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Abstract. The accurate identification of the presence of
cloud in the ground scenes observed by remote-sensing satel-
lites is an end in itself. The lack of knowledge of cloud at
high latitudes increases the error and uncertainty in the eval-
uation and assessment of the changing impact of aerosol and
cloud in a warming climate. A prerequisite for the accurate
retrieval of aerosol optical thickness (AOT) is the knowledge
of the presence of cloud in a ground scene.

In our study, observations of the upwelling radiance in
the visible (VIS), near infrared (NIR), shortwave infrared
(SWIR) and the thermal infrared (TIR), coupled with so-
lar extraterrestrial irradiance, are used to determine the re-
flectance. We have developed a new cloud identification al-
gorithm for application to the reflectance observations of the
Advanced Along-Track Scanning Radiometer (AATSR) on
European Space Agency (ESA)-Envisat and Sea and Land
Surface Temperature Radiometer (SLSTR) on board the ESA
Copernicus Sentinel-3A and -3B. The resultant AATSR–
SLSTR cloud identification algorithm (ASCIA) addresses
the requirements for the study AOT at high latitudes and
utilizes time-series measurements. It is assumed that cloud-
free surfaces have unchanged or little changed patterns for
a given sampling period, whereas cloudy or partly cloudy
scenes show much higher variability in space and time. In
this method, the Pearson correlation coefficient (PCC) pa-
rameter is used to measure the “stability” of the atmosphere–
surface system observed by satellites. The cloud-free sur-
face is classified by analysing the PCC values on the block
scale 25× 25 km2. Subsequently, the reflection at 3.7 µm is
used for accurate cloud identification at scene level: with
areas of either 1× 1 or 0.5× 0.5 km2. The ASCIA data
product has been validated by comparison with independent

observations, e.g. surface synoptic observations (SYNOP),
the data from AErosol RObotic NETwork (AERONET) and
the following satellite products: (i) the ESA standard cloud
product from AATSR L2 nadir cloud flag; (ii) the product
from a method based on a clear-snow spectral shape devel-
oped at IUP Bremen (Istomina et al., 2010), which we call
ISTO; and (iii) the Moderate Resolution Imaging Spectrora-
diometer (MODIS) products. In comparison to ground-based
SYNOP measurements, we achieved a promising agreement
better than 95 % and 83 % within ±2 and ±1 okta respec-
tively. In general, ASCIA shows an improved performance
in comparison to other algorithms applied to AATSR mea-
surements for the identification of clouds in a ground scene
observed at high latitudes.

1 Introduction

The large trends in warming over the Arctic in recent decades
has received much attention from the global and regional
climate change research community (Wendisch et al., 2017;
Cohen et al., 2014). A number of studies using global ob-
servations and climate models confirm this phenomenon,
called Arctic amplification, and provide evidence that its
impact extends beyond the Arctic (Kim et al., 2017; Co-
hen et al., 2014). Though the attribution of the origins of
this phenomenon is controversially discussed (Serreze and
Barry, 2011; Pithan and Mauritsen, 2014), cloud cover is well
known to play a role in the Arctic surface–atmosphere radi-
ation balance (Kellogg, 1975; Curry et al., 1996). The accu-
rate identification of Arctic clouds in the ground scenes of
remote-sensing measurements made from space is therefore
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of intrinsic importance. However, cloud identification and
screening over the Arctic is a challenging task, since all de-
veloped cloud detection methods encounter many obstacles
originating from the unique atmosphere and surface condi-
tions in the Arctic (Curry et al., 1996). The Arctic clouds
are mostly optically thin and low with no remarkable con-
trast in the commonly used visible or thermal or microwave
measurements to the underlying surface covered with highly
reflecting snow and ice. For example, snow and ice are also
cold like clouds: the lack of strong thermal contrast is a
limitation in the retrieval of clouds in the thermal infrared
(Rossow and Garder, 1993; Curry et al., 1996).

In addition to the importance of clouds to Arctic amplifi-
cation, errors in the identification of cloud within a ground
scene are also one of the major sources of error in retrievals
of a variety of data products for both satellite and ground-
based measurements at high latitude. For example, the inter-
ference of cloud contamination in the aerosol optical thick-
ness (AOT) retrieved by passive satellite remote sensing is
a well-known issue (Shi et al., 2014; Várnai and Marshak,
2015; Christensen et al., 2017; Arola et al., 2017). This lim-
its the reliability and usefulness of the AOT products in the
assessment of the direct or indirect impact of aerosols in
the Earth’s energy balance, in particular over the Arctic. To
avoid the uncertainty included in AOT products due to sig-
nificant misclassification of heavy aerosol load as thin clouds
(which have similar reflectance properties), the development
of an adequate cloud identification algorithm is a prerequisite
(Martins et al., 2002; Remer et al., 2012; Wind et al., 2016;
Mei et al., 2017a, b; Christensen et al., 2017).

One recent approach to detect cloud-free snow and ice
over high latitudes used the spectral shape of clear snow,
ISTO (Istomina et al., 2010). The latter analyses the spectral
behaviour of each ground scene and identifies clear snow or
ice scenes from Advanced Along-Track Scanning Radiome-
ter (AATSR) measurements. Thresholds of the reflectance
were empirically determined in seven spectral channels from
the VIS to TIR. Defining a reliable threshold which can guar-
antee a successful separation of cloud and cloud-free regions
for the wide range of atmospheric conditions and surface
types is a challenging task. This is because of the similar-
ity between spectral reflectance of cloud and snow/ice (Lya-
pustin et al., 2008). In spite of progress made by this ap-
proach, adequate discrimination of thin cloud above ice or
snow is an inherent limitation of such threshold-based tech-
niques.

The European Space Agency (ESA) standard cloud prod-
uct from AATSR is another example of an existing cloud
data product over the Arctic. This operational cloud mask is
called the Synthesis of ATSR Data Into Sea-Surface Tem-
perature (SADIST) and is based on the latitudinal thresh-
olds for various cloud types (Ghent et al., 2017). SADIST
was initially developed for cloud screening over the ocean
(Zavody et al., 2000). Birks (2007) modified this method to
apply it over land. Later, Kolmonen et al. (2013) reported

that the cloud flags included in AATSR product are notice-
ably restricted and using this cloud product results in aerosol
episodes not being observed. SADIST is known to misclas-
sify ice, cloud and open ocean in polar regions. Bulgin et
al. (2015) developed a Bayesian approach in ESA’s Climate
Change Initiative (CCI) project to overcome this limitation
(Hollmann et al., 2013). Sobrino et al. (2016) reviewed dif-
ferent cloud-clearing methods including the AATSR opera-
tional cloud mask in the framework of Synergistic Use of
The Sentinel Missions For Estimating And Monitoring Land
Surface Temperature (SEN4LST) project. They highlighted
the potential uncertainty in different versions of this prod-
uct, which result in these errors being propagated in subse-
quent data products. For example, the AATSR operational
cloud mask falsely detects cloud in ∼ 16 % of the observa-
tions. This is attributed to the flagging of land features (such
as rivers) incorrectly as cloud (see Sobrino et al., 2013).

To avoid the uncertainty arising from the similarity of
spectral characteristics of snow, ice and clouds, we decided
to develop an algorithm based on a different strategy, namely
the use of time series measurements. The use of abrupt
changes of TOA reflectance in time with the aim of cloud
identification has been reported previously (Gómez-Chova
et al., 2017; Lyapustin et al., 2008). An early example of
this idea was proposed for low to midlatitudes by Rossow
and Garder (1993) in the International Satellite Cloud Clima-
tology Project (ISCCP). This method later evolved as a part
of the MultiAngle Implementation of Atmospheric Correc-
tion (MAIAC) algorithm (Lyapusitn et al., 2008). MAIAC is
mainly designed for use with observations over land (low to
middle latitudes), where the aim is to simultaneously retrieve
aerosol and surface properties. However, it has also been uti-
lized by another study to identify snow grain size over Green-
land (Lyapustin et al., 2009). Although further optimization
for the Arctic region is required and reported, a better perfor-
mance in comparison to Moderate Resolution Imaging Spec-
troradiometer (MODIS) cloud mask is reported by Lyapustin
et al. (2009).

The central assumption used in these algorithms for cloud
identification is that clear-sky reflectance is different to that
of clouds, which exhibit, in comparison, high variation as
a function of time (Lyapustin et al., 2008; Gómez-Chova et
al., 2017). Knowledge of cloud-free scenes within a given
time period is achieved from knowledge of the variability of
the measured TOA reflectance. Covariance analysis is used
to estimate the spatial coherence. This has a long history
in remote-sensing studies using time series measurements
(Leese et al., 1970; Lyapustin et al., 2008). The covariance
computation assumes changes in the textural patterns of the
observed scene, which originate from natural and man-made
features such as topography, lakes or urban areas (Lyapustin
et al., 2008). The use of the covariance analysis, which ac-
counts for geometrical structures, minimizes issues originat-
ing from illumination variation and results in the same al-
gorithm being applicable over both dark and bright surfaces

Atmos. Meas. Tech., 12, 1059–1076, 2019 www.atmos-meas-tech.net/12/1059/2019/



S. Jafariserajehlou et al.: A cloud identification algorithm over the Arctic 1061

(Lyapustin et al., 2008). For these reasons we decided to use
the Pearson correlation coefficient (PCC) as a function of co-
variance value for cloud detection over the Arctic. However,
Lyapustin et al. (2008) reported that, in spite of a relatively
good performance, the covariance itself is not alone adequate
for cloud identification in the case of homogeneous surfaces
or thin clouds. Therefore, we decided to use a combination
of a PCC analysis and the reflectance of solar radiation at
3.7 µm. The latter utilizes the contrast between cloud and the
underlying surface, making it possible to detect cloud-free
snow and ice.

Another argument in favour of the use of time series anal-
ysis is the availability of multiple images by the AATSR
and Sea and Land Surface Temperature Radiometer (SLSTR)
sensor over the Arctic. For AATSR the revisit time is 3–
4 days over midlatitudes (Kolmonen et al., 2016) but more
frequent at higher latitudes, which decreases to 2 days over
the Arctic (Soliman et al., 2012; Mei et al., 2013). In addition
to multiple imagery over the Arctic, the shorter time interval
between satellite overpasses over the same scene provides
images with less variability in the observed cloud-free areas
which the algorithm looks for. For the two SLSTR, the revisit
time is 0.9 days at the equator (Coppo et al., 2010) and this
time becomes even shorter at higher latitudes due to orbital
convergence.

The AATSR–SLSTR cloud identification algorithm (AS-
CIA) has been developed as a part of research activities to
meet the scientific objectives of Collaborative Research Cen-
ters, CRC/Transregio 172 “ArctiC Amplification: Climate
Relevant Atmospheric and SurfaCe Processes, and Feed-
back Mechanisms (AC)3 project (Wendisch et al., 2017). The
project aims to identify, investigate and evaluate parameters
and feedback mechanisms which contribute to Arctic ampli-
fication (Wendisch et al., 2017). Consequently, a long-term
data record of AOT and cloud is required. ASCIA will be
used to identify cloud-free scenes for AOT retrieval. It will
also be applied to the observations acquired by SLSTR on
board Sentinel-3A and Sentinel-3B launched in 2016 and
2018 respectively, which provide continuity of the AATSR
observations.

A full description of this new cloud identification and its
application to AATSR data is presented in the following sec-
tions of this paper. First, a brief data description is presented
in Sect. 2. The theory and methodology used in our new AS-
CIA are discussed in detail in Sects. 3 and 4. We evaluated
the performance of ASCIA by comparison of the cloud iden-
tification with (i) the ESA standard cloud product for AATSR
level 2 nadir cloud flag, (ii) the data obtained by applying
ISTO to AATSR data, (iii) the MODIS cloud mask, (iv) the
surface synoptic observations (SYNOP) and (vi) the AErosol
RObotic NETwork (AERONET). The results of the compar-
isons with these five different sources of cloud data are re-
ported in Sect. 5. A discussion and set of conclusions, drawn
from the study, are presented in Sect. 6.

Figure 1. (a) The false-colour RGB image of AATSR (using 0.67,
0.87 and 0.55 µm channels) over Svalbard, 10 May 2006, (b) 1.6 µm
reflectance, (c) 3.7 µm reflectance, (d) 11 µm brightness tempera-
ture.

2 Instruments and data

2.1 AATSR data

The AATSR sensor flown on board polar-orbiting Envisat
was primarily designed for measuring sea-surface tempera-
ture (SST) with accuracy higher than 0.3 K. As the succes-
sor of ATSR-1 and ATSR-2 on European Remote Sensing-1,
ERS-1 and ERS-2, AATSR delivered data from March 2002
until Envisat failed in 2012 (http://envisat.esa.int/handbooks/
aatsr/CNTR.html, last access: April 2018). The unique de-
sign of spectral coverage of AATSR enabled this sensor to
measure reflected and emitted radiances in the VIS (0.55,
0.66 µm), NIR (0.87, 1.6 µm) and three TIR channels (3.7,
10.85, 12.00 µm) with spatial resolution of 1×1 km2 at nadir
view and swath width of 512 km. In Fig. 1, one example of
the AATSR image over Svalbard is shown. It comprises three
different wavelengths to highlight the different information,
which is retrieved from the wide spectral coverage of this in-
strument. For example, in the upper-right panel of Fig. 1, the
large change in reflectance over snow and ice created a no-
table contrast between the cloud and the underlying surface
at this wavelength compared to that found from the VIS chan-
nels used in the R(0.66 µm) G(0.87 µm) B(0.55 µm) image. A
similar significant difference between snow/ice and cloud is
observed in the reflectance at 3.7 µm, shown in the lower-left
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panel in Fig. 1. However, at the longer wavelength of 11 µm,
thin-cloud patterns appear in the south-western scenes close
to and above Svalbard, which have small signatures in the
shorter wavelength. Combining the information from the dif-
ferent channels in an appropriate way enables the presence of
cloud in the ground scenes to be accurately identified.

The conical imaging geometry of AATSR yields the dual-
viewing capability of this sensor. Each scene is imaged twice.
The first measurement of the ground scenes is in the for-
ward direction at a viewing angle of 55◦. The second oc-
curs 150 s later at a near-nadir viewing angle. This capa-
bility is a design feature of AATSR that delivers an opti-
mal and accurate atmospheric correction and thereby inverts
an accurate surface reflectance. The two views theoretically
yield independent information about the atmosphere and
the surface to be retrieved (http://envisat.esa.int/handbooks/
aatsr/CNTR.html). The dual-view approach intrinsically pro-
vides more information than the single view for the study
of surfaces with complex reflectance characteristics, such as
snow and ice (Istomina, 2012). The ASCIA has been applied
to AATSR measurements to identify cloud and cloud-free
ground scenes.

2.2 SLSTR data

SLSTR on board Sentinel-3A was launched on 16 February
in 2016 as the successor to AATSR to provide the continuity
of long-term SST measurements. The Sentinel-3B satellite,
which contains an identical payload, was also launched by
a Rockot/Breeze-KM launch vehicle from the Plesetsk Cos-
modrome in northern Russia, on 25 April 2018. The design
of the SLSTR instrument has some significant improvements
with respect to ATSR (Coppo et al., 2010). For example, the
swath widths of single view and dual view were increased
from 500 to 1420 and 750 km respectively. This yields global
revisit times of 1.9 days at the equator with two satellites and
0.9 day with one satellite. There are measurements of two
additional channels in the SWIR, at the wavelengths of 1.37
and 2.25 µm, which are used to provide more accurate cloud,
cirrus and aerosol information and used to correct for atmo-
spheric radiative transfer effects in the determination of sur-
face reflectance (Coppo et al., 2010). The Fig. 2 upper right
panel shows the use of the new 1.37 µm measurements to de-
tect thin cirrus clouds, which are only weakly identified in
reflectance at 3.7 µm, shown in Fig. 2. The current design of
ASCIA does not yet include 1.37 µm measurements. This is
because the radiance and TOA reflectance at this wavelength
are not measured by AATSR. In addition, SLSTR data at
this wavelength currently have unresolved calibration issues.
Nevertheless, the use of the measurements at this wavelength
in thin-cirrus detection should improve the performance of
ASCIA in the future. SLSTR also has a higher spatial reso-
lution of 0.5× 0.5 km2 in the VIS and SWIR measurements
and two channels dedicated to fire detection (Coppo et al.,
2010). The use of the observations from SLSTR and AATSR

Figure 2. (a) The RGB false-colour image (using 0.67, 0.87
and 0.55 µm channels) of SLSTR over Svalbard, 18 April 2017,
(b) 1.37 µm reflectance, (c) 1.6 µm reflectance, (d) 3.7 µm re-
flectance.

enables a long-term time series of clouds and aerosol param-
eters to be derived, including AOT over the Arctic. However,
there is a ∼ 4-year gap between the failure of AATSR and
the launch of SLSTR. To fill this gap, we will also apply
ASCIA to the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor carried by National Oceanic and Atmo-
spheric Administration (NOAA).

2.3 Data used in the cloud identification comparison
studies

2.3.1 SYNOP

The SYNOP have been provided by the World Meteoro-
logical Organization (WMO) for the purpose of mapping
weather information around the world. However, the avail-
ability of the data is limited in the Arctic due to the coverage
of SYNOP stations in this region. For example, there is al-
most no observation in the central parts of the Arctic Circle
as is shown in Fig. 3. The SYNOP measurements, which are
made by an observer or an automated device are available in
a standardized layout of numerical code which is called FM-
12 by WMO (1995). The SYNOP reports include a variety
of meteorological parameters such as temperature, baromet-
ric pressure, visibility, etc. as well as cloud amount, which
are observed at synoptic hours simultaneously throughout the
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Figure 3. SYNOP network coverage over the Arctic, the dark-blue
points indicate the location of SYNOP stations.

globe. We used SYNOP cloud fraction, which has a temporal
resolution of 1–3 h, to evaluate the performance of our newly
developed ASCIA over the Arctic region.

The use of SYNOP measurements to validate a cloud iden-
tification algorithm, or for that matter the cloud predicted by
a climate model, the fact that the SYNOP cloud fraction is
reported using the okta scale, has to be appropriately taken
into account. Converting discrete okta values, which range
from 0 (completely clear sky) to 8 (completely obscured by
clouds), to continuous percentages has been done in different
ways by climatologists. A common assumption is that 1 okta
equals 12.5 % of cloud coverage (Boers et al., 2010; Kotarba,
2009). For use in this study it was necessary to estimate the
error or uncertainty in the okta in measurements. It is as-
sumed that the man-made nature of cloudiness okta estima-
tion has errors of ±1 okta and even larger values of ±2 okta
for the non-0 or 8 okta situations (Boers et al., 2010; Werk-
meister et al., 2015). Boers et al. (2010) suggested defining a
larger range of 18.75 % for 1 okta instead of commonly used
value of 12.5 %. We used this approach and defined percent-
age of cloud values for each okta, which are given in Table 1.
More details about the validation procedure are provided in
Sect. 5.2.

2.3.2 AERONET

AERONET is a network of approximately 700 ground-
based sun photometers established by National Aeronau-
tics and Space Administration (NASA) and PHOtométrie
pour le Traitement Opérationnel de Normalisation Satelli-
taire (PHOTONS). This globally distributed network aims
to provide long-term and continuous measurements of AOT,
inversion products and perceptible water in diverse aerosol
regimes (Holben et al., 1998). The high temporal resolution
of 15 min for these data and expected low accuracy of∼ 0.01
to 0.021 (Eck et al., 1999), as well as readily accessible pub-

Table 1. Calculation of cloudiness in percentage for corresponding
okta values.

Percentage of cloud Okta

0 0
0<%< 18.75 1
18.75≤%< 31.25 2
31.25≤%< 43.75 3
43.75≤%< 56.25 4
56.25≤%< 68.75 5
68.75≤%< 81.25 6
81.25≤%< 100 7
100 8

lic domain database, provide a suitable data set for aerosol
research and characterization.

AERONET data are categorized and available at three lev-
els: level 1.0 (unscreened), level 1.5 (cloud screened and
quality controlled) and level 2.0 (quality assured). The data
used in this work are selected from level 1.5 to validate cloud
identification results from newly developed ASCIA. More
details on the validation procedure are discussed in Sect. 5.2.

3 Theoretical background

3.1 Pearson correlation coefficient (PCC)

The PCC was proposed by Pearson (1896) and is used in this
study as an indicator of the correlation between sequential
AATSR measurements. The PCC is also known as the Pear-
son product-moment correlation coefficient (PPMCC). It is a
standard dimensionless statistical parameter commonly used
to measure the strength and direction of the linear associa-
tion between a pair of variables (Benesty et al., 2009). This
parameter has extensively been used in many studies which
pursue pattern analysis and recognition.

Our PCC analysis separates the surface reflectance at a
given viewing angle, which is stable over short time periods,
from the cloud reflectance, which is highly variable over a
short time period. To describe the computational procedure
developed, we assume x, y to be two random variables. Then
the PCC can be written as a function of the covariance of x
and y, which is normalized by square root of their variances
(Rodgers and Nicewander, 1988; Benesty et al., 2009):

PCC=
COV(x,y)
σxσy

, (1)

where COV(x,y) is the covariance of variables and σ is
the root-mean-square variation of each random variable
(Rodgers and Nicewander, 1988; Benesty et al., 2009):

COV(x,y)=
1
N2

N∑
i=1

N∑
i=1

(xi − x)(yi − y)
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and

σ 2
x =

1
N2

N∑
i=1

(xi − x)
2 (2)

PCC=

N∑
i=1
(xi − x)(yi − y)(

N∑
i=1
(xi − x)

2
N∑
i=1
(yi − y)

2
) 1

2
, (3)

where x and y are the mean values of x and y variables
respectively. The correlation coefficient parameter has val-
ues between −1 and +1 (Rodgers and Nicewander, 1988).
The PCC values were prepared in this study. The association
between the two variables is stronger if the absolute value
is closer to 1, whereas if two variables are independent or
in another word “uncorrelated” PCC value will become 0
(Benesty et al., 2009). As a consequence of the above, the
PCC values computed between several data pairs for ground
scenes of the same area at different times provide an indica-
tion of whether the scene is cloud covered or free of clouds.

For this aim, the use of all seven channels (0.55, 0.66,
0.87, 1.6, 3.7, 11 and 12 µm) was investigated. The visible
channels (0.55, 0.66 µm) on their own are not optimal for
separating cloud-free scenes from cloudy scenes, in particu-
lar for thin clouds. The SWIR and TIR, such as 1.6 µm and
beyond, where liquid water and ice absorb provide useful in-
formation. There is a large reduction in the reflectance be-
tween clear snow/ice and clouds between 0.87 and 1.6 µm
(Kokhanovsky, 2006). Our routine takes advantage of this
contrast through the PCC calculation. One of the major con-
tributors to error in aerosol retrievals is misclassification
of heavy aerosol loads as cloud. Using 1.6 µm reflectance,
which is less affected by aerosols than visible wavelengths,
in part addresses this issue (Lyapustin et al., 2008).

A second question in PCC analysis (after wavelength se-
lection) is the definition of the optimal size of the block of
the ground scene for PCC calculation. In an early version
of the current algorithm, we set up 10× 10 km2 as the block
size. Since aerosol retrieval would be carry out with the same
spatial resolution. However, our investigations and previous
studies show that 10×10 km2 is not sufficient to capture sur-
face patterns. Thus, blocks of a 25× 25 km2 area were used
as proposed in previous studies (Lyapustin et al., 2008). The
implementation of the PCC analysis as used in this study is
discussed in more detail in Sect. 4.

3.2 Reflectance of 3.7 µm thermal infrared channel

The reflectance part of TIR channels at 3.7 and 3.9 µm have
been used in different studies to determine cloud properties
such as cloud effective radius and thermodynamic phase of
the cloud or to discriminate cloud and snow-/ice-covered sur-
faces (Meirink and van Zadelhoff, 2016; Klüser et al., 2015;
Musial et al., 2014; Khlopenkov and Trishchenko, 2007;

Pavolonis et al., 2005; Rosenfeld et al., 2004; Spangenberg
et al., 2001; Allen et al., 1990). The reason for the wide ap-
plication of this channel in cloud identification methods is
the difference in single-scattering albedo (SSA) at this band
compared to shorter VIS and INR wavelengths, which in
turn results from the significant sensitivity of SSA to ther-
modynamic phase and particle size of clouds (Platnick and
Fontenla, 2008). For example, the scattering of liquid clouds,
having small droplets, is relatively larger than absorption and
the ratio of NIR/VIS reflectance approaches 1. But in the
case of large liquid droplets or ice particles, the absorption in-
creases and this ratio is closer to zero (Platnick and Fontenla,
2008). In addition, cloud-free snow reflects at a relatively
weak level in comparison to clouds at the 3.7 µm channel
(Derrien et al., 1993; Platnick and Fontenla, 2008). There-
fore, the contrast due to different physical properties and ra-
diance of snow/ice and cloud at 3.7 µm makes the use of this
channel advantageous for the identification of clouds. Dur-
ing the daytime, the measured brightness temperature (BT)
at 3.7 µm is determined from the upwelling radiation, which
comprises both reflected or scattered solar radiation and the
thermal emission from the surface (Musial et al., 2014). To
use TOA reflectance at 3.7 µm, procedures are needed to
account for and subtract the emission portion of measured
BT at 3.7 µm wavelength (Allen et al., 1990). To achieve
this goal, independent information about the surface TIR is
needed. This is estimated from observations at 11 µm, where
absorption by water vapour and other trace gases is small;
most objects in regions outside of the tropics can be treated
as blackbodies and the measured BT is considered to be in
good agreement with real surface temperature (Istomina et
al., 2010; Musial et al., 2014).

To do this, we use the method described in Meirink and
van Zadelhoff (2016) and Musial et al. (2014), where the re-
flectance of 3.7 µm can be written as

R3.7 =
L3.7−B3.7(T11)

µ0F3.7,0−B3.7(T11)
, (4)

where R3.7 is the reflectance, i.e. the ratio of scattered ra-
diance to incident solar radiance; L is measured radiance at
3.7 µm, B3.7(T11) is the Planck function radiance (the contri-
bution from thermal emission at 3.7 µm) T11 measurements
at 11 µm, F3.7,0 is the solar constant at 3.7 µm and µ0 is the
cosine of solar zenith angle.

Theoretical reflectance values in the 3.7 µm band, com-
puted by Allen et al. (1990), have been compared to satel-
lite measurements at the same channel from Advanced Very
High Resolution Radiometer (AVHRR). The results of this
work are summarized in Table 2. According to this study,
the reflectance of liquid clouds primarily depends on droplet
size and solar zenith angle, whereas for ice clouds, ice parti-
cle shape and size distribution are of great importance, along
with cloud optical thickness (COT) and sun-satellite geome-
try. The observed reflectance is reported in a range of 0.08 to
0.36 for liquid clouds and 0.02 to 0.27 for ice clouds (Allen
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Table 2. Simulated and observed reflectance values at 3.7 µm (Allen
et al., 1990).

Surface/cloud Simulation Observation
type of 3.7 µm of 3.7 µm

reflectance reflectance

Ice cloud 0.01–0.3 0.02–0.27
Liquid cloud 0.1–0.45 0.08–0.36
Clear land ∼ 0.15 0.03–0.1
Snow cover 0.005–0.025 0.02–0.04

et al., 1990). Arking and Childs (1985) calculated 3.7 µm re-
flectance for ice clouds, which varies between 0.01 to 0.30
for the COT of 0.1 to 100 and ice crystal effective radius
of 2 to 32 µm, solar zenith angle of 60◦. Spangenberg et
al. (2001) reported a typical value of 0.04 to 0.4 for clouds.
In the case of a snow-covered surface, 3.7 µm reflectance is
dependent on many factors including snow grain size, solar
zenith angle, liquid water content, snow impurities, etc. Con-
sidering the snow grain size of 50 to 200 µm, with a solar
zenith angle of 40 to 80◦, the modelled values for snow re-
flectance varies between 0.005 and 0.025 at 3.7 µm (Allen
et al., 1990). However, a range of 0.02 to 0.04 is observed
from the satellite measurements over the same wavelength
for snow cover. This difference between model calculations
and measurements is explained by snow impurities (Allen et
al., 1990). For land areas, the 3.7 µm reflectance is impacted
by soil type, vegetation type, coverage and moisture content.
An average value of 0.15 is derived for clear sky land scenes
at 3.7 µm (Allen et al., 1990). In order to use the remarkable
contrast between snow cover and clouds in the 3.7 µm chan-
nel, two main issues have to be taken into account: (1) the in-
terference between snow and ice-cloud values; (2) the inter-
ference between cloud and land reflectance. The latter is eas-
ily solved by using information from visible channels with
3.7 µm reflectance. This is because land scenes in polar re-
gion are dark in comparison to cloud and snow. The first is-
sue, discriminating ice clouds from snow, is a challenging
task. To detect ice clouds, we combined 3.7 µm reflectance
with PCC analysis. A full description of this new method is
given in Sect. 4.

4 Methodology

The ASCIA implementation is initiated by preparing a time
series of data. A time span of 1 month for the ground scene
was selected. Hagolle et al. (2015) indicated that in Sentinel-
2 measurements with revisit time of 5 days, most of the given
scenes would be observed cloud-free at least once a month.
Consequently, we also assume that every scene of AATSR
measurements, which have a higher revisit time of 3 days,
will be cloud-free at least once a month.

Depending on the latitude and the time of year, the num-
ber of downloaded data varies from 10 to 50 or more over
the same scene. AATSR provides more data over higher lat-
itudes, which increase in spring and summer due to longer
polar days and solar illumination. The AATSR L1b data are
already provided as gridded and calibrated 1×1 km2 scenes.
These include geolocation information interpolated from
the tie-point scenes, which are equally distributed across a
single AATSR image (http://envisat.esa.int/handbooks/aatsr/
CNTR.html). Consequently, there is no necessity to regrid
them for the georeferencing step. This is considered an ad-
vantage, because it preserves the original reflectance value of
each scene for the following steps. However, the time series
data are acquired by the satellite from different viewing ge-
ometries. To compute PCC values over the same areas from
different days, ASCIA selects the closest similar scenes us-
ing geolocation information provided in the data. The closest
distance is often found to be within 0.006◦ and increases to
0.01◦ in the worst case and thus is considered to be of neg-
ligible significance. After using this procedure to select the
observations, ASCIA comprises two main parts that identify
the presence of cloud: (i) a PCC analysis at 1.6 µm and (ii) the
use of thresholds for reflectance of 3.7 µm channel.

In the first step, a PCC analysis for a block of ground
scenes (25×25 km2) is used to identify cloud and cloud-free
blocks, which are assumed to have low and high PCC val-
ues respectively. The output of this step is a binary flag at
the block level. This serves as input for the second step to
produce a binary ground flag at ground scene level (1× 1
or 0.5× 0.5 km2 depending on spatial resolution of instru-
ment) cloud identification, by using the knowledge of the re-
flectance of solar radiation in the 3.7 µm channel. The com-
bination of these two constraints is necessary because neither
PCC analysis nor reflectance part of 3.7 µm channel are ade-
quate on their own for accurate cloud detection. A high PCC
value cannot guarantee the clearness of the whole block of
scenes (Lyapustin et al., 2008) because some ground scenes
may still contain clouds, which are not enough in number to
significantly decrease the PCC value. This case occurs fre-
quently over small or semi-transparent clouds, where the tex-
tural pattern of surface is still observable through the clouds
(Lyapustin et al., 2008). Small PCC values may be caused
by rapid surface change, high aerosol load or a lack of rec-
ognizable spatial patterns, which is often the case over ho-
mogeneous snow-covered surfaces (Lyapustin et al., 2008).
A PCC value of 0.63 is suggested by Lyapustin et al. (2008)
to separate cloud-free blocks over midlatitudes. Considering
fewer surface patterns in a large area of the Arctic compared
to lower latitudes, and our PCC analysis over both middle
and high latitudes, we defined a lower threshold for PCC of
0.4 over the Arctic region and found that a PCC of 0.6 is
appropriate for midlatitudes based on a number of statistical
analyses.

After computing the first binary cloud flag at block level
using the last measurement and one previous image, AS-
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Figure 4. The schematic flow chart of ASCIA.

CIA keeps the result in memory and repeats the procedure
with the second-to-last data. This procedure is iterated un-
til the last measurement of the data series is involved. The
final binary blocks are imported in the second step to iden-
tify cloudy scenes based on thresholds defined differently
for blocks with low and high PCC value. We note that, the
snow/ice reflectance in the 3.7 µm channel (∼ 0.005–0.025)
has interference with those of ice clouds (0.01–0.3) at this
wavelength. To avoid the uncertainty arising from this prob-
lem, we defined the PCC analysis as a decision point of AS-
CIA requiring further optimized analysis:

i. For the high PCC ≥ 0.4, the whole block is considered
to be cloud-free and then ASCIA starts looking for re-
maining small cloud scenes within a block, i.e. scenes
with R3.7 larger than the maximum value observed over
snow at 3.7 µm: R3.7 > 0.04 (Allen et al., 1990).

ii. For PCC < 0.4, the block is assumed to be cloudy; AS-
CIA removes all scenes within the block and only keeps

scenes which satisfy the R3.7 < 0.015 test. This thresh-
old is equal to or lower than the lowest observation of
ice cloud reflectance at 3.7 µm (Allen et al., 1990).

In our method, the PCC analysis constrains the procedure
and the strict decision is only made within low PCC blocks.
The loss of some clear scenes in low PCC blocks is an un-
avoidable side effect of using these strict criteria, in particu-
lar over land scenes, which have low PCC and high 3.7 µm
reflectance values. However, ASCIA detects the presence of
thin-cirrus cases with a relatively high confidence level. A
schematic flow chart of ASCIA is shown in Fig. 4, with the
use of the two main constraints being highlighted. In addition
to picking out clear scenes, a simple land classification pro-
cedure is undertaken in this step of ASCIA. Snow/ice scenes
are identified with low 3.7 µm reflection, whereas land scenes
with high reflection are classified with the aid of the darkness
test over visible channels. The corresponding thresholds for
land classification scheme are described in the Table 3.
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Table 3. Land classification criteria in the cloud-free scene.

Surface type Test Description

Water R0.87 < 11% & NDSI≥ 0.4 MODIS snow and ice
mapping ATBD

Sea ice R0.87 > 11% & NDSI≥ 0.4 (Hall et al., 2001)
Land R3.7 > 0.04 & R0.66 < 0.2|| NDSI< 0.4 Allen et al. (1990)
Snow R3.7 ≤ 0.04 Allen et al. (1990)

Figure 5. Examples of the results of ASCIA on AATSR observations on the scenes over Greenland (a–c) between 75◦ N, 48◦W; 75◦ N,
75◦W; 81◦ N, 48◦W and 81◦ N, 75◦W, taken on 18 May 2008 and Svalbard (d–f), within 75◦ N, 4◦ E; 75◦ N, 32◦ E; 81◦ N, 4◦ E and
81◦ N, 32◦ E on 1 March 2008. (a, d) RGB false-colour images (using 0.67, 0.87 and 0.55 µm channels), (b, e) cloud detection at block level
(25× 25 km2), (c, f) cloud detection at scene level (1× 1 km2).

Although characterized as land, a scene may include soil,
different types of vegetation cover or even melting snow. The
latter mixes with soil and becomes dark enough to be filtered
out from the snow class. Sea ice is distinguished from wa-
ter on the basis of its greater brightness; one scene might be
white enough to be considered as ice. However, melting or
broken ice, as well as new ice, would not be labelled as ice.
Snow over sea ice is not distinguished from pure sea ice and
both of them are labelled as sea ice. This also means that ice
over land is also marked as snow as well as pure snow.

A representative example of the block level (25× 25 km2)
and scene level (1× 1 km2) results of ASCIA applied to
AATSR observations is shown in Fig. 5. This example was
selected to show the performance of ASCIA in the presence
of different surface conditions: (1) one scene is over a com-
bination of fairly homogeneous snow cover, land, ocean, sea
ice and cloud scene in the north-west of Greenland, taken
on 18 May 2008; (2) another example is over a surface
with highly variable topography over Svalbard with rela-
tively higher solar zenith angle (> 80◦) on 1 March 2008.
As we discussed earlier, the ambiguity of the PCC analysis
over homogeneous surfaces on the right and left sides of the
AATSR scene in the middle panel of Fig. 5 is compensated

in the right panel by using additional information from the
3.7 µm channel.

5 Results and validation

5.1 The comparison of ASCIA products with products
from other algorithms using space-borne
observation

In this study, we applied our recently developed ASCIA to
identify cloud in the scenes using AATSR L1b (TOA re-
flectance) and SLSTR L1b gridded data. The input file to
the process chain is one scene of the AATSR L1b product.
The output comprises five classes of surface types, including
snow/ice, sea ice, water, cloud and land. The procedure of
surface classification is explained in Sect. 4. The location and
time of selected case studies are used to show that the identi-
fication of cloud by our new ASCIA is adequate. The AATSR
data are selected from several years starting from 2006, dur-
ing strong Arctic haze episode, which originated predomi-
nantly from agricultural fires burning in eastern Europe. The
event has been reported previously (Law and Stohl, 2007). A
second episode in 2008 is also considered, for which valida-
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Figure 6. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over northern Greenland, 24 May 2008;
(b) nadir cloud flag from the AATSR L2 product; (c) cloud detection based on the spectral shape of clear snow; (d) cloud detection of
ASCIA and (e) the difference between ISTO and ASCIA.

Figure 7. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Svalbard, 10 May 2006; (b) nadir cloud
flag from the AATSR L2 product, (c) cloud detection based on the spectral shape of clear snow, (d) cloud detection of ASCIA and (e) the
difference between ISTO and ASCIA.

Figure 8. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Svalbard, 18 March 2008; (b) nadir cloud
flag from the AATSR L2 product; (c) cloud detection based on the spectral shape of clear snow; (d) cloud detection of ASCIA and (e) the
difference between ISTO and ASCIA.

tion data are available from SYNOP stations. Three months
of data from March, May and July have been acquired over
Greenland and Svalbard to assess the performance of ASCIA
in a wide range of solar zenith angles (60–85◦), surface and
atmospheric conditions observed at high latitudes. In order to
take various surface types in the Arctic into account, we se-
lected case studies including highly variable topography and
fairly homogeneous snow cover, coast lines, land and ocean
along snow and ice-covered surface. The designed criteria
for ASCIA are optimized for various regions over the Arctic

observed under different solar illumination conditions. Polar
night and transition seasons in low light conditions are ex-
cluded from our retrievals. The results obtained are compared
with (i) the AATSR L2 nadir cloud flag; (ii) those results ob-
tained with ISTO (Istomina et al., 2010) and (iii) MODIS.

As we discussed in Sect. 1, misclassification of thin cir-
rus cloud with clear snow is reported to be an unresolved
problem of ISTO approach. Two representative scenarios of
this problem are illustrated in Figs. 6 and 7 over Greenland
and Svalbard respectively, in which thin cloud is detected as
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Figure 9. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Svalbard, 6 July 2008; (b) nadir cloud
flag from the AATSR L2 product; (c) cloud detection based on the spectral shape of clear snow; (d) cloud detection of ASCIA and (e) the
difference between ISTO and ASCIA.

clear snow by the ISTO method, whereas ASCIA confirmed
the presence of cloud. Over a homogeneous surface such as
Greenland, the second step of ASCIA is decisive. The lack
of structural patterns on the surface leads to low PCC val-
ues in the first step and consequently an overestimation of
cloudy scenes. However, the reflection part of 3.7 µm could
help to label and bring back clear homogeneous surface as
cloud-free snow in second step. The right panel in Figs. 6
and 7 shows the difference between the result of ASCIA and
ISTO. In this panel, the dark-blue scenes show clouds, which
are not detected by ISTO but are by ASCIA. The reddish
scenes show cloud-free cases, which ISTO fails to detect, but
are correctly labelled by ASCIA as cloud-free. In addition to
the edge of clouds, which are difficult to detect over snow
and ice, there are a significant number of undetected cloud
scenes in ISTO results, which are identified successfully by
ASCIA. However, for the rest of these two scenes, the two
algorithms show good agreement.

The ESA cloud product from L2 data overestimates cloud,
which leads to a loss of clear snow and ice scenes. The ten-
dency of this product to flag clear scenes as cloud is also vis-
ible in Figs. 6 and 7. The results in Fig. 8 show undetected
clouds as another problem of the AATSR level 2 cloud prod-
uct, which happens frequently at high solar zenith angles. To
have a better understanding of this misclassification, we val-
idated the AATSR L2 nadir cloud flag against SYNOP mea-
surements and the results are described in Sect. 5.2.

Poor performances for cases over the Arctic with high
solar zenith are observed in all of the results using ISTO
method. Figure 8 is an example for Svalbard in March 2008.
Over a highly variable surface type, such as Svalbard, the re-
flection at 3.7 µm can approach high values such as 0.035,
which is similar to that from cloud reflection. In this case,
PCC analysis is of great importance for keeping cloud-free
snow scenes from the strict criteria of the second step, in par-
ticular in cases with higher solar zenith angles. ASCIA in a
high PCC block covers a wide range of solar zenith angles
(40–80◦) and results in the reflectance of snow/ice being de-
fined between 0.02 and 0.04 in the 3.7 µm channel. In the

right panel of Fig. 8, a relatively large number of red scenes
are observed, which are falsely detected as cloud by the ISTO
method.

Figure 10 shows one example of a haze event over Sval-
bard on 3 May 2006. Both the ESA and ISTO cloud prod-
ucts showed good results for this case with the exception of
thin-cloud scenes, which are falsely labelled as clear snow by
ISTO. The appropriate design and application of PCC anal-
ysis over 1.6 µm enables cloud to be discriminated from a
heavy aerosol load. However, aerosol loads over cloud could
not be separated from cloudy scenes.

The only season in which all three approaches detected
clouds with similar success was in July, as shown in Fig. 9.
Although ASCIA shows an overall better performance, in
particular for thin clouds, the required computational time
for cloud detection and surface classification is higher than
for the two other methods.

We also compared our results with those from the MODIS
cloud identification algorithm, used for masking cloudy
scenes. As an example, Fig. 11 shows the AATSR scene over
Svalbard on 14 July 2008, where a large part of the sea ice is
covered with thin clouds, which have a small signature in the
visible channels. The middle panel shows the MODIS cloud
mask for the same area. Although there is a small time dif-
ference of 15 min between MODIS and AATSR overpasses,
we see that scenes identified as cloudy by ASCIA correspond
well with those of MODIS.

Figure 12 shows another example over the north-west of
Greenland on 18 May 2008. The thin and broken clouds are
well detected over the snow cover by ASCIA, as well as the
clouds over the southern part of the scene, which is covered
with snow and ocean. As we can see from the comparison be-
tween ASCIA and MODIS cloud scene identification, cloudy
scenes in the northern part of scene are not captured by the
MODIS product, but the presence of clouds is seen in the
RGB image in the left panel. We observed other cases with
similar differences, especially for thin and broken clouds.
There are two potential sources of these differences: (1) time
differences, which are 10 min in this case, or (2) an inad-
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Figure 10. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Svalbard, 3 May 2006; (b) nadir cloud
flag from the AATSR L2 product; (c) cloud detection based on the spectral shape of clear snow; (d) cloud detection of ASCIA and (e) the
difference between ISTO and ASCIA.

Figure 11. (a) RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Svalbard, 14 July 2008, 16 h 40 min 45 s,
(b) MODIS cloud mask algorithm retrieved data: 1 is cloudy, 2 is probably cloudy, 3 is probably clear, 4 is clear (red rectangle shows the
coverage of AATSR) for 16 h 25 min, (c) the results for the cloud detection of ASCIA.

Figure 12. (a) RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of AATSR over Greenland, 18 May 2008, 23 h 13 min 38 s,
(b) MODIS cloud mask: 1 is cloudy, 2 is probably cloudy, 3 is probably clear, 4 is clear (red rectangle shows the coverage of AATSR) for
23 h 5 min, (c) cloud detection of ASCIA.

equate performance of the MODIS cloud mask over bright
surfaces covered by snow and ice.

Due to the loss of Envisat and thus AATSR data in 2012
and the need for long time series of consistent data, we tested
ASCIA on the AATSR successor SLSTR as well. Figure 13
shows some results over Svalbard on 18 April 2017. Due to
the smaller swath width of AATSR compared to SLSTR,
ASCIA is not applied to the full coverage of SLSTR and
the selected scene is cropped to have a similar coverage of
500×500 km2. In spite of some unresolved calibration issues
in this sensor, the higher spatial resolution in SLSTR clearly
helps to improve cloud identification in the first step, be-
cause the PCC analysis is more sensitive to smaller changes

in 0.5× 0.5 km2 scenes compared to 1× 1 km2. Moreover,
the shorter revisit time of the Sentinel-3 satellite provides
more acquired images over the same scene. This results in
a larger number of reference images compared to those from
Envisat. Overall these effects result in an expected improved
performance of ASCIA when applied to SLSTR data com-
pared to when it is applied to AATSR. The comparison of
MODIS and ASCIA results indicates that ASCIA detected
more cloudy scenes than the MODIS algorithm in agreement
with the above.
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Figure 13. (a) The RGB false-colour image (using 0.67, 0.87 and 0.55 µm channels) of SLSTR over Svalbard, 18 April 2017, 10 h 15 min
6 s, (b) MODIS cloud mask: 1 is cloudy, 2 is probably cloudy, 3 is probably clear, 4 is clear (red rectangle shows the coverage of AATSR)
for 11 h 30 min, (c) cloud detection of ASCIA.

5.2 The comparison to ground-based measurements:
SYNOP and AERONET

In this section, we present a quantitative validation of our
ASCIA results by making comparisons with simultaneous
ground-based SYNOP and AERONET measurements. The
ESA standard cloud product is also compared with these val-
idation data sets. The difference in spatial and temporal res-
olutions of the new cloud identification data sets and the data
sets used to validate this data set have to be taken into ac-
count. To define the optimal maximum temporal difference
between SYNOP and satellite data, other comparable vali-
dation activities used different temporal intervals like 10 min
(Werkmeister et al., 2015), 15 min (Musial et al., 2014), 1 h
(Dybbroe et al., 2005) and 4 h (Meerkötter et al., 2004). The
investigation and results in the previous publications indicate
that temporal differences in validation of satellite retrievals
against SYNOP depend on meteorological conditions. Al-
lowing only a small temporal difference between measure-
ment data sets (here, SYNOP and ASCIA) ensures an opti-
mal temporal overall but can introduce a significant sampling
error due to the small number of scenes for validation (Bo-
janowski et al., 2014). According to Bojanowski et al. (2014)
a temporal difference of 90 min between measurement data
sets (SYNOP measurements at a temporal resolution of 3 h
and satellite retrievals) minimizes the sampling error. How-
ever, a potentially longer temporal difference will introduce
an error which should be considered along other sources of
uncertainty (different viewing perspective, different spatial
footprint, etc.). In this study, the maximum allowed temporal
difference between the ASCIA retrievals and SYNOP mea-
surements is less than ±20 min in most cases and generally
does not exceed±45 min. To compare surface measurements
from the SYNOP hemispheric view with the cloud identifica-
tion at a spatial resolution of 1×1 km2, we calculated cloudi-
ness as the percentage of cloudy scenes within a window of
20× 20 km2 around each SYNOP station. This is a similar
distance to that used in previous studies to validate satellite-
based cloud identification SYNOP or similar surface mea-
surements (Kotarba, 2017; Werkmeister et al., 2015; Min-

Figure 14. Density plot of occurrences of the CFC by ASCIA as a
function of SYNOP.

Figure 15. Histogram of CFC differences (blue is ASCIA minus
SYNOP; red is ESA cloud product minus SYNOP).

nis et al., 2003). The cloud detection data product was then
compared to the 3 selected months (March, May and July)
of SYNOP observations. These result in 100 measurements
over Svalbard and Greenland.

In Fig. 14 we present the relation between the calculated
cloud fractional cover (CFC) from ASCIA and SYNOP mea-
surements and density plot of occurrences of the CFC by AS-
CIA as a function of SYNOP, following the idea of Werk-
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Figure 16. CFC in percent by ASCIA (red), SYNOP (blue) and ESA Cloud Product (green) for 100 scenarios in March, May and July 2008
over Svalbard and Greenland. Light-blue error bars show the range of percentage values for each okta from SYNOP measurements.

meister et al. (2015). The two data sets have a correlation
coefficient of R = 0.92. In 31 % of scenarios, ASCIA esti-
mates 1 okta more than SYNOP, while in 14 % of match-
ups SYNOP shows a higher CFC of 1 okta. Figure 14 also
reveals that most of the ±1 okta differences occur when ei-
ther SYNOP or ASCIA estimate 7 or 8 oktas, which could
be due to the definition of 8 oktas (100 % CFC) and conver-
sion of a continuous percentage to okta (Werkmeister et al.,
2015). For instance, CFC of 99.9 % is considered as 7 oktas
by using Table 1, but the CFC difference is only 0.1 % with
8 oktas. The underestimation of CFC by SYNOP is also indi-
cated in the histogram of the difference between ASCIA and
SYNOP in Fig. 15. This underestimation was confirmed by
previous studies as well (Kotarba, 2009; Werkmeister et al.,
2015). We also indicate the higher accuracy of ASCIA for
cloud detection compared to the ESA cloud product. The re-
sults of the validation are summarized in Table 4. The cloud
cover reported from SYNOP agrees in 96 % (within±2 okta)
and 83 % (within±1 okta) of the observations with the cloud
identification data from ASCIA. As discussed earlier, an er-
ror of ±1 to ±2 okta would be expected as the accepted
accuracy range from SYNOP cloud cover values due to the
man-made nature of its observation and viewing conditions
(Boers et al., 2010; Werkmeister et al., 2015). In compari-
son, the ESA cloud product agrees 68 % (within ±2 okta)
and 50 % (within ±1 okta) with SYNOP CFCs. The larger
differences between the SYNOP and ESA cloud products are
also indicated in Fig. 16, where the CFC values are shown as
percentages for ASCIA, ESA and SYNOP for the validation
scenarios. The blue error bars indicate the range of okta val-
ues for each SYNOP as explained in Table 1.

We also validated ASCIA cloud identification results
with AERONET level 1.5 measurements, which are cloud
screened. The procedure for this validation takes place in
two steps: (1) covering AERONET-observed AOT to a cloud
flag (AOT is provided in AERONET only in cloud-free con-
ditions) and(2) validation of ASCIA with AERONET cloud

Table 4. A summary of the comparison of ASCIA and ESA cloud
products with SYNOP measurements used to validate these prod-
ucts.

Criteria

Cloud data within ±2 oktas within ±1 okta
ASCIA vs. SYNOP 96 % agreement 83 % agreement

4 % disagreement 17 % disagreement
ESA vs. SYNOP 68 % agreement 50 % agreement

32 % disagreement 50 % disagreement

flag. In 86.1 % of 36 studied scenes over Svalbard, both AS-
CIA and AERONET confirm the presence of clouds.

6 Conclusions

A new cloud detection algorithm, called ASCIA, has been
developed for use at high altitudes above bright surfaces to
generate stand-alone products and for subsequent use in the
retrieval of AOT over the Arctic. ASCIA has been devel-
oped for use with the data from the European instrument
AATSR on the ESA Envisat (2002 to 2012) and SLSTR on
ESA Sentinel-3A or -3B. ASCIA initially employs a time
series analysis of PCC to identify cloud presence, the stabil-
ity and cloud-free conditions on the block scale of scenes
(25× 25 km2). It then uses the 3.7 µm solar reflectance to
discriminate cloud presence at the spatial resolution of the
scene, which is 1×1 or 0.5×0.5 km2 for AATSR and SLSTR
measurements respectively. The PCC parameter analysis of
a block of data is independent to a first approximation of
threshold settings, which often leads to misclassification of
cloud and snow due to the similarity of their spectral charac-
teristics and thus the thresholds. The brightness temperature
measurements from the 3.7 µm channel provide information
used to convert a block-level resolution (25× 25 km2) to a
scene-level resolution (1× 1 or 0.5× 0.5 km2) cloud identi-
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fication. ASCIA thereby exploits the contrast in reflectance
between snow/ice and cloud at 3.7 µm wavelength.

The results of applying the newly developed ASCIA
are compared and validated against five existing products
and methods over the Arctic: (1) SYNOP measurements,
(2) AERONET measurements, (3) one of the existing meth-
ods based on the spectral shape of clear snow, (4) AATSR
L2 nadir cloud flag, (5) MODIS cloud product. The valida-
tion resulted in an overall agreement of 96 % (within ±2 ok-
tas) and 83 % (within±1 okta) between SYNOP and ASCIA.
The comparison of the ASCIA and ISTO methods shows the
improved performance of ASCIA in extreme situations, such
as high solar zenith angle conditions.

The validation results indicate that the current ESA
AATSR L2 nadir cloud flag often falsely identifies clouds
over snow/ice, except during summer. The comparison be-
tween the ESA AATSR L2 cloud product and SYNOP mea-
surements resulted in an agreement of 68 % (within ±2 ok-
tas) and 50 % (within ±1 okta). The overall better perfor-
mance of ASCIA has also been demonstrated when it is
applied to the SLSTR data. Nevertheless, optimization is
needed for the detection of cloud over land (soil, vegetation,
etc.) for the PCC blocks with lower values. This is because
the strict performance of ASCIA in cloudy blocks results in
scenes of clear land (without snow cover) being identified as
cloud due to high reflectance of land scenes in the 3.7 µm
channel. We also note that sub-scene cloud detection has not
been studied with the current version of ASCIA. The use of
reflectance in the 1.37 µm channel will be tested in the future
to improve thin-cirrus detection in ASCIA. The objective of
this study was to assess and validate the current version of
ASCIA for daytime observations. An adaption of ASCIA is
planned to identify clouds at night.

Data availability. The AATSR, SLSTR, MODIS and AERONET
data are publicly available: AATSR: http://ats-merci-ds.eo.esa.int/
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https://aeronet.gsfc.nasa.gov (last access: June 2018); Due to the
strict data policy of DWD, the SYNOP data are not publicly
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(rainer.hollmann@dwd.de). The ASCIA data can be accessed
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