Supplement of Atmos. Meas. Tech., 12, 1123–1139, 2019 https://doi.org/10.5194/amt-12-1123-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. ## Supplement of ## An improved method for mobile characterisation of $\delta^{13}CH_4$ source signatures and its application in Germany Antje Hoheisel et al. Correspondence to: Antje Hoheisel (antje.hoheisel@iup.uni-heidelberg.de) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Figure S1. H_2O interference on $\delta^{13}CH_4$ and C_2H_6 . Different colours indicate different tests and in part different gas cylinders used. **Figure S2.** CH₄ interference on δ^{13} CH₄. The points show the 15 min average measurement of different gas mixtures prepared with natural air (N₂, O₂ and Ar) and dry compressed air of 10 ppm CH₄ (in N₂, O₂ and Ar). The same dilution test was done twice (blue and black points). Figure S3. CO_2 interference on $\delta^{13}CH_4$. The points show the 15 min average measurement of different gas mixtures prepared by a dilution test with dry compressed air of 10 ppm CH_4 (in N_2 , O_2 and Ar) and dry compressed air of 600 ppm CO_2 (in N_2 , O_2 and Ar). Figure S4. C_2H_6 interference on $\delta^{13}CH_4$. The points show the corrected and calibrated 15 min average of different gas mixtures prepared by three dilution test with dry compressed air of 5 ppm C_2H_6 (in N_2 , O_2 and Ar) and dry compressed air of 10 ppm CH_4 (in N_2 , O_2 and Ar, red) or atmospheric concentrations (black and blue). Figure S5. CH_4 and CO_2 interference on C_2H_6 . The points show the reported $10-15\,\text{min}$ average of different gas mixture. The blue and black points show four dilution test with natural air $(N_2, O_2 \text{ and Ar})$ and dry compressed air of $10\,\text{ppm}$ CH_4 (in N_2 , O_2 and Ar, red) or $600\,\text{ppm}$ CO_2 (in N_2 , O_2 and Ar). The red, yellow and green measurements show injection tests at which different amounts of pure CH_4 or CO_2 were injected into three liter sample bags filled with natural air $(N_2, O_2 \text{ and Ar})$ and different amounts of C_2H_6 . Figure S6. Linearity test of C_2H_6 . The points (black and red) show the corrected $10-15\,\text{min}$ average of different gas mixture prepared by two dilution tests with dry compressed air of atmospheric concentrations and dry compressed air of 5 ppm C_2H_6 (in N_2 , O_2 and Ar). The theoretical C_2H_6 concentrations were calculated using the measured CH_4 and CO_2 concentrations in the gas mixture and the known CO_2 , CH_4 and C_2H_6 concentrations of the used gas cylinders. **Table S1.** $\delta^{13}\mathrm{CH_4}$ signatures determined for each AirCore measurement. | location | date | $\delta^{13}\mathrm{CH_4}\ [\%]$ | r^2 | peak height
above baseline | |-------------------------------------|------------|--|-------|-------------------------------| | biogas plant | | | | | | Heidelberg | 2016-08-29 | -62.69 ± 1.05 | 0.939 | 2.59 | | | 2016-09-08 | -62.04 ± 0.20 | 0.999 | 9.45 | | | 2016-09-08 | -61.23 ± 0.60 | 0.994 | 4.85 | | | 2016-09-28 | -58.96 ± 0.57 | 0.992 | 8.15 | | | 2016-09-28 | -61.89 ± 0.32 | 0.997 | 7.39 | | | 2016-09-28 | -59.81 ± 1.03 | 0.959 | 2.34 | | | 2016-10-10 | -64.16 ± 0.44 | 0.996 | 7.34 | | | 2016-10-10 | -63.66 ± 1.06 | 0.992 | 3.77 | | | 2016-11-30 | -63.15 ± 0.58 | 0.995 | 6.70 | | | 2016-11-30 | -63.11 ± 0.97 | 0.993 | 3.76 | | | 2016-11-30 | -63.46 ± 0.74 | 0.993 | 4.44 | | | 2016-12-19 | -61.99 ± 3.25 | 0.932 | 1.27 | | | 2016-12-19 | -62.11 ± 1.33 | 0.984 | 2.55 | | | 2017-02-22 | -67.43 ± 1.26 | 0.995 | 4.02 | | | 2017-02-22 | -63.58 ± 0.84 | 0.987 | 3.64 | | | 2017-02-22 | -60.85 ± 0.95 | 0.981 | 2.85 | | | 2017-02-22 | -61.12 ± 1.63 | 0.965 | 3.55 | | dairy farm | 2017-02-22 | -01.12 ± 1.03 | 0.903 | 3.33 | | Weinheim (on farm) | 2016-10-26 | -64.92 ± 0.71 | 0.994 | 6.32 | | | 2016-10-26 | -62.62 ± 0.71 | 0.996 | 6.67 | | | 2016-10-20 | -65.99 ± 0.98 | 0.950 | 5.28 | | Weinheim (plume with biogas plant) | 2016-09-29 | -62.58 ± 2.08 | 0.936 | 1.61 | | weimeim (piume with biogas piant) | 2016-09-29 | -62.38 ± 2.08
-60.16 ± 2.09 | 0.930 | 2.09 | | | 2016-09-29 | -59.59 ± 1.59 | 0.965 | 2.44 | | | 2016-10-26 | -56.58 ± 1.39
-56.58 ± 1.20 | 0.903 | 2.95 | | | 2016-10-26 | -59.66 ± 0.14 | 0.972 | 10.91 | | | 2016-10-20 | | 0.999 | 4.08 | | | 2016-11-21 | -60.43 ± 0.85 | 0.990 | 10.83 | | | 2016-12-14 | -47.17 ± 0.25
-43.13 ± 1.15 | 0.986 | 4.19 | | | 2017-02-23 | -47.18 ± 2.82 | 0.950 | 1.90 | | | 2017-02-23 | -47.18 ± 2.82
-43.64 ± 1.55 | 0.930 | 3.57 | | Ladenburg (on farm) | 2017-02-23 | -43.04 ± 1.55
-64.00 ± 2.63 | 0.988 | 1.97 | | | 2016-10-26 | -64.00 ± 2.03
-61.56 ± 2.51 | 0.955 | 1.56 | | | | | | 4.69 | | Ladenburg (plume with biogas plant) | 2016-10-26 | -63.93 ± 0.88 | 0.990 | 4.69
5.95 | | | 2016-11-30 | -40.30 ± 0.42 | 0.986 | 5.45 | | | 2016-11-30 | -40.36 ± 0.59 | 0.974 | 5.45 | | | 2016-11-30 | -41.77 ± 0.93 | 0.968 | 5.09
1.74 | | Vlava (anaonia fame:) | 2016-11-30 | -55.08 ± 1.48 | 0.718 | | | Kleve (organic farming) | 2017-03-24 | -63.77 ± 0.42 | 0.997 | 8.45 | | V1 (| 2017-03-24 | -65.11 ± 1.75 | 0.979 | 2.86 | | Kleve (conventional farming) | 2017-03-24 | -65.37 ± 0.42 | 0.998 | 8.04 | | 771 (1) | 2017-03-24 | -63.30 ± 0.18 | 0.998 | 11.20 | | Kleve (plume) | 2017-03-24 | -61.65 ± 1.67 | 0.976 | 2.70 | **Table S1.** $\delta^{13}\mathrm{CH_4}$ signatures determined for each AirCore measurement. | location | date | $\delta^{13}\mathrm{CH_4}\ [\%]$ | r^2 | peak height
above baseline | |---------------------------|------------|----------------------------------|-------|-------------------------------| | landfill | | | | | | Sinsheim (plume) | 2016-08-29 | -54.16 ± 4.45 | 0.470 | 0.47 | | | 2016-09-08 | -62.19 ± 4.36 | 0.582 | 0.54 | | | 2016-11-02 | -59.56 ± 4.99 | 0.498 | 0.46 | | | 2016-11-30 | -58.96 ± 4.63 | 0.523 | 0.50 | | Sinsheim (on landfill) | 2017-07-18 | -59.12 ± 1.14 | 0.992 | 4.86 | | | 2017-07-18 | -59.87 ± 2.80 | 0.947 | 1.77 | | | 2016-07-25 | -64.86 ± 0.97 | 0.987 | 3.42 | | | 2016-07-25 | -67.68 ± 2.86 | 0.914 | 0.93 | | | 2016-07-25 | -69.30 ± 2.99 | 0.850 | 0.94 | | | 2016-07-25 | -63.99 ± 4.64 | 0.606 | 0.47 | | WWTP | | | | | | Heidelberg | 2016-10-10 | -50.80 ± 2.28 | 0.935 | 1.65 | | | 2016-10-26 | -51.17 ± 3.97 | 0.823 | 1.29 | | | 2016-10-26 | -56.34 ± 1.20 | 0.988 | 3.85 | | | 2016-12-14 | -51.97 ± 1.41 | 0.977 | 3.28 | | | 2016-12-19 | -54.21 ± 2.31 | 0.960 | 1.75 | | | 2017-02-22 | -54.22 ± 2.41 | 0.930 | 2.04 | | | 2017-02-22 | -49.40 ± 2.78 | 0.837 | 1.63 | | natural gas facilities | | | | | | Sandhausen | 2016-11-02 | -42.14 ± 0.59 | 0.994 | 7.58 | | | 2016-11-02 | -41.50 ± 1.00 | 0.967 | 3.05 | | | 2017-03-09 | -49.16 ± 4.58 | 0.810 | 1.00 | | Hähnlein/Gernsheim | 2016-09-29 | -41.14 ± 1.40 | 0.980 | 2.87 | | | 2016-10-26 | -57.45 ± 2.69 | 0.922 | 1.31 | | | 2016-11-21 | -51.04 ± 4.00 | 0.841 | 1.20 | | | 2016-11-21 | -47.60 ± 3.67 | 0.938 | 1.63 | | | 2016-11-21 | -44.49 ± 1.69 | 0.957 | 2.86 | | | 2016-11-21 | -47.35 ± 2.95 | 0.894 | 1.74 | | | 2016-11-21 | -51.00 ± 1.03 | 0.994 | 5.49 | | | 2016-12-14 | -45.11 ± 1.70 | 0.973 | 2.97 | | | 2017-02-23 | -41.11 ± 3.08 | 0.851 | 1.38 | | bituminous deep coal mine | | | | | | Bottrop (active) | 2017-03-25 | -59.53 ± 2.18 | 0.947 | 1.35 | | | 2017-03-25 | -54.73 ± 2.28 | 0.928 | 1.46 | | | 2017-03-25 | -55.04 ± 1.25 | 0.972 | 2.29 | | | 2017-03-25 | -54.86 ± 0.51 | 0.996 | 5.52 | | Bottrop (closed) | 2017-03-25 | -49.97 ± 6.33 | 0.677 | 0.55 |