the averaged MODIS cloud data as
a priori data. We categorize AIRS scenes as clear, thin cirrus
or cloudy (noting that MODIS does not report τcld and reff
at night) and set a priori cloud data accordingly. We describe
the criteria for these bins in turn and the cloud a priori data
selected for them.

Clear

An AIRS scene is treated as clear if

a. the average for the cloud mask status flag is greater than
0.95,

b. the average cloud mask cloudiness is greater than 2.5,
and

c. the average thin cirrus flag is greater than 0.9.

In this case, no cloud information is in the retrieval or full
state vector, and the retrieval algorithm directly retrieves
Tatm, Tsfc, H2O, O3 and CO2.
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Figure 3. Sample MODIS fields of cloud-top temperature, cloud optical depth and effective particle size overlaid with the AIRS spatial
response function (SpatialRF) interpolated to the MODIS grid. Data are daytime observations over ocean from 6 September 2002. For this
example, the weighted averages over the AIRS SpatialRF are 211.3 K for cloud-top temperature, 4.26 for optical depth and 29.5 µm for
effective particle radius.

Thin cirrus in daytime and at nighttime

A scene is considered to have thin cirrus but of unknown
temperature if the average thin cirrus flag is ≤ 0.9 and either
the following are true:

a. cloud-top temperature cannot be calculated because of
missing values, or

b. both average cloud mask status > 0.95 and cloud mask
cloudiness > 2.8.

In this case, we assume a default a priori Tcldtop of 230 K. For
daytime scenes, the initial τcld is set to 0.1. For nighttime, the
initial optical depth thickness is set to 1. For both day and
night, we set the initial reff at 40 µm.

Cloudy scenes in daytime and at nighttime

A scene is treated as cloudy (ice or water cloud) if the
weighted average of the MODIS cloud-top temperature on
the AIRS footprint can be calculated. The result is used as
the a priori Tcldtop. If τcld can be calculated, it is used as the a
priori value but is set to no less than 1× 10−3. If a τcld can-
not be calculated during daytime, then the a priori τcld is set
to 1× 10−3. (This lower limit was set to examine retrieval
sensitivity for τcld, which can depend not only on the true
τcld itself but also on the thermal contrast with the ground.
Initial tests indicate that the lower limit for any sensitivity
to τcld is ∼ 0.005.) At nighttime, the a priori τcld is 1. If the
weighted average of the MODIS reff can be calculated, it is

used as the a priori value. If the average cannot be calculated
or if it is nighttime, the a priori reff is 40 µm. Lookup tables
for cloud absorption and scattering parameters had a particle
radii range from 5 to 85 µm; reported cloud absorption and
scattering parameters outside this range rely on extrapolated
parameters, and results may not be reliable.

3.2.3 Emissivity

Wavelength-dependent surface emissivities are input as fixed
parameters and are not retrieved or modified; this may be re-
vised in future versions of AIRS-OE. For ocean emissivity,
we use the National Center for Environmental Prediction –
Environmental Modeling Center (NCEP/EMC) Infrared Sea
Surface Emissivity (IRSSE) formulae and coefficients (van
Delst, 2003), calculated for channel frequency, view angle
and wind speed, with the latter estimated from the ECMWF
analysis (described above). Land emissivity is from the Co-
operative Institute for Meteorological Satellite Studies, Uni-
versity of Wisconsin – Madison Global Infrared Land Sur-
face Emissivity Database (Seemann et al., 2008). These are
monthly maps of land emissivity at 10 wavelengths from 3.6
to 14.3 µm, gridded spatially by 0.05◦. This spatial gridding
is smaller than the AIRS footprint, so we spatially interpolate
the emissivity to the coincident MODIS gridding (described
in Sect. 3.2.2 and as illustrated in Fig. 3). If the target scene is
a mixed land–ocean surface, we calculate the ocean emissiv-
ities (as above) and use them to fill in the ocean parts of the
MODIS grid. With the emissivities at the 10 wavelengths on
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the MODIS gridding, the AIRS SpatialRF is used to calcu-
late weighted averages. Emissivities for each AIRS retrieval
channel are then calculated by wavelength interpolation from
these weighted averages. As the emissivity database does not
extend prior to the calendar year 2003, we (arbitrarily) use
the data from 2003 for observations made in 2002.

3.3 A priori covariances

In this initial evaluation of the retrieval described here, a pri-
ori covariances (Sa in Eq. 1) are listed in Table 1. The co-
variances are ad hoc but guided by previous experience with
AIRS and TES retrievals. We recommend caution in apply-
ing resultant errors, although they may still be useful in com-
paring results between retrievals. Note that H2O, O3, CO2,
τcld and reff are retrieved as loge quantities, and the covari-
ances of their logarithms are used.

Off-diagonal elements of the covariance matrices are cre-
ated using assumed length scales:

σ 2
ij = σiσj exp

(
−

∣∣hi −hj ∣∣
l

)
, (4)

where σ 2
ij is the off-diagonal covariance for layers i and j ,

σi , σj are the square roots of the on-diagonal covariances,
hi , hj are the estimated altitudes, and l is the assumed length
scale.

The off-diagonal length scale for temperature and water
vapor was kept low (0.5 km) as this tended to reduce the ef-
fect of unrealistic retrievals at layers below clouds adversely
affecting retrievals above clouds. (This is discussed further in
Sect. 3.8) Covariance matrices are calculated individually for
each constituent and then “stacked” into a larger matrix for
use in the simultaneous retrieval. At present, we are not using
covariances between constituents (say, between temperature
and water vapor), but this will be investigated for use in later
versions.

Measurement error covariance (Sε in Eq. 1) is taken di-
rectly from the radiometric noise reported in the AIRS level
1b product (see Pagano et al., 2003). This is reported chan-
nel by channel, without correlations between them. For this
study, Sε is a diagonal matrix, and we have assumed the
noise to be uncorrelated across channels, Gaussian and not
scene dependent. A study by Tobin et al. (2007), using prin-
cipal component analysis on AIRS radiance data, showed
that the contribution from the correlated error can be sig-
nificant depending on the detector array on the AIRS focal
plane (see also Pagano, 2002). Channel radiance error can be
dependent on the channel radiance in the shortwave above
∼ 2200 cm−1, but these channels are not used in this study.
Only a minor dependence of the radiance error on channel
radiance is observed in the midwave (∼ 1200 to 1700 cm−1)

and there is effectively no dependence for channels below
∼ 1200 cm−1. Channels exhibiting non-Gaussian “popping”

are flagged and excluded from the analysis of an observation
(see Weiler et al., 2005).

As noted above in Sect. 3.1, random errors in the calcu-
lated radiances from the forward model (briefly described
below in Sect. 3.4) are not added into the measurement error
covariance as used in this study. The random errors from the
“noncloudy” part of the forward model may be smaller than
the noise error from the AIRS instrument for most channels
(see, for example, Fig. 2 in DeSouza-Machado et al., 2017),
but a significant random error may be introduced from the
calculation of the cloud absorption and emission, and these
require further investigation. It is planned that future ver-
sions of the algorithm will include estimates of the random
error from the forward model, and the correlated (that is, off-
diagonal) parts of the radiometric noise covariance.

3.4 Forward model

The forward model is the Standalone AIRS Radiative Trans-
fer Algorithm (SARTA; Strow et al., 2003, 2006), supple-
mented with a delta-four-stream (D4S) calculation for cloud
transmissivity (Ou et al., 2013). This joint SARTA+D4S for-
ward model has been used to retrieve ice cloud parameters
from single-footprint AIRS observations (Kahn et al., 2014),
and of three forward models tested, using SARTA+D4S pro-
duced the lowest biases in temperature and water vapor com-
pared to coincident sondes in clear scenes. Here, we use this
model to additionally retrieve water cloud properties. For ice
clouds, scattering parameters are from Baum et al. (2007).
For liquid water clouds, we use Mie-scattering parameters
calculated using formulae from Mishchenko et al. (2002).

Within the SARTA+D4S forward model, SARTA calcu-
lates the cloud-free gaseous transmissivities for each pres-
sure layer and retrieval channel given the temperature and
gas profiles, emissivity, scan angle, etc. The D4S code cal-
culates the cloud transmissivities for retrieval channels given
a cloud-top temperature, optical depth and particle size. As
each pressure layer in the forward model is assumed to be
homogeneous, the gaseous transmissivity for each channel
is multiplied with that of the cloud to produce a combined
transmissivity within a single layer. Note that this assumes
the cloud can be modeled to fit in one vertical layer, no mat-
ter how thick the cloud. The forward-model layer selected
for this is the tropospheric layer, which has the lowest pres-
sure, with an atmospheric temperature higher than or equal to
the cloud-top temperature (or the next lowest pressure layer
if the absolute difference between the cloud-top temperature
and the layer temperature is smaller).

Only cirrus parameters are used at cloud-top temperatures
below 253.15 K, while only Mie cloud parameters are used at
temperatures above 273.15 K. Between these temperatures,
we use a sliding weight between Mie and cirrus-derived
cloud. This approach may overestimate the amount of ice
occurrence as the majority of cloud tops within the temper-
ature range of mixed phase and supercooled clouds (233–
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Table 2. AIRS retrieval channel frequencies used for this study.

Retrieval channels (cm−1)

662.02 678.57 700.77 718.87 752.09 820.84 1384.47 1513.83
664.51 681.46 701.05 719.17 753.38 839.92 1389.39 1519.07
666.26 681.72 702.74 719.46 753.70 847.14 1392.15 1521.05
666.77 689.49 703.87 719.76 755.00 849.57 1397.13 1524.35
667.27 689.76 704.43 720.94 755.32 880.40 1407.77 1541.77
667.78 691.12 706.13 721.54 758.26 917.30 1419.15 1544.48
668.28 691.39 706.99 721.83 768.88 937.90 1427.22 1547.20
668.54 692.75 707.84 723.03 769.89 948.18 1432.47 1551.30
668.79 693.02 708.70 723.32 773.28 979.13 1436.57 1554.04
669.04 694.12 709.56 724.52 776.36 1121.00 1441.88 1556.10
669.55 694.40 711.00 726.32 778.08 1134.46 1462.09 1560.24
669.81 694.67 711.29 732.61 779.11 1218.49 1468.82 1563.02
670.06 695.77 712.74 734.15 790.33 1225.13 1471.91 1572.09
670.57 696.05 714.19 738.48 793.89 1310.18 1474.38 1586.26
672.10 697.43 714.48 740.03 795.68 1315.47 1479.36 1598.50
673.64 697.71 715.94 742.85 798.92 1340.19 1483.74 1605.05
675.19 698.82 717.40 746.01 801.10 1367.25 1493.21
676.75 699.10 717.99 747.60 803.65 1376.88 1498.96
677.01 699.38 718.28 749.20 804.75 1379.58 1500.88
678.31 699.66 718.58 750.48 811.79 1381.21 1502.16

273 K) is mostly liquid according to lidar estimates of phase
(e.g., Hu et al., 2010). This transition of phase was tested
by changing the lower boundary of this mixed-phase range
in the retrieval from 253.15 to 233.15 K and reprocessing a
test granule (no. 44, 6 September 2002, described below).
Changes were scattered and isolated in retrieved Tatm, H2O
and relative humidity (the calculation of which is described
in Sect. 3.7.3) and were largest in the boundary layer, with
about 7 % of retrieved relative humidities changing by more
than ±5 % at ∼ 900 mb. For clouds with a MODIS-derived a
priori cloud-top temperature less than 273.15 K, about 9 % of
Tcldtop changed by more than±5 K, and 24 % of τcld changed
by more than ±10 %. However, at low to moderate opti-
cal depths (. 1) these changes tended to happen in regions
where there was a high standard deviation in the MODIS-
derived average cloud-top temperature over the AIRS FOV
(> 20 K), which is more likely to contain a mixture of ice-
only, liquid-only and mixed-phase clouds. Put simply, the
clouds in such scenes are more complicated to model, and
more investigation is warranted.

This forward modeling of temperature, trace gases and
cloud properties, while computationally fast, is best suited
for optically and geometrically thin clouds and may not be
well suited to thick clouds or where significant cloud forma-
tions occupy different heights within an AIRS pixel. In this
initial effort, these scenes often, but not always, produce re-
trievals with poor spectral fits (described below in Sect. 3.7.4
and 3.8) and are filtered out in quality control. We discuss
possible ways to improve the forward modeling of clouds
in Sect. 6, but we note here that in future versions it may

be useful to include an effective Mie cut-off temperature as
a retrieved parameter in the state vector. Put another way,
minimization of the cost function, Eq. (1), would be used to
modify the temperature range of the transition from super-
cooled water to ice clouds. This may more effectively model
clouds that contain a mixture of cirrus and supercooled water
droplets.

3.5 Retrieval channels

Table 2 lists the spectral channels used in AIRS-OE re-
trievals. This channel list is similar to that for AIRS V6,
except only longwave channels were used (< 1650 cm−1).
We found that using channels in the shortwave region of the
AIRS bandpass would often result in retrievals not converg-
ing or producing unrealistic retrieval quantities. This may be
partly related to the shortwave channel radiance noise error
being too low in scenes where the radiance was high, as de-
scribed above in Sect. 3.3, with the algorithm failing to fit
the calculated spectrum within the underestimated noise of
these channels. This also may be related to errors in calcu-
lating outgoing radiation from reflected sunlight, which re-
mains a challenge in the near-infrared, particularly in cloudy
scenes because of uncertainties in the scattering/absorption
ratio (Nakajima and King, 1990; Nakajima et al., 1991).

For O3, we do not use the 9.6 µm band as its inclusion of-
ten results in the retrieval failing to converge. (As noted by
Kulawik et al. (2006b) for the TES retrieval, difficulty in find-
ing a global minimum can happen when retrieving all species
at once.) However, including ozone in the retrieval (through
its weak absorption within the 14 µm CO2 band) but not in-
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cluding the strong 9.6 µm band improves the overall fitting
with fewer failed retrievals. Comparisons of H2O and Tatm
with validation measurements also improve (not shown). We
therefore retrieve O3 as an interferent gas solely to improve
the fitting within the 14 µm CO2 region, and these O3 re-
trievals are not recommended for further study.

3.6 Retrieval by minimization of cost function

After setting the different elements of the cost function
(Eq. 1) as described above, the retrieval is performed
by iteratively minimizing the cost function by modifying
the retrieval state vector ẑ with a combination Gauss–
Newton and Levenberg–Marquardt solver. Formulae are de-
scribed by Bowman et al. (2006), applying the algorithm of
Moré (1978). (See also Sarkissian, 2001.)

A simultaneous retrieval of τcld, Tcldtop, reff, Tsfc, Tatm,
H2O, O3 and CO2 is made. Convergence tests are as de-
scribed in Sect. IV.B(2) of Bowman et al. (2006), setting the
threshold value, ε, of 0.2. If a given retrieval cannot converge
within a specified number of iterations, or both the level 2
norm of the trust region (1 in Moré, 1978) and linearity mea-
sure (ρ) within the Levenberg–Marquardt solver fall below
10−3, the algorithm is halted and flagged as non-convergent.
Converged retrievals are analyzed for information content
and are quality-control (QC) checked as described below.

3.7 Information content and error estimation

3.7.1 Averaging kernels

We assume that the retrieval is nearly linear in the vicinity
of the solution, although we have not formally evaluated this
assumption. The Jacobian is the matrix of derivatives of the
outgoing radiance to changes in each element of the state
vector

Kz =
∂F(x̂,b)
∂z

=
∂F(Mẑ,b)

∂z
(5)

and is calculated by finite difference for each retrieval iter-
ation. The gain, Gz, is a measure of the sensitivity of the
retrieval, ẑ, to changes in the radiance:

Gz =
∂ ẑ

∂F
=

(
KT
z S−1

ε Kz+S−1
a

)−1
KT
z S−1

ε . (6)

The gain is multiplied by the Jacobian to produce the averag-
ing kernel matrix, A, which is a measure of the sensitivity of
the retrieval vector, ẑ, to changes in the true state, z:

A=
∂ ẑ

∂z
=
∂ ẑ

∂F
∂F
∂z
=

(
KT
z S−1

ε Kz+S−1
a

)−1
KT
z S−1

ε Kz. (7)

This is a square matrix dimensioned n × n, where n is the
number of elements of the state vector, and as described be-
low, is useful for calculating the error covariance of the re-
trieval. Each element of the averaging kernel matrix is a mea-
sure of the sensitivity for one retrieved member of a state

vector (ẑi) to the changes in the true value of that member
(zi) or to the true value of a different member (zj ). That is,

Ai,j =
∂ẑi

∂zj
. (8)

Figure 4 shows a sample averaging kernel from a simultane-
ous retrieval taken during the daytime on 6 September 2002
at 18.1◦ N, 133.8◦ E, over the Pacific Ocean, south of Japan
(within the same granule depicted in Fig. 1 of Kahn et al.,
2014). A thin cirrus cloud is retrieved with a Tcldtop equal to
220 K (∼ 155 mb) and a τcld of 0.42. The axes indicate the
retrieval pressure layers for each constituent and are not set
on a regular altitude or pressure scale. Tatm, Tsfc and Tcldtop
are retrieved as linear quantities, but H2O, O3, CO2, and τcld
and reff are retrieved as their natural logarithms and their par-
tial derivatives are reported as such. Note that the color scale
is restricted to emphasize the weaker sensitivities. The di-
agonal of the averaging kernel indicates the sensitivity of a
constituent to changes in its true self, while (as will be seen)
off-diagonals (within the same constituent) have information
on the vertical resolution of the retrieval.

A row of the averaging kernel contains measures of the
sensitivity of a single element of the state vector to changes
in the true values of itself and other elements. Note how in
this retrieval, looking across the row for Tsfc, the retrieved
surface temperature can be sensitive to changes (and errors)
in the true surface temperature itself, the lower tropospheric
temperature profile and the cloud-top temperature. There is
little to no sensitivity to changes in H2O, CO2 and O3. By
contrast, most rows for CO2 indicate retrieval sensitivity to
changes in its true self and also changes in all other retrieved
constituents.

A column of the averaging kernel contains measures of the
sensitivity of the entire retrieval state vector to changes in a
single true state vector element. For example, looking up the
Tsfc column, all constituent retrievals are affected somewhere
(even if only weakly) by sensitivity to changes in the true
surface temperature. By contrast, looking at the columns for
CO2, changes in the true CO2 tend to affect the retrieved CO2
but not other constituents.

The averaging kernel can be subdivided to provide sensi-
tivity data on scalar values (e.g., Tsfc and individual cloud
properties) or sensitivity and vertical resolution for individ-
ual profiles. Figure 5 shows the retrievals, individual averag-
ing kernels and ancillary information for the Tatm and H2O
profiles (using the parts of the averaging kernel matrix that
are ∂T̂atm/∂Tatm and ∂ ln[Ĥ 2O]/∂ ln[H 2O], respectively.)
The leftmost panel shows the a priori data and retrieved tem-
perature profile, along with the estimated error (discussed be-
low). For clarity, the error is shown as a separate line (with
a separate axis) rather than an error bar. The second panel
shows the rows of the Tatm averaging kernel, along with its
row sums. An averaging kernel can be examined to better un-
derstand the sensitivities of the measurement and retrieval.
Note, for example, that the temperature averaging kernel
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Figure 4. Sample averaging kernel from a simultaneous retrieval. A row of the averaging kernel matrix is a measure of the sensitivity of the
retrieved value to changes in the true value of itself and other parameters, shown in the columns, assuming the retrieval is in a near-linear
regime. A column indicates the sensitivity of the retrieved state vector to a change in the true value of a single retrieval parameter. The color
scale has been limited to better show the weaker sensitivities.

rows are comparatively low in the boundary layer (750 mb),
indicating lowered sensitivity to changes in the true temper-
ature, but sensitivity increases at altitudes above this in the
free troposphere. These changes in sensitivity affect the er-
ror (in the leftmost panel), which reaches a minimum in the
region of about 380 mb. The row sum of an averaging kernel
row is a rough but useful indicator of how much a retrieval
relies on the data for its results (see Sect. 3.1.5 of Rodgers,
2000). A row sum near unity indicates that the retrieval at
that layer relies mostly on the observed spectral data, while a
value near zero indicates most reliance on the a priori data.

While the row sums are indicative of how much informa-
tion came from the observation, they do not indicate vertical
resolution. Indeed, a visual inspection of the temperature av-
eraging kernel rows in the left panel of Fig. 5 shows that

while the row sums are high in the region between about 300
to 100 mb, the widths of the peaks are much broader than
those below at higher pressures. To estimate vertical resolu-
tion, we use a simple full width at half maximum calculation
for each averaging kernel row using a Gaussian fit and as-
suming a 7 km scale height in converting pressure to altitude.
(Other approaches are described in Sect. 3.3 of Rodgers,
2000.) From this fitting approach, shown in the third panel
of Fig. 5, the vertical resolution is about 1 to 1.5 km from
the ground to about 300 mb, above which the resolution of
the Tatm retrieval quickly degrades. The fitting approach used
here is not useful at pressures lower than about 200 mb where
the rows of the Tatm averaging kernel become much flatter
and can be double-peaked when crossing the tropopause.
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Figure 5. Sample retrieval profiles, errors, averaging kernels, row sums of the averaging kernels and approximate vertical resolutions for
temperature (a) and water vapor volume mixing ratio (b). Each colored line in the averaging kernel panels is from a partial row of the
averaging kernel (e.g., the rows of ∂T̂atm/∂Tatm and ∂ ln[Ĥ 2O]/∂ ln[H 2O], as seen in Fig. 4).

The right three panels of Fig. 5 show the H2O a priori
data, retrieval and error, averaging kernel with row sums and
estimated vertical resolution. (As the logarithm of the H2O
volume mixing ratio is retrieved, the upper and lower errors
of the retrieval in linear space are slightly different. They
are shown as separate lines rather than error bars for clar-
ity.) As with Tatm, the averaging kernel at pressures greater
than 750 mb indicates lower sensitivity in the boundary layer.
Sensitivity improves and is fairly constant between 750 mb
up to about 200 mb, above which sensitivity decreases and
effectively disappears at 100 mb. The rightmost panel of
Fig. 5 shows the approximate vertical resolution. The flat-
tened averaging kernels near the boundary layer lead to a
local maximum in the vertical resolution of ∼ 3.5 km, seen
at about 800 mb, but the averaging kernel rows become more
sharply defined at lower pressures. This improved definition
is reflected in the vertical resolution, which is about 1.8 km
at 700 mb, and steadily increases above to a maximum of
4.3 km at 175 mb.

Note for an AIRS retrieval, an averaging kernel is scene
dependent. Sensitivities at different layers depend on the
amounts of trace gases present, the temperature lapse rate,

the particulars of the cloud field, the view angle and the em-
ployed spectral channels. Scene dependence has been noted
in studying averaging kernels and vertical resolution from
the (version 5) AIRS operational results (Maddy and Bar-
net, 2008). Since the AIRS-OE retrievals are simultaneous
and not sequential, the averaging kernel describes dependen-
cies within and between retrievals of different constituents
and can be used to more robustly calculate uncertainties as
described below.

3.7.2 Error estimation

The smoothing error covariance measures the uncertainty in
the fine structure of the retrieval due to the measurement’s
limited vertical resolution. However, as we have an averaging
kernel from a joint retrieval, the smoothing error also indi-
cates how the uncertainty in one retrieved constituent affects
the uncertainty in another:

Ss = (A− In)Sa(A− In)T . (9)

(See Sect. V(B) of Bowman et al., 2006 and Sects. 3.4
and 4.1 of Rodgers, 2000.)
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The retrieval noise error covariance calculates the impact
of the radiance noise on the retrieval:

Sm =GzSεGT
z . (10)

Again, as noted in Sect. 3.3 and as used here, Sε is a di-
agonal matrix; future versions of the retrieval will include
off-diagonal components and estimates of the forward-model
random error to more accurately reflect the error covariance.
With substitutions, these terms can be added to provide the
covariance of the maximum a posteriori solution:

Ŝ=
(

KT
z S−1

ε Kz+S−1
a

)−1
, (11)

with the square roots of the diagonal reported as errors for the
state vector. Note also that the total retrieval error does not
include any systematic errors from the forward model (e.g.,
those due to instrumental line-shape errors, spectral biases or
other errors that are correlated across observations), although
we note the SARTA model is tuned to better match outgoing
radiances as calculated from coincident measurements and
analyses (see Strow et al., 2006). We again emphasize that
since our a priori covariances are ad hoc, caution should be
observed in using the reported errors.

For this initial version of our algorithm, we have not
implemented code to calculate the model parameter error,
which contains the uncertainty from parameters that affect
the retrieval but are not retrieved themselves (surface pres-
sure, emissivity, scan angle, etc.):

Smp =GzKPsurfSa,Psurf(GzKPsurf)
T

+GzKemisSa, emis(GzKemis)
T
+ . . . (12)

In this case, the total retrieval error covariance would be the
sum of Eqs. (11) and (12):

Stot = Ŝ+ Smp. (13)

The addition of the model parameter error (Eq. 12) is planned
for future development.

For constituents retrieved in logarithmic space, the error
reported for the i’th element, εi , is the error in the logarithm
of the retrieved value, ẑi , with the range [lower, upper] of the
retrieval in linear space being[
exp

(
ẑi − εi

)
,exp

(
ẑi + εi

)]
. (14)

3.7.3 Calculation of relative humidity and error

In calculating relative humidity (RH), we use the layer re-
trievals of temperature and water vapor. Equations (2.5)
and (2.21) of Wagner and Pruß (2002) are used to determine
saturation pressures of water vapor over liquid and ice. At
temperatures between 253.15 and 273.15 K, we set saturation

pressure as a sliding-scale-weighted average of those over ice
and over water. The relative humidity error calculation uses
recalculated RHs by adding the errors from the temperature
and (separately) the positive linear value of the water vapor
error (the right-hand side of Eq. 14). We report the relative
humidity uncertainty as the root sum of squares of the differ-
ences between these recalculated relative humidities and the
reported values.

3.7.4 Chi square fitting parameter

The chi square fitting parameter, χ2, is a goodness-of-fit
statistic of how well a spectrum’s radiance is fitted within
the bounds of the radiance error:

χ2
=

1
N

∑N

i=1

(
yi − [F(x, b)]i

εi

)2

, (15)

where N is the number of channels, and εi is the radiance
error in channel i. A χ2

� 1 indicates a poor spectral fit to
the observed radiance. While the χ2 does not directly enter
into the error characterization, it is used in quality control as
described below.

3.8 Quality control (QC) filtering

Retrievals that do not meet the following three criteria are
filtered out:

1. normal convergence within the maximum specified
number of iterations,

2. Chi square fitting parameter, χ2 < 3, and

3. retrievals in layers with Tatm > (Tcldtop – 10 K) require a
surface temperature averaging kernel > 0.6.

The first criterion is to avoid wasting computational re-
sources on poorly converging retrievals. The second criterion
is to avoid reporting profiles with poor spectral fits. This of-
ten happens under ice cloud conditions when the cloud opti-
cal depth is high (& 20); it is likely that the radiative trans-
fer is incorrectly calculated because a cloud is assumed to
fit in one vertical model layer while in reality, thick clouds
extend over many model layers. Poor spectral fits can also
often occur when there is a high standard deviation, & 20 K,
of the MODIS 1 km cloud-top temperature weighted over the
AIRS spatial response function. Again, we suspect that this
poor fitting is from limitations in our forward model, which
is limited to one cloud layer; the radiative transfer calcula-
tion can be inadequate when there are several cloud tops at
different temperatures within the AIRS footprint.

The third criterion is a means to remove layers of a profile
that have unphysical values of the relative humidity calcu-
lated from the retrieved temperature and water vapor; these
are usually in or near the boundary layer. We again note that
a cloud’s transmissivity is incorporated in only one layer of
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the forward-model vertical pressure grid, no matter how thick
the cloud. We hypothesize that this can lead to erroneous out-
going radiances for temperature and water vapor channels in
regions at or below moderately thick clouds, which in turn,
produces erroneous Jacobians and averaging kernels. How-
ever, surface temperature retrievals appear to more correctly
give a low-to-zero averaging kernel under moderate-to-thick
cloud optical depths. We therefore require that retrievals at
layers below clouds must “see” the surface (determined by
the Tsfc averaging kernel having a minimum of 0.6). For re-
trievals above clouds for which the surface temperature av-
eraging kernel is less than 0.6, an additional thermal con-
trast provided by a 10 K buffer between the cloud top and the
lowest profile layer to pass quality control eliminates more
unphysical retrievals. Most, but not all of the retrievals that
produce unphysically high relative humidities are eliminated
by this method, usually in the boundary layer.

4 Results

For an initial examination of cloud, temperature and H2O
profile retrievals for this effort, we use results of an AIRS
daytime granule (#44) over the subtropical western Pacific
Ocean from 6 September 2002. This is the same granule
examined and discussed in detail by Kahn et al. (2014) for
AIRS V6 cloud products. This granule has a large mix of
cloud types and weather regimes, including a tropical cy-
clone to the west, and a mix of low and mid-level clouds
from the center to the east and to the south. For an AIRS
granule, there are 90 observations on the cross-track and 135
observations along-track. Here, the yield of retrievals pass-
ing quality control for at least some layers is ∼ 56 % of
12 150 observations. In the following subsections, we com-
pare our results to those of different algorithms operating on
the same scenes. MODIS-avg retrievals are from the MODIS
1 km pixels (MYD06 data set) in a weighted average over the
AIRS SpatialRF, as described above in Sect. 3.2.2.

4.1 Cloud-top temperature, effective cloud optical
depth and effective cloud particle radius

Figure 6 displays cloud-top temperatures (Tcldtop), effective
optical depths (τeff) and effective particle radii (reff) from
the a priori data (left column) and AIRS-OE retrievals (cen-
ter column) from the granule described above, along with
retrieval averaging kernels (right column). With a few ex-
ceptions, the a priori data are generated from co-located
MODIS-avg retrievals. Retrieved quantities have similar
fields to their a priori counterparts. As indicated by the av-
eraging kernels, sensitivity is enhanced for ice clouds, which
is likely because of the higher thermal contrast with the sur-
face. For all clouds as they get thicker, their infrared radia-
tion is more dominant in the window channels, producing a
more confident retrieval. An examination (not shown) indi-

cates that the Tcldtop averaging kernels reach ∼ 0.5 at cloud
optical depths of about 0.4 for ice clouds and between 1 and
2 for water clouds. (An averaging kernel of 0.5 indicates that
roughly half the information of the retrieval is from the spec-
tral data and half is from the a priori data.) We do note, how-
ever, that the retrievals can fail quality control at or near the
thick center of the cyclone, likely for reasons described in
Sect. 3.4.

4.2 Comparison with CloudSat/CALIPSO

We make an additional “snapshot” comparison with (multi-
layer) cloud observations by the combined CloudSat cloud
profiling radar (Stephens et al., 2002) and the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations lidar
(CALIPSO; Winker et al., 2009), using the 2B-CLDCLASS-
LIDAR product (Wang et al., 2013). Figure 7 compares
AIRS-OE cloud-top retrievals with near-coincident Cloud-
Sat/CALIPSO (CsC) observations, using the same date and
region as in Fig. 2 of Wang et al. (2016), who compared
MODIS cloud classifications and CsC profiles. (As in Wang
et al., 2016, the horizontal axis is ordered by decreasing lat-
itude.) The upper two panels show AIRS-OE cloud optical
depths and cloud-top temperatures from a daytime 31 July
2009 swath over the Pacific (latitude on the horizontal axis)
with the CsC transect overlaid. The third panel shows the ver-
tical extent of the clouds from CsC (in grey). Superimposed
are the approximate cloud-top altitudes of the QC-passed
AIRS observations (no more than one per AIRS cross-track)
closest to the CsC transect. (Note that the distance between
the center of an AIRS observation and the closest CsC obser-
vation can be up to 7.5 km). The AIRS observations in this
panel are colored by the AIRS-OE retrieved cloud optical
depth. The bottom panel again shows the CsC cloud layer and
AIRS-OE cloud-top altitudes but colored by the AIRS-OE
cloud-top temperature averaging kernel, which can be used
as a measure of confidence in the AIRS cloud-top altitude.

Similarly to the (1 km footprint) MODIS retrieval on the
same transect (see Fig. 2 of Wang et al., 2016), AIRS-OE re-
trieves cloud tops at a lower altitude than CsC for the thicker
regions of the cirrus clouds (marked A and B in Fig. 7). This
is similar to comparisons of AIRS version 5 cloud retrievals
to CsC by Kahn et al. (2008), citing Holz et al. (2006) in
how infrared retrievals of cirrus tend to place the cloud top 1
to 2 km or more below the physical cloud top. The retrieval
does not pass quality control at a few points over the deep
convective core, likely because radiance spectra above such
deep clouds can be poorly calculated by our forward model.
Significant differences in cloud-top altitude are notable along
the thin cirrus between about 5 and 12◦ (C), with retrieved
optical depths of about unity or less. However, a close exam-
ination of the cloud-top temperature and cloud optical depth
fields in the upper panels between 10 and 5◦ N show that the
CloudSat/CALIPSO transect is on the edge of a thin north–
south-aligned strip of ice cloud, and the centers of the closest
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Figure 6. Sample a priori data, AIRS-OE retrievals and AIRS-OE averaging kernels of cloud-top temperature (Tcldtop), effective optical
depth (τeff) and effective particle radius (reff). Data are from AIRS (daytime) Granule 44, 6 September 2002.

AIRS observations to the CsC transect were 2 to 5 km apart,
so some sampling bias may be present. Similarities and dif-
ferences shown in Fig. 7 may be broadly similar to previous
AIRS/MODIS/CloudSat/CALIPSO comparisons (e.g., Kahn
et al., 2007; 2008), but here we explicitly illustrate the fea-
sibility of forward-modeling clouds in a hyperspectral IR re-
trieval, simultaneously with temperature and trace gases.

4.3 Temperature, water vapor and relative humidity
profiles

Figure 8 presents maps of Tatm (top row), H2O (middle
row) and a calculated relative humidity (RH; bottom row)
at the 918 mb layer for the 6 September 2002 granule dis-
cussed above. For comparison, the left column shows re-
sults from the operational AIRS V6 retrievals, interpolated
by log(pressure) to the AIRS-OE retrieval layer. Note that
the AIRS V6 retrievals used cloud-cleared radiances on the
AMSU footprint, each point covering an area approximately
nine times that of a single AIRS infrared footprint. The sec-
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Figure 7. Comparison of AIRS-OE approximate cloud-top altitude with CloudSat/CALIPSO (CsC). (a) AIRS-OE cloud-top temperature
with CsC transect. (b) AIRS-OE cloud optical depth. (c) CsC cloud layer altitudes (grey) with approximate AIRS-OE cloud-top altitudes,
colored by retrieved optical depth. (d) Same as third panel but points colored to show cloud-top temperature averaging kernels. Data are from
daytime observations, 31 July 2009 over the Pacific ocean.

ond column shows the initial guess for each retrieval quan-
tity, calculated by linear interpolation in time and space and
vertically by log(pressure) from 6 h ECMWF analyses. The
third column shows the AIRS-OE retrievals passing the qual-
ity control criteria described in Sect. 3.8. The fourth column
shows the estimated error of the AIRS-OE retrieval. Note
that H2O is presented in a volume mixing ratio, not a mass
mixing ratio. Comparing AIRS-OE relative humidity to its a
priori or AIRS V6 values shows significant local differences

in relative humidity and many unphysically high RH values
(> 100 %) throughout the region studied. We note, however,
that the calculated error for the AIRS V6 relative humidity
at this layer is fairly high, with a median of 28.7 % with an
interquartile range (IQR, that is, the range between the 25th
and 75th percentiles) of 26.0 to 31.8 %. The AIRS-OE rel-
ative humidity is biased high compared to AIRS V6, with a
median bias of 8.5 % (IQR=−1.3 to 19.1 %).
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Figure 8. AIRS V6 retrieval and AIRS-OE a priori data, retrievals and errors for temperature, water vapor and relative humidity (RH) at
918 mb for (daytime) Granule 44, 6 September 2002.

At 525 mb (Fig. 9), qualitative agreement for Tatm,
H2O and RH is improved compared to 918 mb across the
ECMWF-derived a priori data, AIRS V6 and AIRS-OE.
However, the AIRS-OE retrieval for H2O begins to depart
from the a priori data to more closely resemble the AIRS V6
retrieval. For example, the a priori data shows a smaller re-
gion of higher water vapor to the east of drier air near 30◦ N
and 135◦ E (A) while AIRS V6 and AIRS-OE show this re-
gion to be larger. The AIRS-OE median relative humidity er-
ror is 16.1 % (IQR= 12.0 to 19.9 %), smaller than that at the
918 mb layer. Regional biases in the H2O and RH of AIRS-
OE compared to AIRS V6 can again be readily seen, al-
though the median RH bias is reduced to 0.4 % (IQR=−4.4
to 6.7 %).

At 321 mb (Fig. 10), the AIRS-OE temperature field shows
a much broader region of cold air than either AIRS V6 or the
a priori data (dark blue overlaid by A). However, the H2O
and RH fields of AIRS V6 and AIRS-OE resemble each other
more than the a priori data, and the additional horizontal res-
olution of AIRS-OE allows sharper boundaries to be seen
between dry and wet regions. Although there are still many
missing pixels in AIRS-OE, there is improved definition in
the boundaries between lower and higher values of the H2O
volume mixing ratio (B in upper left). For relative humidity,
note that the region of humid air near 32◦ N and 140◦ E in
AIRS V6 (C) is more fully resolved as three small but distinct
regions in AIRS-OE. The median error of the AIRS-OE rel-
ative humidity is 13.1 % (IQR= 7.2 to 19.7 %). The median
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Figure 9. AIRS V6 retrieval and AIRS-OE a priori data, retrievals and estimated errors for temperature, water vapor and relative humidity
(RH) at 525 mb for (daytime) Granule 44, 6 September 2002.

bias of the AIRS-OE relative humidity compared to AIRS
V6 is 0.1 % (IQR=−4.0 to 7.2 %), similarly to the 525 mb
layer.

As a test of the algorithm’s sensitivity to the infrared spec-
trum, Fig. 11 compares the 321 mb retrieval of relative hu-
midity under different a priori assumptions. The left panels
show the relative humidities calculated from Tatm and H2O a
priori data as interpolated from ECMWF analyses (as above),
a climatology, and the neural-net a priori data of the current
AIRS V6 retrieval scheme. The right panels show the AIRS-
OE relative humidity retrievals from these different a priori
data. In all cases, MODIS-avg data are used as cloud a pri-
ori data. While showing some minor differences, all retrieval
relative humidity fields show a similar structure, indicating

good sensitivity of the retrieval in the free troposphere over
the ocean.

A rough estimation of the sensitivity as a function of pres-
sure is shown Fig. 12, using averages of the row sums of the
Tatm and H2O averaging kernels from quality control-passed
layers. The left panel of the Fig. 12 shows these profiles using
ECMWF data as a priori data. (Results using climatology or
the neural net, as in Fig. 11, were similar.) Error bars are 1σ
standard deviations. The right panel shows the yield of qual-
ity control-passed retrievals. Temperature retrievals gener-
ally indicate a low-to-moderate sensitivity at the surface but
increase with altitude to about 600 mb, then show high sensi-
tivity upwards to 100 mb. Similarly, water vapor sensitivity is
low to moderate at the surface but quickly increases with al-
titude. Sensitivity is high from about ∼ 850 to about 225 mb,
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Figure 10. AIRS V6 retrieval and AIRS-OE a priori data, retrievals and errors for temperature, water vapor and relative humidity (RH) at
321 mb for (daytime) Granule 44, 6 September 2002. Note that unlike Figs. 8 and 9, water vapor volume mixing ratio is on a logarithmic
scale.

above which it markedly decreases and is small across the
100 mb level. The right-hand graph shows yield increasing
with altitude, as more retrievals become available above the
cloud tops. It should be emphasized that the sensitivity of the
retrieval of a constituent, as indicated by the averaging ker-
nel and its row sums, is dependent not only on the strength of
the Jacobians (Eq. 5) but also on the size of the a priori co-
variance (Sect. 3.1). As the a priori covariances used in this
study are ad hoc, the sensitivity of the AIRS-OE retrieval (as
illustrated by, say, Fig. 12) could change as the a priori co-
variances are refined in future versions.

5 Comparison with radiosondes

5.1 MAGIC campaign sondes

AIRS-OE retrievals of temperature and water vapor are com-
pared with radiosonde profiles from the ship-based Marine
ARM GPCI Investigation of Clouds (MAGIC) campaign of
September 2012 to October 2013. Sondes were launched
from a Department of Energy Atmospheric Radiation Mea-
surement mobile facility atop a container ship traveling be-
tween Honolulu and Los Angeles. An extensive description
of the MAGIC field campaign and comparison of AIRS V6
and ECMWF ERA-Interim reanalysis water and tempera-
ture results with MAGIC have been reported by Kalmus et
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Figure 11. AIRS-OE relative humidity (calculated from retrieved
temperature and water vapor) at 321 mb using different a priori data.
Panels (a), (c), (e) show the relative humidity calculated from the
a priori data, while (b), (d) and (f) show the retrieval. Panels (a)
and (b) uses an ECMWF analysis-derived a priori data linearly in-
terpolated in time, space and log pressure to the AIRS observation.
(c) and (d) uses a climatology. Panels (e) and (f) uses the neural-
net calculation (on the AIRS-AMSU footprint) that is used with the
operational AIRS V6 retrieval. Note that while the different a priori
data were used for temperature, skin temperature and water vapor,
the same MODIS-derived cloud data (cloud-top temperature, cloud
optical depth and cloud particle radius) were used as a priori data
for the cloud retrievals.

al. (2015). Figure 13 illustrates the location of the sondes
matched to AIRS (launched within 3 h and 100 km of an
AIRS observation), colored by the number of successful re-
trievals at 321 mb; anywhere from 3 to 105 successful AIRS-
OE observations are achieved as matchup to a single sonde.

Whether an AIRS-OE retrieval is successful at a particular
pressure layer depends to a large extent on the particularities
of the cloud cover, and so the number of successful retrievals
can vary widely for matched radiosondes. For example, of
the 210 MAGIC sondes that were coincident with AIRS ob-
servations, an average of 41± 26 (1σ) AIRS-OE success-
ful retrievals were made for each sonde at 321 mb, while
at 918 mb, an average 29± 25 retrievals were made (not
shown). Simply taking a global average (or even a global me-
dian) of the differences between AIRS retrievals and sonde
observations can introduce significant sampling biases, with

Figure 12. Average row sums of temperature and water vapor av-
eraging kernels (a) and percentage yield of quality control-passed
retrievals (b) for (daytime) Granule 44, 6 September 2002. A pri-
ori data for temperature and water vapor were from ECMWF. Error
bars are 1σ standard deviations. For clarity, some error bars are not
shown.

clear or nearly clear areas overrepresented. We also found
that average bias could often be significantly skewed by re-
trieval outliers – usually because the water vapor and rela-
tive humidity were unphysically high. Thus, to calculate an
overall bias between AIRS-OE and the MAGIC sondes and
compare this to the a priori and AIRS V6 results, we report
the “median of the medians,” calculated in this manner:

a. For the ensemble of a priori and QC-passed retrievals
for a single sonde, we calculate the median Tatm bias,
RH bias and relative bias in H2O (e.g., [AIRS –
sonde]/sonde) in %).

b. We do the same as above for AIRS V6 observations but
only where a successful AIRS-OE retrieval is within an
AIRS V6 footprint, and only layers that have an AIRS
V6 quality control of 0 (best) or 1 (good). As there can
be up to nine AIRS-OE retrievals within an AIRS V6
footprint, an AIRS V6 retrieval is only entered once
when calculating the median to avoid overcounting.

Note that these criteria for matching up sondes and AIRS
V6 observations are different from Kalmus et al. (2015), so
caution should be taken when comparing these results with
that work. Also, since the inclusion of an AIRS V6 profile
in calculations depends on the QC result of an AIRS-OE re-
trieval, these data should not be taken as validation of AIRS
V6 results. Note also that the AIRS V6 uses a different a pri-
ori value than AIRS-OE, and the AIRS V6 a priori value is
not shown or compared here.
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Figure 13. MAGIC sonde launch locations that were matched to
coincident AIRS observations. Points are colored by the number
of QC-passed AIRS-OE retrievals of water vapor at 321 mb. AIRS
observations were within 3 h and 100 km of the sonde launch.

Figure 14 illustrates the median temperature profile differ-
ences between the a priori, AIRS-OE and AIRS V6 retrievals
for Tatm, the relative difference for H2O and the difference in
RH compared to the MAGIC sondes. Thin lines indicate the
25th and 75th percentiles of the distributions. For tempera-
ture, AIRS-OE (blue line) shows a negative bias of 0.65 K
at the surface, increasing to a maximum of 0.9 K at 865 mb.
The positive bias continues to about 400 mb, and is higher
than either the a priori or AIRS V6 retrievals. Between 400
and 200 mb, the AIRS-OE retrieval is within 0.3 K, as are
the a priori and AIRS V6 retrievals. For water vapor, the
(global median) relative bias of AIRS-OE retrievals stays
within 10 % of the sondes from the surface to about 800 mb,
where it increases to about a 20 % bias at 525 mb, decreases
to a 3 % bias at 321 mb and then increases again, as do the a
priori and AIRS V6 retrievals. For the bias in relative humid-
ity, except for a local minimum of −4 % at 840 mb, biases
are positive and tend to be within 5 % up to 200 mb, but this
good agreement may be partly due to compensating biases in
temperature and water vapor.

5.2 Tropical Western Pacific (TWP), Southern Great
Plains (SGP) and North Slope of Alaska (NSA)
sondes

For these comparisons, we use AIRS observations co-located
with high-quality radiosondes launched from ground-based
sites of the U.S. Department of Energy’s Atmospheric Radi-
ation Measurement (ARM) Climate Research Facilities. In-
clusion criteria and median bias calculations are similar to
those for the MAGIC sondes (Sect. 5.1). Figure 15 illus-
trates the median temperature biases, water vapor relative bi-
ases and relative humidity biases for the ECMWF analysis-
derived a priori profile, and the AIRS-OE and AIRS V6 re-

Figure 14. AIRS-OE, AIRS version 6 and a priori profile biases
from MAGIC radiosondes. (a) Median temperature difference (mi-
nus sonde). (b) Median relative difference in water vapor ([AIRS –
sonde]/sonde in %). (c) Median difference in relative humidity (in
%). Thin lines represent the 25th and 75th percentiles. AIRS obser-
vations were within 3 h and 100 km of the sonde launch, and only
those retrieval layers passing quality control were counted. In to-
tal, 8633 AIRS profiles were matched to 210 sonde profiles. See
Sect. 5.1 for description of data aggregation before calculation of
medians.

trievals over the TWP site at Nauru, the SGP site in Okla-
homa and the NSA site in Alaska.

For temperature, all three sites show AIRS-OE median bi-
ases for temperatures below ±1 K and median relative bi-
ases for H2O to mostly within ±15 %. At TWP, AIRS-OE
generally shows larger biases compared to the a priori val-
ues for temperature but is similar to the ECMWF-derived
a priori values for H2O and relative humidity from about
800 mb up to about 200 mb. At SGP, AIRS-OE shows a high
bias of ∼ 0.7 K between the surface to 400 mb but it slightly
improves on the a priori water vapor for most of the tropo-
sphere, except near 700 mb. AIRS-OE relative humidity bi-
ases compare well with the a priori data. At NSA, between
about∼ 800 and∼ 220 mb, AIRS-OE temperature biases are
low (less than ±0.25 K), as are water vapor relative biases
(less than ±7 %). Relative humidities are improved com-
pared to the a priori values from the surface to about 400 mb.
While again we caution that the results in Fig. 15 should not
be taken as validation for AIRS V6, we note that the single-
footprint retrieval AIRS-OE results generally compare well
with the cloud-cleared spectra results of AIRS V6.

6 Summary and discussion

We have presented a new retrieval scheme for the AIRS in-
strument, AIRS-OE, which uses MODIS results as cloud pa-
rameter a priori data, and a forward model that incorporates
cloud effects in its radiative transfer. As AIRS-OE directly
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Figure 15. AIRS-OE, AIRS version 6 and (AIRS-OE) a priori profile differences from radiosondes launched from the Tropical Western
Pacific site (a), Southern Great Plains (b), and Alaska North Slope (c). Left column: median temperature differences (minus sonde). Middle
column: median relative difference in water vapor ([AIRS – sonde]/sonde in %). Right column: median difference in relative humidity (in
%). Thin lines represent 25th and 75th percentiles. AIRS observations were within 3 h and 100 km of sonde launch and only those retrieved
layers passing quality control were counted. The a priori profile for AIRS V6 is not shown. See Sect. 5.1 for description of data aggregation
before calculation of medians.

uses level 1b spectra in retrievals, and not level 2 cloud-
cleared spectra as in AIRS V6, it improves the nadir hori-
zontal resolution over AIRS V6 from∼ 45 to∼ 13.5 km. Fo-
cusing on cloud parameters, and temperature and water vapor
profiles, we have presented some initial comparisons to cur-
rently operational AIRS version 6 products. The improved
horizontal resolution has been shown to provide greater de-
tail in water vapor and relative humidity fields in the free

troposphere. As AIRS-OE rests on an optimal estimation
framework and includes simultaneous retrieval of profiles
and scalar variables, it has an information content analysis
that operates both within an atmospheric parameter (e.g., un-
certainties in the temperature profile) and across different at-
mospheric parameters (e.g., uncertainties in water vapor due
to uncertainties in temperature). Initial comparisons against
co-incident radiosondes indicate that retrieval biases for tem-
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perature and water vapor profiles are at least competitive with
AIRS V6.

Some aspects of this new retrieval need development.
More realistic clouds in the forward model, with multiple
cloud decks or clouds that extend over several model layers,
will likely allow more footprints to be successfully analyzed.
A better a priori τcld at nighttime may be made by comparing
brightness temperatures in the window channels to the a pri-
ori surface temperature, similarly to Kulawik et al. (2006a).
Noting the work of DeSouza-Machado et al. (2018), it may
be useful to combine MODIS and numerical weather predic-
tion cloud data to determine an a priori profile for the cloud-
top height, particle size, optical depth (or liquid/ice column)
and horizontal and vertical extent of cloud in the AIRS FOV.
Improved cloud results will hopefully better leverage and
compliment the spatial coverage and horizontal resolution
of MODIS, and the vertical precision and detail of Cloud-
Sat/CALIPSO. A forward model incorporating scattering by
dust and other aerosols (as previously done for AIRS by
DeSouza-Machado et al., 2006, 2010) would open more re-
gions for analyses. (See also Maddy et al., 2012.) Efforts can
be made to better model the outgoing daytime radiance of
the shortwave channels of AIRS (> 2200 cm−1) and improve
the radiance noise error estimate, so we can more fully ex-
ploit the spectral range of the instrument, particularly near
the 4 µm CO2 band. An observation-based a priori covari-
ance (including cross-species covariances), specific to region
and season, would provide improved constraints and more re-
alistic retrieval errors. Adding in retrieval linearity estimates,
such as those described in Sect. 5.1 of Rodgers (2000), would
help to flag those retrievals where the error estimation may
be suspect. A method of assigning ground-level snow and ice
conditions to observations is needed – possibly from the co-
located AMSU microwave instrument or other near-real-time
data (see Pope et al., 2014). Addition of effective emissiv-
ity retrievals will likely be necessary to improve results over
difficult regions, such as deserts or mountains. If the emis-
sivity field is highly variable within the AIRS FOV (say, on
a coastline), weighting by the MODIS cloud mask can help
to determine an a priori emissivity as it affects the AIRS ob-
servation by taking cloud cover into account. The algorithm
could be extended to better retrieve O3 using its 9.6 µm band
as well as retrieve CH4, CO and other gases within the AIRS
bandpass. Successful implementation of these improvements
may be challenging (or at least time consuming) but could
prove useful not just to single-footprint retrieval from AIRS
but also to other instruments such as CrIS and IASI.

Since the design stage of the AIRS instrument in the
1990s, increased computing power and advances in modeling
cloudy spectra allow new approaches to utilize the high spec-
tral resolution output of existing infrared sounders. The hori-
zontal resolution gained by avoiding cloud clearing can pro-
vide more nuanced data for water vapor, especially where it is
highly variable at smaller spatial scales. Even with the algo-
rithmic deficiencies described, initial results presented here

indicate that AIRS-OE retrievals on cloudy infrared spectra
can compare well with operational AIRS V6 retrievals that
require cloud clearing. Additional improvements in execu-
tion speed and data handling are needed before this work can
become operational like AIRS V6. However, with some 16
billion AIRS infrared spectra since its launch in 2002, nu-
merous opportunities are available for targeted studies with
this new algorithm.
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