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Abstract. The differential nucleus concentration defined in
Vali (1971) is re-examined and methods are given for its ap-
plication. The purpose of this document is to facilitate the
use of differential spectra in describing the results of drop
freezing, or similar, experiments and to thereby provide ad-
ditional insights into the significance of the measurements.
The additive nature of differential concentrations is used to
show how the background contribution can be accounted for
in the measurements. A method is presented to evaluate the
confidence limits of the spectra derived from given sets of
measurements.

1 Introduction

Ice nucleation, more specifically freezing nucleation, re-
mains a topic of interest in a variety of disciplines. Exper-
iments with multiple externally identical sample units have
demonstrated the range of activities present in most sam-
ples, for both known materials added to the water and wa-
ter derived from precipitation, lakes, rivers, or other sources.
Freezing experiments are important sources of information
about ice-nucleating particles (INPs) and hence are in fairly
widespread use. This paper addresses the calculation and uti-
lization of the differential nucleus spectrum1 derived from
data obtained in drop-freezing experiments and denoted
as k(T ). The closely related cumulative spectrum has been

1Strictly speaking the quantity of interest is the differential nu-
cleus concentration. The differential spectrum is the graphical rep-
resentation of the concentration. However, it is convenient to refer
to both as spectra.

widely used already because of its direct connection to the
readily obtained frozen fraction. These functions were orig-
inally defined in Vali (1971; V71) and their link to different
forms, namely the differential and integral site density func-
tions, is described in Vali (2014; V14). All these different
forms represent quantitative descriptions of the abundance
and activity of INPs present in water samples as functions of
temperature. The abundance (concentration) is defined with
respect to either the volume of water in which the INPs are
suspended or the mass or total surface area of the INPs them-
selves. These functions are empirical results that represent
the most relevant characteristics (activity described in terms
of the characteristic temperature) of the INPs based on the
singular model of freezing nucleation. This model is time-
independent and is justified by the much greater influence
of temperature than of time in the activity of INPs. Justifi-
cation for this manner of describing INP activity, as well as
the degree to which time dependence may alter the singular
description, is presented in more detail in V14.

The spectra defined in the preceding paragraph are useful
for quantitative definitions of activity as a function of temper-
ature for given INPs and to distinguish different INP popula-
tions by their activity. They also provide measures of ice for-
mation in clouds, deduced from tests with precipitation sam-
ples. In the following, the differential spectrum is given most
emphasis, partly because it is less well known, and more im-
portantly because it is perhaps the most effective definition
of INP activity in a sample. All impacts of INPs depend on
temperature; the specific activity expected at some temper-
ature, quantitatively expressed, is the information most rel-
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1220 G. Vali: Revisiting the differential freezing nucleus spectra

evant to the impact being studied2. Perhaps most important
is the fundamental perspective that motivates these studies.
We would like to have a clearer understanding of the surface
and kinetic factors that determine ice nucleation activity and
of the temperature dependence of those factors. The abun-
dance of nucleating sites of different activities (characteris-
tic temperatures) for given substances is the key information
which needs to be explained in terms of structural and com-
positional features of the surfaces. This is the empirical input
needed to formulate theories of ice nucleation.

There are many analogs in physics to the differential con-
centration information discussed here. The most prominent
is perhaps the spectral intensity of light. More mundane is
the population distribution by age group. In these examples,
each segment of the spectrum or age group can be directly
observed and quantified. However, this is not the case in
freezing experiments because freezing of a drop at some tem-
perature forecloses obtaining information about other poten-
tial INPs active at colder temperatures. These INPs not di-
rectly detectable have to be accounted for in order to acquire
a meaningful result. Thus, it is necessary to obtain data with
many drops in order to arrive at measures of the population
at all temperatures. This problem is treated in the derivation
of k(T ) in V71.

From an experimental perspective, quantitation of ice-
nucleating ability depends on a successful choice of the drop
sizes and of the number of suspended INPs. Because ice-
nucleating ability in general is a strong function of tem-
perature, small drop volumes and low amounts of particle
content result in freezing temperatures at low temperatures.
Conversely, with large drop volumes and high particle load-
ing, most drops will freeze at roughly the same temperature.
The range of usable drop volumes is often defined by the
design of the apparatus, but, for laboratory preparations, par-
ticle concentration is controlled by the experimenter. For wa-
ter samples obtained with indigenous INPs (rain, river water,
etc.) particle concentrations can be altered by dilution and
partial evaporation. The functions defined in the following
section are useful only when the data to be analyzed describe
a substantial spread of observed freezing temperatures.

2The dominant role of temperature in determining activity is
dimmed somewhat by the fact that gradual cooling from above 0 ◦C
is usually involved before reaching the specific temperature of ac-
tivity. This introduces a combination of influences from the whole
sequence of temperatures. Gradual cooling is the case for laboratory
experiments with previously prepared samples and also in clouds if
the majority of INPs are incorporated into cloud droplets before
cooling to sub-zero temperatures. In some experiments and in some
cloud situations, INPs enter into the water droplets (samples) at
the supercooled temperature of interest, but in these cases observed
freezing events may include effects often referred to as contact nu-
cleation. This complication is set aside in this paper, so the nucleus
spectra have to be viewed with that caveat in mind. The simplifica-
tion is of relatively minor magnitude, as argued in Vali (2008) and
in references quoted there.

Because the differential spectra are additive, i.e., repre-
sent the sum at each temperature of the contributions from
all sources of the INPs in a given water sample, the differ-
ential spectra provide a way to correct for background noise
in drop-freezing experiments. This correction is detailed in
Vali (2018) and in Sect. 6 of this paper. Another advantage of
the differential spectrum is that confidence limits can be cal-
culated for each point of the spectrum over the temperatures
covered by the measurements. This is detailed in Sect. 7.

2 Definitions

The INP3 spectra are derived from drop-freezing experi-
ments. The term drop-freezing experiment is used here to
represent the class of experiments in which freezing is ob-
served with multiple subunits drawn from a sample of water
containing dispersed INPs. The experiments involve steady
cooling of a number, No, of drops and the freezing temper-
ature of each drop, Ti , is recorded. In practice, several runs
with the same sample may be combined to accumulate a suf-
ficiently large sample size No for useful statistical validity of
the results. Such a step, practically all that is treated in this
paper, assumes that the sample is stable, that is, unaltered in
any way during the time the measurements are performed.

The differential nucleus concentration, k(T ), is defined in
Eq. (11) of V71 as

k(T )=−
1

X ·1T
· ln
(

1−
1N

N(T )

)
, (1)

where T stands for temperature in degrees Celsius, N is the
number of drops not frozen, 1N is the number of freezing
events observed between T and (T −1T ), i.e., drops for
which (T−1T ) < Ti < T , andX is the normalization to unit
volume of water, unit mass, or surface of INPs, or else, of the
INPs. It is to be remembered that this expression is the re-
sult of considering that a freezing event in the interval 1T
is the result of a drop containing at least one INP active in
that temperature interval (see V71). For relatively small 1T
values and for large N values this approximation to having
a single INP per drop responsible for the observed freezing
event is very good (and can be quantified from the properties
of the Poisson distribution).

For experiments with an adequate number of drops, the
value of 1N/N(T ) is going to be small, so that an approx-
imate expression is valid with negligible error, except for
the lowest temperatures observed, when N(T ) also becomes
small. The error in k(T ) (deviation from the exact value
obtained from Eq. 1) reaches 10 % when 1N/N(T ) ex-
ceeds 0.2. This estimate is based on the fact that for a Poisson
distribution the standard deviation is equal to the square root
of the mean (see chap. 9 in Blank, 1980). The approximate
relationship is

3In all of the following the terminology given in Vali et al. (2015;
V15) is followed.
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k(T )=
1

X ·N(T )
·
1N

1T
; for

1N

N(T )
→ 0. (2)

The cumulative concentration, the integral of k(T ) over
temperature, is given by Eq. (13) in V71 as

K(T )=
1
X
· [lnNo− lnN(T )] , (3)

which can be rewritten in terms of the fraction of drops
frozen f (T ) as

K(T )=−
1
X
· ln[1− f (T )]. (4)

Because f (T ) is readily obtained in most experiments,
this direct link to K(T ) is used in a number of publications
(e.g., DeMott et al., 2017; Hader et al., 2014; Häusler et al.,
2018; Harrison et al., 2018; Kumar et al., 2018; Paramonov
et al., 2018; Tarn et al., 2018; Whale et al., 2015) to represent
the results in terms of K(T ).

A third alternative to obtaining K(T ) is to perform a nu-
merical integration of k(T ), remembering that the k(T ) val-
ues here are at discreet T values, not a function:

K(T )=

T∑
0
k(T ) ·1T. (5)

For normalization of k(T ) and K(T ) to unit volume of wa-
ter, we set X = V , where V is the volume of the drops (as-
suming drops of uniform sizes). For normalization to unit
surface area of material dispersed in the drops X = A, with
A denoting the average surface area of particles in each drop.
In this case, many authors replace K(T ) with ns(T ), where
ns stands for the site density. See Sect. 8 for further discus-
sion of the determination of active site density.

Mention has been made already that sample stability is as-
sumed for valid representations of nucleating activity in any
quantitative way. Since most INPs are insoluble solid mate-
rials, they can be considered stable. Many different potential
site configurations, such as crystal steps, dislocations, cracks,
voids, inclusions, and adsorbed substances, are likely to be
stable. However, since ice nucleation takes place on the sub-
strate surface, stability of the surface is required and that is
much more difficult to be assured of. The stability require-
ment is clearly not fulfilled by samples such as cellulose be-
cause they undergo changes when introduced into water. In
general, the applicability of active site density may not be
known a priori but can be assessed by testing for consistency
with different particle loadings, treatments, or other methods.

A great advantage of quantifying ice-nucleating ability in
terms of the spectra defined here is the simplicity of these
quantities. No assumptions are needed about intrinsic parti-
cle properties, as for example contact angle, and neither are
the results interpreted in terms of quantities not readily de-
termined independently. While presentation of empirical re-
sults as counts of INPs may seem overly simple, the spectra

are good measures of expected ice nucleation in the water
samples tested and, for prepared suspensions of known ma-
terials, k(T ) and K(T ) can readily be used as the basis of
refinements in terms of different models of material proper-
ties and site configurations. The first step in that direction is
the active site density description discussed in Sect. 8.

3 Sample data

Data from an experiment with a SnomaxTM sample is used
here4 for demonstrating the manner of calculating the dif-
ferential concentration. Observed freezing temperatures for
507 drops are listed in Table 1. The observations were made
with steady cooling of the drops. Freezing events spread
over the temperature range from near −4 ◦C to near −35 ◦C.
Freezing events are most frequent in two temperature re-
gions, one near −8 ◦C and the other at the lowest tempera-
tures. As can be seen, some temperature values occur more
than once due to the finite resolution of the detection and
recording system used. These characteristics of these data
make it useful to demonstrate various points about the cal-
culations.

4 Choice of temperature interval

The main decision in applying either Eq. (1) or Eq. (2) to
experimental results is what numerical values to use for 1T ,
taking into account constraints arising from the resolution of
the temperature measurements and from finite sample sizes.
While all other quantities in Eqs. (1) to (3) are directly mea-
sured, 1T is not an empirical value but is one chosen in
analysis for desirable representation of the observations. For
the assumptions involved in the derivation of k(T ), as de-
scribed in V71, infinitesimally small intervals δT should be
applied, but this would necessitate infinite, or very large,
sample sizes No in order to avoid a large number of intervals
without any events. Thus a finite 1T is required. It will be
argued that a uniform 1T over the entire temperature range
of an experiment is the simplest and most effective choice.
The choice is made, principally, on the basis of sample size
(number of drops in the experiment) and not based on instru-
mental variables, such as the recording interval of freezing
events.

One possible solution for calculating k(T ) with high res-
olution would be to use 1N = 1 and with the temperature
intervals between individual freezing events as 1T . This
would yield as many points on the spectrum plot as the num-
ber of drops. However, this approach would have variable
1T values, which in turn leads to variations in the calcu-
lated k(T ) values. The magnitude of each point would de-

4These data are from work described in Polen et al. (2018) and
are used here with kind permission from Ryan Sullivan of Carnegie
Mellon University.
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1222 G. Vali: Revisiting the differential freezing nucleus spectra

Table 1. Observed freezing temperatures for 507 drops of a sample of SnomaxTM dispersed in purified water. Freezing temperatures are
listed in decreasing order. Multiple values are due to time steps of the detection system used. These data are from work described in Polen et
al. (2018).

−4.42 −6.34 −6.63 −6.71 −6.79 −6.84 −6.84 −6.92 −6.92 −6.92 −7.01 −7.01 −7.01
−7.01 −7.01 −7.05 −7.14 −7.14 −7.14 −7.14 −7.14 −7.14 −7.14 −7.21 −7.21 −7.21
−7.21 −7.29 −7.29 −7.29 −7.29 −7.29 −7.34 −7.34 −7.34 −7.43 −7.43 −7.43 −7.43
−7.50 −7.50 −7.50 −7.50 −7.57 −7.57 −7.57 −7.57 −7.57 −7.57 −7.57 −7.57 −7.57
−7.57 −7.57 −7.63 −7.63 −7.63 −7.63 −7.63 −7.63 −7.63 −7.63 −7.71 −7.71 −7.71
−7.71 −7.71 −7.71 −7.71 −7.71 −7.71 −7.71 −7.79 −7.79 −7.79 −7.79 −7.79 −7.79
−7.79 −7.86 −7.86 −7.86 −7.86 −7.86 −7.86 −7.93 −7.93 −7.93 −7.93 −7.93 −7.93
−7.93 −7.93 −7.98 −7.98 −7.98 −7.98 −8.05 −8.05 −8.05 −8.05 −8.05 −8.05 −8.05
−8.05 −8.05 −8.05 −8.11 −8.11 −8.11 −8.21 −8.21 −8.21 −8.21 −8.21 −8.21 −8.21
−8.27 −8.27 −8.27 −8.27 −8.27 −8.27 −8.27 −8.34 −8.34 −8.40 −8.40 −8.40 −8.40
−8.40 −8.40 −8.50 −8.50 −8.55 −8.55 −8.55 −8.55 −8.55 −8.55 −8.63 −8.63 −8.70
−8.70 −8.77 −8.77 −8.77 −8.84 −8.84 −8.84 −8.84 −8.92 −8.99 −8.99 −8.99 −8.99
−9.06 −9.06 −9.06 −9.06 −9.06 −9.12 −9.21 −9.21 −9.26 −9.35 −9.50 −9.55 −9.55
−9.71 −9.79 −9.93 −10.00 −10.00 −10.08 −10.13 −10.29 −10.34 −10.57 −10.57 −10.64 −10.71
−11.29 −11.29 −11.36 −11.94 −11.94 −11.94 −12.02 −12.16 −12.69 −12.69 −12.92 −13.28 −13.48
−13.56 −13.99 −14.42 −14.94 −15.30 −15.67 −16.03 −16.82 −16.82 −17.19 −17.32 −17.54 −19.30
−20.40 −20.85 −21.13 −21.13 −21.87 −22.66 −23.73 −23.73 −24.12 −24.17 −24.26 −25.06 −25.34
−25.42 −25.77 −25.84 −26.07 −26.29 −26.36 −26.51 −26.56 −26.65 −26.93 −27.07 −27.07 −27.30
−27.65 −27.81 −27.87 −27.94 −28.08 −28.31 −28.36 −28.47 −28.52 −28.60 −28.60 −28.68 −28.80
−28.89 −28.89 −29.04 −29.16 −29.25 −29.31 −29.46 −29.46 −29.55 −29.69 −29.91 −30.05 −30.05
−30.21 −30.48 −30.48 −30.48 −30.70 −30.78 −30.78 −30.85 −30.93 −31.00 −31.06 −31.16 −31.16
−31.32 −31.32 −31.32 −31.32 −31.41 −31.56 −31.63 −31.77 −31.77 −31.83 −31.92 −31.92 −31.92
−31.97 −32.22 −32.22 −32.28 −32.28 −32.28 −32.33 −32.42 −32.49 −32.49 −32.64 −32.64 −32.70
−32.78 −32.86 −32.86 −32.86 −32.86 −32.94 −32.94 −32.94 −33.00 −33.00 −33.00 −33.06 −33.06
−33.14 −33.14 −33.23 −33.23 −33.29 −33.29 −33.29 −33.35 −33.35 −33.35 −33.43 −33.43 −33.43
−33.43 −33.43 −33.43 −33.49 −33.49 −33.49 −33.49 −33.49 −33.49 −33.59 −33.59 −33.59 −33.59
−33.59 −33.59 −33.59 −33.59 −33.59 −33.59 −33.65 −33.65 −33.65 −33.65 −33.65 −33.65 −33.65
−33.65 −33.65 −33.65 −33.71 −33.71 −33.71 −33.71 −33.71 −33.71 −33.71 −33.71 −33.79 −33.79
−33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79 −33.79
−33.79 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86 −33.86
−33.86 −33.86 −33.86 −33.86 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92
−33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92
−33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −33.92 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01
−34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01 −34.01
−34.01 −34.01 −34.01 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07
−34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.07 −34.13 −34.13 −34.13
−34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.13 −34.23 −34.23
−34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23 −34.23

pend on the temperature interval between successive freez-
ing events. A given freezing event would correspond to a
k(T ) value whose magnitude is changed depending on the
previous freezing event in the sample. In effect, the quanti-
tive significance of the results would be negated. To see this
for the SnomaxTM data, the temperature gaps, the differences
between the freezing temperatures for successive events, are
shown in Fig. 1. Each point corresponds to one drop and is
plotted at the freezing temperature of that drop. The large
number of points at zero gap size indicates coincidences in
the recorded temperatures for several drops due to the fi-
nite resolution of the recording system. Another grouping of
points just below 0.1 is due to the temperature change during
the time intervals with which the number of frozen drops was

recorded. Both the zeros and these minimum nonzero val-
ues are most numerous near −8 ◦C and near −33 ◦C where
there are high numbers of freezing occurrences. Larger gaps
become more frequent in the temperature range between the
two groups due to the sparsity of freezing events. These large
and irregular gaps would scramble the k(T ) values.

Conversely, using a constant value across the range of tem-
peratures covered by the data assures that all points are on the
same scale. If the observed freezing temperatures are close to
each other, varying the interval width would be compensated
for by the inclusion of more or fewer events, so the results
would be acceptable, but there is no practical reason for do-
ing that. Thus, it is recommended to select a suitable value
for 1T and use it for the whole data set.

Atmos. Meas. Tech., 12, 1219–1231, 2019 www.atmos-meas-tech.net/12/1219/2019/



G. Vali: Revisiting the differential freezing nucleus spectra 1223

Figure 1. Temperature gaps between successive freezing events in
the data given in Table 1. Fewer events in the middle range of tem-
peratures produce fewer and larger gaps.

In the majority of experiments, Ti is irregularly distributed
over the range of all freezing events for a given sample. Thus,
if 1T is chosen too small there will be intervals with zeros
and ones only. That would result in an almost meaningless
representation of the results as k(T )would also consist of ze-
ros and a uniform small value. The density of points along the
T axis would show some pattern but only in a qualitative way.
The value chosen for 1T is a compromise between what is
ideal and what is practical. The latter perspective of course
involves judgements over several factors. Most importantly,
these factors are the sample size and associated statistical va-
lidity, the precision with which Ti values are determined, and
the detail in the final spectrum that is believed to hold mean-
ingful information. In view of these conflicting influences,
there is no single recipe for setting 1T , but the variations
that result in the specific choice do not diminish the objec-
tive value of the derived k(T ) spectrum if normalized to unit
temperature interval.

For the sake of simplicity and generality, equal drop vol-
umes are assumed in the calculations here, X is set to unity,
and the differential concentrations are presented with units
of ◦C−1. Depending on the choice for X, (drop volume,
particle surface area per drop, mass of particles per drop)
the units of k(T ) will be different, for example ◦C−1 cm−3,
◦C−1 µm−2, or ◦C−1 g−1.

To illustrate the impacts of the choice of 1T , Fig. 2
shows the spectra for the SnomaxTM sample with two dif-
ferent values. The data shown in Table 1 were binned us-
ing 1T = 0.2 ◦C and 1T = 0.5 ◦C. For 1T = 0.2 ◦C there
are 51 empty bins (zeros) between −6 and −34 ◦C. For
1T = 0.5 ◦C there are only eight zeros in the same tempera-
ture range. Equation (2) was then used to obtain k(T ). Plots
of k(T ) shown in Fig. 2 differ, principally, in the degree of
noisiness of the data points. Because of the large range of val-
ues covered, plots of k(T ) almost always use a logarithmic
ordinate scale. This eliminates the possibility of including
zero values, and special steps need to be taken for the plots

Figure 2. Plots of k(T ) for 0.2 and 0.5 ◦C bin sizes for the data
from Table 1. The right-hand scale is shifted down slightly to allow
the two plots to be clearly seen. Zero values are indicated for the
0.5 ◦C graph with values below the range covered by the ordinate.
The ordinate values are for X = 1 of unspecified dimension, and
thus the units are given as [x−1 ◦C−1].

to show these values. For one of the plots in Fig. 2 the zeros
were replaced by a low value well below the range covered
by actual data in order to indicate the presence of the zero
values. Without this, the presence of zeros, or empty bins,
is seen as gaps between points, and as horizontal lines. This
matters in judging the significance of the points surrounding
the zeros. Clearly, the dip in k(T ) between −26 and −17 ◦C
is perceived to be much deeper when the zeros are indicated.

5 Calculation of k(T ) and K(T )

Once the interval width has been decided, calculation of the
differential concentration is a straightforward matter, result-
ing in a value of k(T ) for each temperature interval. The cu-
mulative concentration is then also calculated for the same
temperatures if it is performed by summation of the differ-
ential values. This is not a requirement; the cumulative spec-
trum can also be calculated without binning of the data and
for as many temperatures as wanted.

Based on the comparison presented in Fig. 2 and on the
text associated with it, calculations for the SnomaxTM sample
are processed here with 1T = 0.5 ◦C. The result of that bin-
ning of Ti values is shown in Fig. 3 as a histogram. After bin-
ning, values of N(T ) were calculated by stepwise addition
of the1N values from the lowest to the highest temperature,
ending up with No for the first interval with nonzero 1N .
Performing the accumulation of 1N from lowest to high-
est temperature produces N values at the upper end (warmer
temperature) of each interval. The frozen fraction expressed
with respect to the lower end (colder temperature) of the in-
terval is obtained as

f (T )= 1−
N(T )−1N

No
. (6)
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Table 2. Differential and cumulative spectra for the SnomaxTM sample with 0.5 ◦C intervals, as discussed in Sect. 5. Ellipses indicate the
range in which not all temperatures are included, for brevity.

[1] [2] [3] [4] [5] [6] [7]
Temperature Number of events Number unfrozen Number frozen Frozen fraction Differential Cumulative
interval center in interval at beginning of interval at end of interval at end of interval per ◦C at end of interval
T 1N N Nf f (T ) k(T ) K(T )

−3.75 0 507 0 0.000 0.000 0.000
−4.25 1 507 1 0.002 0.004 0.002
−4.75 0 506 1 0.002 0.000 0.002
−5.25 0 506 1 0.002 0.000 0.002
−5.75 0 506 1 0.002 0.000 0.002
−6.25 1 506 2 0.004 0.004 0.004
−6.75 8 505 10 0.020 0.032 0.020
−7.25 29 497 39 0.077 0.120 0.080
−7.75 58 468 97 0.191 0.265 0.212
−8.25 35 410 132 0.260 0.178 0.302
−8.75 24 375 156 0.308 0.132 0.368
−9.25 10 351 166 0.327 0.058 0.397
−9.75 6 341 172 0.339 0.036 0.414
−10.25 6 335 178 0.351 0.036 0.432
−10.75 4 329 182 0.359 0.024 0.445
−11.25 3 325 185 0.365 0.019 0.454
−11.75 3 322 188 0.371 0.019 0.463
−12.25 2 319 190 0.375 0.013 0.470
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
−28.75 7 265 249 0.491 0.054 0.676
−29.25 6 258 255 0.503 0.047 0.699
−29.75 3 252 258 0.509 0.024 0.711
−30.25 6 249 264 0.521 0.049 0.735
−30.75 5 243 269 0.531 0.042 0.756
−31.25 9 238 278 0.548 0.077 0.795
−31.75 9 229 287 0.566 0.080 0.835
−32.25 9 220 296 0.584 0.084 0.877
−32.75 11 211 307 0.606 0.107 0.930
−33.25 27 200 334 0.659 0.290 1.075
−33.75 89 173 423 0.834 1.445 1.798
−34.25 84 84 507 1.000 0.000 1.798
−34.75 0 0 507 1.000 0.000 1.798
−35.25 0 0 507 1.000 0.000 1.798
−35.75 0 0 507 1.000 0.000 1.798

The differential concentration was calculated from Eq. (1)
and the cumulative from Eq. (3). Results are given in Table 2.
The table is given from highest to lowest temperature to make
it match the way the data are obtained in the experiment with
gradual cooling. The temperature in the first column is the
midpoint of the interval over which the data were evaluated.
As indicated in the preceding paragraph, columns [4], [5],
and [7] are shifted by one line with respect to the others in
order that they refer to the low end of the temperature inter-
val. These distinctions of interval midpoint and high and low
ends are somewhat unnecessary considering the magnitude
of the interval width but are included here to avoid misin-
terpretation of the tabulated data. It is also worth noting that
at the initial part of the table, the cumulative concentration

is smaller in magnitude than the differential because the dif-
ferential is normalized to degrees Celsius intervals, making
the values, for1T = 0.5 ◦C used in this example, double the
value without that normalization.

Plots of the differential and cumulative spectra are given
in Fig. . In this graph, zero values are skipped over to give
the graph a less cluttered appearance. By using the same or-
dinate for both plots, the cumulative curve starts lower than
the differential, as explained above. Normalization to per unit
volume of the drops or to site density is a matter of applying
the relevant multiplier to the ordinate values. In this exam-
ple, and in most of this paper, plots of the spectra are shown
with individual points for each temperature interval. In some
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Figure 3. Histogram of freezing temperatures and a plot of the frac-
tion of drops frozen for the data from Table 1 (SnomaxTM suspen-
sion).

cases, it might be desirable to fit algebraic equations to the
data.

The effectiveness of transmitting the results of analyses
such as this, as mentioned, depends on the numerous fac-
tors already discussed. From a purely data-processing per-
spective, the spectrum with lower resolution is better be-
cause it has fewer zero values. No claim is made that the
1T = 0.5 ◦C choice is optimal. The resulting k(T ) spectrum
still has considerable fluctuations in the middle portion of
the temperature range. Conversely, the main peak is well re-
solved, as is its asymmetric shape. There are many additional
steps that can be considered for smoothing the data, either at
the 1N level or in k(T ).

From the point of view of showing what kind of INPs
were contained in the sample, all the graphs clearly indicate
peaks in activity near −8 ◦C and near −33 ◦C. The first peak
is of greater interest because it is due to the INPs added to
the sample, while the low-temperature activity is due to the
background related to the supporting surface of the drops and
to impurities in the water used to suspend the active INPs.
As a minor detail, it may be noted that the −8 ◦C peak has
a broader tail toward colder temperatures. This feature is
clearly seen in both of the graphs. Even finer details of the
peak can be seen if the data are processed at higher resolu-
tion, but very little significance can be attached to such de-
tails in light of the sample size, the temperature precision of
the measurements, and other instrumental factors. Nonethe-
less, it is important to note that the differential spectra can
resolve distinct peaks and thus can provide the type of acute
description of INP activity that is needed in many studies.

6 Background correction

The differential concentration in a sample with various
sources of INPs can be assumed to be the sum of the concen-
trations due to each of the sources. This assumption of addi-
tive behavior is likely to hold for many cases and would be

Figure 4. Differential and cumulative spectra for data discussed in
Sect. 5 and displayed in different forms in Figs. 2 and 3. Zeros in the
differential spectrum are seen in these plots by larger gaps between
adjacent points. The left and right ordinate scales are identical. As
mentioned in the text, the cumulative curve starts at a lower value
than the differential because the differential is expressed with refer-
ence to full degree intervals.

incorrect only if, for some reason, interactions are expected
among INPs from the different sources. The most relevant
example of additive behavior, applicable to essentially all ex-
periments with laboratory preparations, is the addition of the
background activity to that of the material to be tested. The
water used to prepare suspensions of INPs is never totally
free of INPs, and there is potential for further contributions
to the “background” by the components of the apparatus used
in the experiment. While extreme care is taken in most cases
to minimize the background, it is always present to greater
or lesser extent. Determination of the background is accom-
plished with control experiments.

The usefulness of a quantitative assessment of the back-
ground activity is demonstrated with the following example5.
A suspension of soil particles in distilled water, and con-
trol measurements of the distilled water, yielded the frozen
fraction curves in Fig. 5. From these graphs it would ap-
pear that the soil sample data are not reliable much below
about −18 ◦C because of the appreciable level of activity in
the control. When the differential spectra are computed and
the control is subtracted from the k(T ) values for the sample,
the resulting plot shown in Fig. 6 reveals that only in a nar-
row region near −17 ◦C is the contribution from the distilled
water comparable to the INP activity in the soil. Thus, the
INP activity in the soil sample below −18 ◦C can be judged
in a more objective fashion. Just considering this result, it
would not be baseless to conclude that the soil sample con-
tained two types of INPs, those producing the peak centered
at −13 ◦C and those giving rise to high numbers of INPs be-
low −18 ◦C. In practice, further tests with different amounts
of soil in suspension would be useful to judge that conclu-
sion.

5This is the same example as was used in Vali (2018).
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Figure 5. Observed fractions of droplets frozen for the soil sample
and for the distilled water control, as described in Sect. 6. Data are
from a single run with 103 drops of 0.01 cm3 volume.

7 Confidence intervals

Several sources of error contribute to determining the con-
fidence limits or uncertainty ranges of results derived from
drop-freezing experiments. Temperature accuracy is a minor
contribution in most cases. Acuity of the detection of freez-
ing is a larger concern. These and other error sources need to
be evaluated specifically for each experimental setup. A gen-
eral and demanding problem is the evaluation of the statisti-
cal validity of results. That uncertainty, arising from sample
sizes, is of special concern because of the usually large tem-
perature range of the observations and the consequent small
number of freezing events at each temperature. Uncertainty
ranges specific to each temperature can be evaluated using
the k(T ) spectra, as described in the following.

Even with identical drop volumes and with all drops pro-
duced from the same bulk suspension, considerable spreads
in freezing temperatures are usually observed. As discussed
earlier, variations in freezing temperatures are associated
with specific differences in INPs so that the variations in
freezing temperatures indicate a nonrandom distribution of
the INPs of different activities in the drops. Hence, basic sta-
tistical methods are not applicable to estimating the confi-
dence interval of the k(T ) orK(T ) spectra derived to charac-
terize the INP content. In the absence of many repetitions of
the experiments to determine variability, Monte Carlo simu-
lations provide a possible solution. In V71, such simulations
were applied to show how the spread in k(T ) spectra is re-
duced by increasing sample size. Monte Carlo methods of
slightly different configurations were also used in Wright and
Petters (2013) and in Harrison et al. (2018).

The differential concentration provides a convenient basis
for simulations because values of k(T ) for given tempera-
tures are independent of the values at other temperatures. Use
of the cumulative concentration derived from the frozen frac-
tion would be less transparent. The simplest basis for sim-
ulations is the number of freezing events observed in each
temperature interval, 1N(T ). Random variability expected

Figure 6. Differential spectra for the same data as shown in Fig. 5.
Circle symbols are for the soil sample; diamond symbols are for
the control (blue). The spectrum for the soil sample after correction
for the distilled water background is shown with a line. The magni-
tude of the correction is relatively minor in this case except in the
temperature region between about −14 and −18 ◦C.

about those values is the measure sought in the simulation.
This can be viewed as if a new set of drops were taken each
time from the same bulk sample, or a new set of particles
were dispersed into the volume each time, and then a freez-
ing run performed. Simulation allows as many of these runs
to be carried out as needed to reach a good estimate of the
variability.

The simulation is relatively simple. The number of events
in any given temperature interval can be expected to follow
a Poisson distribution on repeated testing. This probability
distribution fits the situation because the number of events
per interval is discrete and independent of other intervals,
and the observed numbers can serve as the assumed true val-
ues. Hence, taking the observed values of 1N(T ) as the ex-
pectation values λ(T ) and generating a large number, say p,
of Poisson-distributed numbers for each temperature interval
provides independent virtual realizations of the experiment.
The mean value of the 1Ni . . . 1Np numbers in each inter-
val will equal λ for that interval, and the standard deviation
will be λ0.5. However, the Poisson distributions include ze-
ros even for mean values greater than zero. The chance of
this reduces as the mean increases; the number of zero val-
ues is e−λ.

For a first demonstration of the simulation, a data set with
a modest number of 106 drops is used here. Measured num-
bers of freezing events for1T = 0.5 ◦C intervals and the cal-
culated values of k(T ) are given in Table 3. As can be seen,
the number of events per interval is small and would contain
many zeros using a smaller1T . Values in the second column
were taken as λ and 100 new sets of 1Ni values generated
using a Poisson-distributed random number generator in IDL
(Harris Geospatial Solutions, Inc.). From those 100 new sets
of values, 100 new N(T ) values were derived and k(T ) cal-
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Table 3. Observed freezing data used as input to the Monte Carlo
simulation described in Sect. 7.

Temperature Number of events k(T )

T 1N = λ per ◦C

−6.25 3 0.057
−6.75 4 0.079
−7.25 6 0.125
−7.75 5 0.111
−8.25 9 0.216
−8.75 5 0.131
−9.25 4 0.111
−9.75 6 0.179
−10.25 3 0.096
−10.75 2 0.067
−11.25 2 0.069
−11.75 1 0.035
−12.25 2 0.073
−12.75 6 0.236
−13.25 1 0.042
−13.75 9 0.425
−14.25 12 0.759
−14.75 9 0.850
−15.25 13 2.894

culated using Eq. (1). The simulation results can be used in
many different ways to represent the resulting uncertainties
in the presentations of the empirical results. The scatter in
k(T ) values is an immediate way to show the results. Cu-
mulative spectra K(T ) can also be obtained, as can standard
deviations, or other measures.

Simulated results in terms of k(T ) are shown in Fig. 7.
At a few places above the temperature axis, the number of
zero values that occurred in the simulation for that inter-
val are indicated. In this approach, the total number No for
any given run is not constrained to

∑
λ; the actual number

among the 100 simulated sets varied by 10 %. This variation
alters the simulated k(T ) values at the low end of the tem-
perature range to some degree but is insignificant at the high
end. There seems to be little reason to go to that extent or re-
finement, but the problem could be eliminated by adjusting λ
for lower temperatures for each choice of 1Ni in successive
steps. One point of assurance on this score is that the 50th
percentile of the simulated k(T ) points is only 3 % off from
those shown in Table 3.

The spread of 10 % to 90 % of values at each interval is
shown in Fig. 8. This example shows roughly a factor of 4
spread in k(T ) over the whole range of temperatures, worse
for those points with low k(T ) and hence also having zero
values potentially expected in repetitions. As can be seen for
this example, it clearly is not justified to attach too much sig-
nificance to fine details of the spectrum, but there is reason-
ably good definition of the broad peak of activity centered
on −8 ◦C and of the rapid rise in numbers below −12 ◦C.
Should the observed data have been binned in larger tem-

Figure 7. Calculated k(T ) values for 100 iterations of random as-
signments of 1N from a Poisson distribution with the λ values
shown in Table 3 for each interval. Numbers above the abscissa
indicate the number of zero values in the simulation for selected
temperatures.

Figure 8. The 10th to 90th percentile range of k(T ) for the results
shown in Fig. 7. The green diamonds show the values of k(T ) from
the right-hand column of Table 3 for the observed sequence of freez-
ing events. Points just above the abscissa are actually zero values.

perature intervals, the confidence limits would have become
narrower at the cost of lower temperature resolution. In the
case presented here, this would be a reasonable choice even
though the intuitive approach is to present the data with tem-
perature resolution justified by measurement precision. The
main limitation is from sample size.

As can be expected, the cumulative spectra are less sensi-
tive to random variations in the number of freezing events per
temperature interval. To illustrate this point, K(T ) is plotted
for the 100 simulations in Fig. 9. Spread here decreases to-
ward lower temperatures and as values for more and more
intervals are summed up. While at −6.25 ◦C there is a fac-
tor of 10 spread in values, near −15 ◦C the spread is about a
factor of 2. This magnitude of error is for a sample of only
103 drops, which is encouraging for experiments in which
larger drop numbers are not practical. Larger sample sizes
can yield lower error ranges, but because the slope of the
spectrum also has an influence no general statements are pos-
sible.
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Figure 9. Cumulative spectra for 100 simulations for which differ-
ential spectra are shown in Fig. 7.

As an illustration of the influence of sample size on the
confidence intervals for k(T ), the SnomaxTM sample for
which data were presented in Sect. 4 was also used in a
Monte Carlo simulation. The input to the simulation was
extracted from Table 1 for the region near the peak, where
there are 30–50 events per bin. The simulation results for
100 iterations are shown in Fig. 10 and, as can be seen, the
range of variation is less than a factor of 2 at the peak. At the
lower k(T ) values, the variability is similar to what is seen in
Fig. 10. Here too, zero values are plotted along an ordinate
value of 10−2.

The examples shown above illustrate one possible way
to assess the confidence limits of k(T ). The simulation ap-
proach is a realistic and readily envisioned method. Similar
results for the confidence ranges could be obtained from ta-
bles of Poisson distribution using the observed number of
events in some experiment as λ for each temperature inter-
val. The standard deviation, λ0.5, is another way to measure
variability. However, it cannot be used in the way it would
be for normally distributed values because, for example, the
lower limit of the 95 % range at (λ− 2.14 · λ0.5) can be neg-
ative for small λ values and therefore not a physically realis-
tic value for expected δN . The main point is that confidence
limits can be delineated and with that the meaning of derived
k(T ) spectra quantitatively assessed. The results shown here
also demonstrate the need for large sample sizes in order to
reduce the variability of the derived spectra.

Once sample variability has been estimated, statistical
methods are available for comparisons of two samples by
testing, for example, the equivalence of means (e.g., Chap. 20
in Blank, 1980). Performing that type of test interval by inter-
val, as in the previous paragraphs, would test for activity in
specific temperature regions. That may indeed be very useful
in certain cases but will definitely require large sample sizes.
More complex methods will need to be considered to make
broader overall comparisons of different samples. Combin-
ing data from larger temperature segments – those of greatest
interest – could be helpful, but the strong temperature depen-
dence of activity may be difficult to weigh adequately. Again,

Figure 10. The 10th to 90th percentile range of k(T ) in 100 simula-
tions for a segment of the spectrum shown in Fig. . Points just above
the abscissa stand for zero values. In contrast with other figures, a
linear ordinate scale is used because of the small range of values
covered. A value of X = 1 is used; actual drop volume of particle
concentration is not accounted for.

sample sizes will likely pose the most serious limitation to
reaching statistical significance in such tests.

8 Active site density

Site density is defined in V15 as “the number of sites causing
nucleation per unit surface area of the INP, or equivalent, as
functions of temperature or supersaturation; the quantitative
measure of the abundance of sites of different ice nucleating
effectiveness”. Frequently, for added emphasis, the term is
given as active site density and denoted as ns. This quantity
has already seen extended use in the literature (e.g., Con-
nolly et al., 2009; Niedermeier et al., 2015; Beydoun et al.,
2016; Paramonov et al., 2018; Boose et al., 2019). As stated
in Sect. 2, normalization of the cumulative spectrum by par-
ticle surface area, using X = A in Eq. (4), leads to ns, most
frequently in the inverted form

f (T )= 1− exp(−A · ns(T )) . (7)

No use has been made in the literature of the concept of dif-
ferential active site density, although that metric has the same
validity as the cumulative one, and is readily derived from
Eq. (2) with the substitution of X = A.

Somewhat unfortunately, the active site density term was
introduced in the literature in the cumulative form, i.e., ac-
tivity summed over all temperatures up to the test value. This
happened because activity was generally understood to mean
what is more precisely defined as the cumulative activity.
The distinction between cumulative and differential activity
is less widely appreciated. Following the general definitions
of the differential and cumulative spectra, k(T ) and K(T ),
it is useful to define differential and cumulative site density
functions ks(T ) andKs(T ) recognizing thatKs(T ) is exactly
equivalent to ns(T ). If it were not for the already established
practice one could use the symbols ns(T ) and Ns(T ), but it
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seems better to avoid the confusion that could result when
comparing results from different publications.

The two expressions for active site density are

ks(T )=−
1

A ·1T
· ln
(

1−
1N

N(T )

)
, (8)

Ks(T )=−
1
A
· ln[1− f (T )]. (9)

Use ofA as average INP surface area included in each drop
implies some important constraint on when that use is justi-
fied. First of all, it implies that the particles are stable and
that the determination of A was carried out in the suspen-
sion, not in the dry state. The two determinations may differ,
for example, if the particles contain some soluble material, or
they take up water and change in volume. Examples of aging
and other effects altering particle effectiveness in water have
already been reported (e.g., Emersic et al., 2015). Calcula-
tions of ks orKs for macromolecule INPs are of questionable
value; these materials are best characterized with reference to
the total mass of material or the number of individual macro-
molecules in suspension, not with reference to surface area.
As for all of the quantitative characterizations discussed in
this paper, temporal stability is assumed, at the minimum on
the timescale of the experiment.

In addition to the considerations of the previous paragraph,
valid use of an average surface area A also requires that de-
viations from the mean value be reasonably small and not be
the dominant source of error in the derived measures of ac-
tivity. Special attention is needed with respect to the larger
particles in polydisperse samples as these contribute dispro-
portionate fractions of the total surface area. With sufficient
knowledge of the particle size distributions, the error esti-
mated can be derived for deviations from the average. Since
A appears in the pre-factor in the equations for both ks(T )

and Ks(T ), the derived error estimate is valid for all values
of the spectrum.

Dependent on the material constituting the INPs, total sur-
face area may be an inadequate parameter to use in the cal-
culation of the active site density. For example, if only a cer-
tain crystal face contains ice-nucleating sites, the surface area
of that face is the relevant measure to include. Knowledge
of such morphological factors is the goal of many studies;
obtaining ks(T ) or Ks(T ) with variations in experimental
parameters may provide useful insights. Conversely, with-
out sufficient knowledge about particle surface characteris-
tics substantial caveats need to be recognized regarding ac-
tive site density spectra.

9 Summary

The differential spectrum, k(T ), is a useful representation of
INP activity in heterogeneous freezing. This article examined
some of the factors that need to be considered in derivations
of k(T ) for experiments executed with gradual cooling of an
array of sample drops taken from the same bulk sample and
with the freezing of drops at different temperatures recorded.
Freezing at a given temperature is taken to indicate the pres-
ence of INPs active at that temperature. In Sect. 4, the im-
portance of the choice of temperature interval for computing
the spectra was elaborated. Methods of calculation and the
relation to other derived quantities were presented in Sect. 5.
Two applications were discussed: Sect. 6 presents a method
for correcting empirical results for background effects. Cor-
rection for background is achieved by subtraction of the k(T )
values. In Sect. 7, a method was described for determination
of confidence limits for k(T ) using Monte Carlo simulations.
Sample size and spectral shape determine the error ranges
of k(T ). Lesser uncertainty is associated with the cumulative
spectra. The background correction and the determination of
error ranges can significantly augment the value of informa-
tion derived from laboratory freezing experiments and can
improve model predictions of ice formation in clouds.

Data availability. Raw data of observed freezing temperatures for
the three samples included in this paper are archived at the Univer-
sity of Wyoming under https://doi.org/10.15786/y5xr-pw35 (Sulli-
van and Vali, 2019).

www.atmos-meas-tech.net/12/1219/2019/ Atmos. Meas. Tech., 12, 1219–1231, 2019

https://doi.org/10.15786/y5xr-pw35


1230 G. Vali: Revisiting the differential freezing nucleus spectra

Appendix A: Nomenclature

A Average particle surface area contained in drops; m−2

f (T ) Fraction of sample drops frozen at T
k(T ) Differential nucleus concentration; x−1 ◦C−1

ks(T ) Differential active site density; m−2 ◦C−1

K(T ) Cumulative concentration of INPs active at temperatures above T ; x−1

Ks(T ) Cumulative site density on the INPs active at temperatures above T ; m−2

ns(T ) Same as Ks(T )

N(T ) Number of drops not frozen at temperature T
1N Number of freezing events per temperature interval
No Total number of sample drops
T Temperature; ◦C
Ti Freezing temperature of a drop
X Reference quantity for normalization to unit volume of water, particle surface area, etc., as the case may be.

For generality, corresponding units are indicated in k(T ) and K(T ) as x.
λ Mean value of Poisson distribution, in the current context λ=1Nobserved
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