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Abstract. Water-vapor-weighted mean temperature, Tm, is
the key variable for estimating the mapping factor between
GPS zenith wet delay (ZWD) and precipitable water va-
por (PWV). For the near-real-time GPS–PWV retrieval, esti-
mating Tm from surface air temperature Ts is a widely used
method because of its high temporal resolution and fair de-
gree of accuracy. Based on the estimations of Tm and Ts
at each reanalysis grid node of the ERA-Interim data, we
analyzed the relationship between Tm and Ts without data
smoothing. The analyses demonstrate that the Ts–Tm rela-
tionship has significant spatial and temporal variations. Static
and time-varying global gridded Ts–Tm models were estab-
lished and evaluated by comparisons with the radiosonde
data at 723 radiosonde stations in the Integrated Global Ra-
diosonde Archive (IGRA). Results show that our global grid-
ded Ts–Tm equations have prominent advantages over the
other globally applied models. At over 17 % of the stations,
errors larger than 5 K exist in the Bevis equation (Bevis et al.,
1992) and in the latitude-related linear model (Y. B. Yao et
al., 2014), while these large errors are removed in our time-
varying Ts–Tm models. Multiple statistical tests at the 5 %
significance level show that the time-varying global gridded
model is superior to the other models at 60.03 % of the ra-
diosonde sites. The second-best model is the 1◦× 1◦ GPT2w
model, which is superior at only 12.86 % of the sites. More
accurate Tm can reduce the contribution of the uncertainty
associated with Tm to the total uncertainty in GPS–PWV,
and the reduction augments with the growth of GPS–PWV.

Our theoretical analyses with high PWV and small uncer-
tainty in surface pressure indicate that the uncertainty asso-
ciated with Tm can contribute more than 50 % of the total
GPS–PWV uncertainty when using the Bevis equation, and
it can decline to less than 25 % when using our time-varying
Ts–Tm model. However, the uncertainty associated with sur-
face pressure dominates the error budget of PWV (more
than 75 %) when the surface pressure has an error larger
than 5 hPa. GPS–PWV retrievals using different Tm estimates
were compared at 74 International GNSS Service (IGS) sta-
tions. At 74.32 % of the IGS sites, the relative differences
of GPS–PWV are within 1 % by applying the static or the
time-varying global gridded Ts–Tm equations, while the Be-
vis model, the latitude-related model and the GPT2w model
perform the same at 37.84 %, 41.89 % and 29.73 % of the
sites. Compared with the radiosonde PWV, the error reduc-
tion in the GPS–PWV retrieval can be around 1–2 mm when
using a more accurate Tm parameterization, which accounts
for around 30 % of the total GPS–PWV error.

1 Introduction

Water vapor is an important trace gas and one of the most
variable components in the troposphere. The transport, con-
centration and phase transition of water vapor are directly
involved in the atmospheric radiation and hydrological cy-
cle. It plays a key role in many climate changes and weather
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processes (Adler et al., 2016; Mahoney et al., 2016; Song et
al., 2016). However, water vapor has high spatial–temporal
variability, and its content is often small within the atmo-
sphere. It is a challenge to measure water vapor content ac-
curately and timely. For decades, several methods have been
studied, such as radiosondes and water vapor radiometers,
sun photometers and GPS (Campmany et al., 2010; Ciesiel-
ski et al., 2010; Liu et al., 2013; Perez-Ramirez et al., 2014;
Li et al., 2016). Compared with the traditional water vapor
observations, ground-based GPS water vapor measurement
has the advantages of high accuracy, high spatial–temporal
resolution, all-weather availability and low-cost (Haase et
al., 2003; Pacione and Vespe, 2008; Lee et al., 2010; Means,
2013; Lu et al., 2015). Ground-based GPS water vapor prod-
ucts, mainly including precipitable water vapor (PWV), are
widely used in many fields such as real-time vapor moni-
toring, weather and climate research, and numerical weather
prediction (NWP) (Van Baelen and Penide, 2009; Karabatic
et al., 2011; Rohm et al., 2014; Adams et al., 2017).

GPS observations require some kind of meteorological el-
ement to estimate PWV. Zenith hydrostatic delay (ZHD) can
be calculated using surface pressure Ps with the equation
(Ning et al., 2013):

ZHD= (2.2767± 0.0015)
Ps

f (ϕ,H)
, (1)

where ϕ is the latitude, H is the geoid height in meters, and

f (λ,H)=
(

1− 2.66× 10−3 cosϕ− 2.8× 10−7H
)
. (2)

Then, zenith wet delay (ZWD) is generated by subtracting
ZHD from zenith total delay (ZTD). ZTD can be directly es-
timated from precise GPS data processing. Finally, a con-
version factor Q, which is used to map ZWD onto PWV, is
determined by the water-vapor-weighted mean temperature
Tm over a GPS station. The mapping function from ZWD to
PWV is expressed as follows (Bevis et al., 1992):

PWV=
ZWD
Q
=

ZTD−ZHD
Q

, (3)

and Q is computed using following formula:

Q= 10−6ρwRv
[
(k3/Tm)+ k

′

2
]
, (4)

where ρw is the density of liquid water, Rv is the specific
gas constant for water vapor, k′2 = (22.1±2.2)K mbar−1 and
k3 = (3.739±0.012)×105 K2 mbar−1 are physical constants
(Ning et al., 2016). Tm is the weighted mean temperature
which is defined as a function related to the temperature and
water vapor pressure. It can be approximated as the following
formula (Bevis et al., 1992):

Tm =

∫
e
T

dz∫
e

T 2 dz
≈

n∑
i=1

ei
Ti
1zi

n∑
i=1

ei
T 2
i

1zi

, (5)

where e and T represent vapor pressure in hPa and temper-
ature in Kelvin, i denotes the ith level and 1zi is the height
difference of ith level. Vapor pressure e is calculated using
equation e = es×RH; RH is the relative humidity, and the
saturation vapor pressure es can be estimated from the tem-
perature observations using a Goff–Gratch formula (Sheng et
al., 2013).

There are the three main approaches that are used to esti-
mate Tm. They have respective advantages and disadvantages
when they are applied for different purposes:

1. The integration of vertical temperature and humidity
profiles is believed to be the most accurate method.
The profile data can be extracted from radio soundings
or NWP data sets (Wang et al., 2016). However, some
inconveniences have to be endured. It usually takes a
considerable amount of time to acquire the NWP data,
which are normally released in a large volume every
6 h. This limits the use of NWP data in the near-real-
time GPS–PWV retrieval. Radiosonde data are another
profile data source, but it has low spatial and tempo-
ral resolution. At most of the radiosonde sites, sounding
balloons are cast daily at 00:00 and 12:00 UTC. Fur-
thermore, a large number of GPS stations are not lo-
cated close enough to the radio sounding sites. There-
fore, such methods are appropriate for climate research
or the study of long-term PWV trends, but do not meet
the real-time requirements.

2. Several global empirical models of Tm are established
based on the analyses of Tm time series from NWP
data sets or other sources (Yao et al., 2012; Chen et
al., 2014; Bohm et al., 2015). Tm at any time and any
location can be estimated from these models. They are
often independent of the current meteorological obser-
vations, which are required to be observed together with
the GPS data. However, some important real variations,
which may be dramatic during some extreme weather
events, can be lost without the constraints of current real
data (Jiang et al., 2016). Therefore, these modeled esti-
mates are not accurate enough for high-precision me-
teorological applications, such as providing GPS–PWV
estimates for weather prediction.

3. Many studies indicated that the Tm parameter has a re-
lationship with some surface meteorological elements,
such as surface air temperature or surface air humid-
ity (Bevis et al., 1992; Y. Yao et al., 2014). These sur-
face meteorological parameters can be measured ac-
curately and rapidly. Tm is then estimated using these
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Table 1. Main differences between Ts and Tm models developed in this study and other global used Tm estimation models.

Strategies\Ts–Tm models Bevis model Latitude-related linear model Global-gridded model Time-varying GPT2w model
(Bevis et al., 1992) (Y. B. Yao et al., 2014) (Lan et al., 2016) global gridded (Bohm et al.,

model (our study) 2015)

Applicable regions Regional/global Global Global Global Global

Data sources Radiosonde Ts from the 0.75◦× 0.75◦ Ts from the 0.75◦× 0.75◦ Ts and Tm both Tm from the
ERA-Interim, and Tm from ERA-Interim, and Tm from from the 0.75◦× 1◦× 1◦ ERA-
the 2◦× 2.5◦ the 2◦× 2.5◦ 0.75◦ ERA-Interim Interim monthly
GGOS Atmosphere GGOS Atmosphere mean data

Data processing Integrate 4◦× 5◦ sliding window 4◦× 5◦ sliding window Integrate ERA- Integrate ERA-
radiosonde profiles smooth smooth Interim profiles Interim profiles

Variations in model Static without any Spatial variations depend 4◦× 5◦ global gridded, 0.75◦× 0.75◦ 1◦× 1◦ global
variations on only latitude (15◦ but no temporal global gridded and gridded,

latitude interval), but no variations considering time considering time
temporal variations variations variations, but

independent of
current surface
observations

surface measurements. However, these studies also re-
vealed that the relationships are often weak, except the
Ts–Tm relationship. For example, Bevis et al. (1992) in-
troduced the equation Tm = 0.72 Ts+70.2 [K] after an-
alyzing 8712 radiosonde profiles collected at 13 sites in
the US over 2 years. This equation has been widely used
in many other studies.

According to Rohm et al. (2014), GPS–ZTD can be esti-
mated very precisely by real-time GPS data processing. This
means that Tm is one of the key parameters in the near-real-
time GPS–PWV estimation. On the other hand, method (3) is
the most suitable method for estimating Tm in near real-time
because of its balance between timeliness and accuracy. The
Ts–Tm relationship has spatial–temporal variations. Several
regional Ts–Tm equations were established using the profile
data over corresponding fields (Wang et al., 2012). However,
a Ts–Tm model without spatial variation is not good enough
for a vast field, e.g., the Indian region (Singh et al., 2014).
Aside from this, some vast areas have no specific high-
precision Ts–Tm model, for example over the oceans. In gen-
eral, significant differences exist between oceanic and terres-
trial atmospheric properties, especially near the surface layer
and within the boundary layer. The change in Ts from land
to ocean may be very different from that of Tm. Therefore
it is necessary to model the Ts–Tm relationship over oceanic
regions, since several ocean-based GPS meteorology experi-
ments demonstrated the potential of this technique to retrieve
PWV over the broad ocean (Rocken et al., 2005; Kealy et
al., 2012). A global gridded Ts–Tm model has been estab-
lished by Lan et al. (2016). In this model, the 2.0◦× 2.5◦ Tm
data from GGOS Atmosphere and the 0.75◦× 0.75◦ Ts data
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis data are both smoothed to the res-
olution of 4◦× 5◦. However, the Ts–Tm relationship is vary-

ing in time (Y. Yao et al., 2014), while the Lan et al. (2016)
model is static.

The objective of this study is mainly to (1) develop global
gridded Ts–Tm models without any smoothing of the data,
then assess their precision, and (2) study the performances of
GPS–PWV retrievals using our Ts–Tm models. Table 1 lists
the main differences between the Ts and Tm models devel-
oped in this study and the other global used Tm models. In
Sect. 2, the data sources and determining methods of Tm are
introduced in detail. Then, in section 3 we analyze the Ts–Tm
relationships and their variations on a global scale. Global-
gridded Ts–Tm estimating models in different forms are es-
tablished and evaluated in Sect. 4. Section 5 assesses the ac-
curacies of different PWV retrievals and Sect. 6 presents con-
clusions based on our experiments.

2 Data sources and methodology

As the definition of Tm in Eq. (5), the ei parameter in the
middle of ith level is calculated by vertical exponential in-
terpolation of the water vapor pressure of its two neighbor
measurement points. The temperature is estimated by linear
interpolation of the two neighbor temperatures. The integral
intervals are from the Earth’s surface to the top level of the
profile data. The height of the top level depends on the data
sources we employed. The essential profile data, including
the temperature, height and relative humidity values through
the entire atmospheric column, can be obtained from the ra-
diosondes or NWP data sets.

We employed radiosonde data from the Integrated Global
Radiosonde Archive (IGRA, ftp://ftp.ncdc.noaa.gov/pub/
data/igra, last access: 25 February 2019) to calculate Tm. Ver-
sion 2.0 of the IGRA-derived sounding parameters provides
pressure, geopotential height, temperature, saturation vapor
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pressure and relative humidity observations at the observed
levels. A bias may be introduced if the integrals were ter-
minated at lower levels (Wang et al., 2005); thus the inte-
grations were performed up to the topmost valid radiosonde
data. According to our quality control processes, some ra-
diosonde profile data were rejected. In each profile, the sur-
face observations must be available and the top profile level
should not be lower than the standard 300 hPa level. Further-
more, the level number between the surface and the top level
should be greater than 10 to avoid vertical profiles that are
too sparse. At most of the radio sounding stations, sounding
balloons are launched every 12 h, and their ascending paths
are assumed to be vertical.

Profile data are usually provided by NWP products at cer-
tain vertical levels. The ERA-Interim product from ECMWF
provides data on a regular 512 longitude by 256 latitude
N128 Gaussian grid after the grid transformation performed
by the NCAR Data Support Section (DSS). On each grid
node of ERA-Interim, temperature, relative humidity and
geopotential at 37 isobaric levels from 1000 to 1 hPa can be
obtained. By dividing the geopotential by constant gravita-
tional acceleration value (g ≈ 9.80655 m s−2), we can deter-
mine the geopotential heights of the surface and levels. Data
sets are available at 00:00, 06:00, 12:00 and 18:00 UTC ev-
ery day and have been covering a period from 1979.01 to the
present.

In theory, the computation of Eq. (5) should be integrated
through the entire atmospheric column, and the geopoten-
tial height should be converted to the geometric height.
However, water vapor is solely concentrated in the tropo-
sphere, and most of it is specifically located within the first
3 km a.s.l. (above sea-level). Moreover, in the two selected
data sets, the geopotential heights of top pressure levels are
approximately 30–40 km. Geopotential height is very close
to geometric height in such height ranges. According to our
computation, the relative difference between them is only
between 0.1 % and 0.9 %. In fact, the height difference 1z
can be replaced by the geopotential height difference 1h in
Eq. (5), since the division can almost eliminate the difference
between the two different height types. The Tm value nearly
has no change after such height replacement. For the conve-
nience of the calculation, we directly employed the geopo-
tential height variable. In this paper, we denoted the Tm de-
rived from ERA-Interim as Tm_ERAI.

At each reanalysis grid node, the computation of Eq. (5) al-
ways starts from the surface height to the top pressure level.
The pressure levels below surface height were rejected. Ts is
defined as the variable of “temperature at 2 m above ground”,
and surface water vapor pressure can be derived from the
“2 m dew-point temperature” variable in ERA-Interim. These
Ts were also used in the regression analyses between Ts
and Tm.

Figure 1. Correlation coefficients between Ts and Tm generated
from radiosonde data (dots) and ERA-Interim reanalysis data sets
(color-filled contours) over a period of 4 years from 2009 to 2012.

3 Correlation between Ts and Tm

Many studies have indicated the close relationship between
Ts and Tm. However, Tmis also found to not be closely related
to Ts in some regions, e.g., in the Indian zone (Suresh Raju
et al., 2007). Using the Tm and Ts generated from the global
gridded reanalysis data, we are able to study the Ts–Tm rela-
tionship in detail.

We first carried out a linear regression analysis on 4 years
of Ts and Tm data generated from the radiosonde data and
the global gridded ERA-Interim data sets, with data cover-
ing the period January 2009 to December 2012. The analysis
results are shown in Fig. 1. Although the two data sets have
different temporal resolutions (12 h for the radiosonde data
and 6 h for the ERA-Interim data) and spatial resolutions,
both analyses agree well with each other. This is expected
because the radiosonde data have been assimilated into the
ERA-Interim products. Our analyses also indicate that the
Ts-=Tm correlation coefficient is generally related to the lat-
itude. The same conclusion has been drawn in other stud-
ies (Y. B. Yao et al., 2014). Significant positive correlation
coefficients can be found at middle and high latitudes and
reach a maximum in the polar regions. The correlation co-
efficients drop dramatically at low latitudes. This is because
Tm is stable there, showing independency of the other pa-
rameters. To study the variations of Ts and Tm, we illustrated
the denary logarithm values of their standard deviations in
Fig. 2. It is evident that Tm varies to a lesser degree than
Ts at low latitudes. Aside from the latitude-related features,
there are obvious differences of the Ts–Tm correlation coeffi-
cients between land and ocean. We even found that negative
correlation coefficients over certain oceans, e.g., low-latitude
western Pacific, Bay of Bengal or Arabian Sea (see Fig. 1).
Unreliable regression analysis results may be derived when
the Ts and Tmdata both have small variations. In Fig. 3, scat-
ter plots of Ts and Tm from ERA-Interim at two locations
0.35◦ N 180.00◦ E and 70.53◦ N 180.00◦ E are given. As the
blue dots show, the Ts–Tm relationship is weak in the areas
near the equator, because the entire variation ranges of Ts and
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Figure 2. Denary logarithm of the standard deviation of (a) Ts
and (b) Tm generated from the ERA-Interim data covering the
years 2009 to 2012. Temperature unit is Kelvin.

Tm are both within 10 K. This results in a meaningless linear
regression (see the magenta line). The Ts–Tm correlation co-
efficient is only −0.0893 there. Other than the large spatial
variations, studies have revealed that the Ts–Tm relationship
also has temporal variations (Wang et al., 2005). Therefore, a
good Ts–Tm model should take both the spatial and temporal
variations into consideration, and this is the main aim in the
following sections.

4 Development of global-gridded Ts–Tm models

Since the Ts–Tm relationship has large spatial variations, a
global gridded Ts–Tm model is preferred for precise GPS–
PWV estimations. In this section, a static global gridded
model and a time-varying global gridded model are estab-
lished and assessed.

4.1 Static global-gridded Ts–Tm model

A linear formula Tm = aTs+ b for the relation between Tm
and Ts has been adopted in many studies. Based on the Ts
and Tm products from the ERA-Interim data covering the
years 2009 to 2012, we performed linear fittings of Tm ver-
sus Ts on each grid point. Then, the slope constant (a), the
intercept constant (b) and the fitting root mean square er-
ror (RMSE) of each linear expression were calculated and
contoured in Fig. 4. The a and b values are related to the

Figure 3. Ts–Tm scatter plots at two locations: (blue dots) 0.35◦ N
180.00◦ E and (red dots) 70.53◦ N 180.00◦ E. The magenta and
green lines are their linear fitting curves. Temperature unit is Kelvin.

latitude as well as the underlying surface (e.g., land, ocean).
In the middle–high latitudes over the Northern Hemisphere,
constant a value varies from 0.6 to 0.8, and constant b is
approximately 100–50 over most of the continents. The con-
stants in the Bevis equation are within these value ranges.
Constant a is smaller (approximately 0.5–0.7) over land at
the middle–high latitudes over the Southern Hemisphere. In
particular, there are abrupt changes in the values of con-
stants a and b from land to ocean at the middle–high lati-
tudes due to the different feature variations of Ts and Tm (see
Fig. 2). At low latitudes, the a value is smaller than over the
other regions, because of the low variations of Ts and Tm.
The fitting RMSEs are within 2–4 K over the middle–high
latitude lands, and lower values are obtained over the oceans
or at low latitudes. The reason for the low RMSE around the
equator is the smaller fluctuation of Tm. Meanwhile, there is
no RMSE larger than 4.5 K in the results of our model. As we
did not perform any spatial or temporal smoothing of the data
during the data processing, both the precision and resolution
of our static model are better than other models (e.g., Lan et
al., 2016).

4.2 Time-varying global-gridded Ts–Tm model

The time variation in the Ts–Tm relationship should also be
considered in a precise Ts–Tm model. Therefore, a time-
varying equation is applied for Ts–Tm regression at each grid
node:

Tm = aTs+ b+m1 cos
(

doy
365.25

2π
)
+m2 sin

(
doy

365.25
2π
)

+ n1 cos
(

doy
365.25

4π
)
+ n2 sin

(
doy

365.25
4π
)

+p1 cos
(

h
12
π

)
+p2 sin

(
h
12
π

)
, (6)

where “doy” represents the observed day of year and “h” is
the observed hour in UTC time; (m1, m2), (n1, n2) and (p1,

www.atmos-meas-tech.net/12/1233/2019/ Atmos. Meas. Tech., 12, 1233–1249, 2019



1238 P. Jiang et al.: Development of time-varying global gridded Ts–Tm model for precise GPS–PWV retrieval

Figure 4. Distributions of the (a) slope constant a, (b) intercept
constant b and (c) RMSE of static linear Ts–Tm equations at ERA-
Interim grid nodes. Temperature unit is Kelvin.

p2) are fitting coefficients. These equations can reflect the
amplitudes of annual, semiannual and diurnal variations in
our Ts–Tm models.

Our new regression model found similar values for the co-
efficients a and b (of its static term) as for the static model
in Sect. 4.1, except for some differences over the oceans.
In Fig. 5, besides these constants a and b, we illustrate the
amplitudes of annual, semiannual and diurnal terms. We can
see that there are large annual variations (amplitude> 5 K) in
the vast regions from Tibet to northern Africa, and in some
places of the Siberia and Chile. Large diurnal variations (am-
plitude> 3 K) mainly occur over the midlatitude lands such
as northeastern Asia or North America. Semiannual varia-
tions, however, are small in most areas except some high-
latitude areas (amplitude> 3 K). All variations are smaller
over the oceans due to the slower temperature changes over
water than over land. The estimated Tm RMSE is also con-
toured in Fig. 5, and we can see that the RMSE dropped sig-

nificantly in the regions with large annual or diurnal varia-
tions.

4.3 Assessments of Ts–Tm models

To further assess the precision of the Ts–Tm models using
other independent data sources, we generated Tm and Ts
from the radiosonde data at 723 radiosonde stations in the
year 2016. These data are not assimilated into the 2009–
2012 ERA-Interim data sets. As a result, we can regard them
to be independent of our model. At each radiosonde site, dif-
ferent Ts–Tm models were employed to calculate Tm. In addi-
tion, we also estimated Tm using the 1◦× 1◦ GPT2w model
(Bohm et al., 2015), which is a global gridded Tm empirical
model independent of the surface meteorological observation
data. Then, these calculated Tm will be evaluated by being
compared with the integrated Tm of radiosondes (denoted as
Tm_RS) twice a day.

The model estimations of Tm are denoted by Tm_Bevis,
Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w for the Bevis
equation, the latitude-related model, our static global gridded
model, time-varying global gridded model and the GPT2w
model. When the global gridded models are employed, the
radiosonde station may not be located at a grid node. There-
fore, we interpolated the coefficients in the Ts–Tm equations
from the neighboring grids to the radiosonde sites. The inter-
polation formula is expressed as follows (Jade and Vijayan,
2008):

Csite =

4∑
i=1

wiCigrid. (7)

Csite and Cisite represent the coefficients in Ts–Tm equations
at the radiosonde site location and its neighboring grids, re-
spectively.wi are the interpolation coefficients, which are de-
termined using the equation

wi =

(
Rψ i

)−λ
4∑
j=1

(
Rψj

)−λ , (8)

where R = 6378.17 km is the mean radius of the earth, λ is
the scale factor which equals one in our study, and ψ i is the
angular distance between the ith grid node and the station’s
position. ψ i are computed using following formula (with lat-
itude ϕ and longitude θ ):

cosψ i = sinϕi sinϕ+ cosϕi cos
(
θ i − θ

)
cosϕ. (9)

Considering the fact that the reanalysis grids are definite and
every radiosonde site is in situ, we can compute the interpo-
lation coefficients in Eq. (7) for all of the radiosonde stations.
Then, these coefficients are stored as constants to avoid redu-
plicating the calculation.

Taking Tm_RS as the reference values, we calculated the bi-
ases and RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and
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Figure 5. (a) The slope constant a, (b) intercept constant b, amplitudes of Tm (c) annual, (d) semiannual and (e) diurnal terms in our
time-varying global gridded Ts–Tm model, and (f) the model-estimated Tm RMSE distribution. Temperature unit is Kelvin.

Tm_GPT2w at each radiosonde site. The results are illustrated
in Fig. 6. Obviously, in many regions, the Bevis equation has
bad precision with the absolute bias and RMSE both larger
than 5 K. Tm_LatR can reduce the estimated biases in many
areas, but the RMSEs remain large. Large biases still exist
at quite a few radiosonde stations, e.g., in Africa or western
Asia. Tm_static and Tm_GPT2w remove the large Tm biases at
most of the radiosonde stations. Tm_varying performs signifi-
cantly better over the world, especially in the Middle East,
North America, Siberia, etc.

Detailed statistics of the distributions of the bias and
RMSE using different models are shown in Fig. 7 and Ta-
ble 2. At over 97.37 % of the radiosonde stations, the bi-
ases of Tm_varying are within −3–3 K. Large positive biases
(> 3 K) nearly disappear in Tm_varying. In contrast, there are
significant large biases in Tm_Bevis and Tm_LatR. Improve-
ments in RMSE are more evident. The RMSEs of Tm_varying
are smaller than 4 K at over 91 % of the radiosonde sites,
while few sites (< 1 %) have RMSEs larger than 5 K. This is
clearly better than the other models. In Tm_Bevis and Tm_LatR,
there are more than 17 % of the radiosonde sites with RMSEs

larger than 5 K. The overall performance of Tm_GPT2w is very
close to Tm_Bevis, except that its absolute bias is smaller than
the other Ts–Tm models.

To identify the superior Tm estimation model at each ra-
diosonde site, we employed the following statistical tests un-
der the assumption of a normal distribution of the estimated
Tm error:

1. First, Brown–Forsythe tests (Brown and Forsythe,
1974) of the equality of variances were carried out at
each site for estimating the Tm errors from two different
models, e.g., model A and B. The purpose of this step
is to determine whether there are significant differences
in the variances of the Tm results. If the test rejects the
null hypothesis at a 5 % significance level and the errors
of model A and B have the same variance, the model
with the smaller sample variance is regarded as the bet-
ter one. However, if the test does not reject the homo-
geneity of variances, analysis of variance (ANOVA) is
performed in the next step.
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Table 2. Statistics of Tm estimates from different models. Reference data are the radiosonde Tm derivations.

Statistics Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w

Average value of absolute Tm bias (K) 1.88 1.30 1.13 1.08 1.06
Average value of Tm RMSE (K) 3.95 3.81 3.36 3.01 3.80
Average relative RMSE of Tm (%) 1.44 1.39 1.22 1.09 1.39
Max. relative RMSE of mean Tm (%) 3.69 4.26 2.40 2.19 4.31
Percent of sites with Tm RMSE< 4 K 55.19 61.00 76.49 91.01 53.94
Percent of sites with Tm relative RMSE less than 1.5 % 59.47 64.73 78.01 89.76 56.43

Figure 6.

2. ANOVA is a technique used to analyze the differences
among group means (Hogg and Ledolter, 1987). It eval-
uates the null hypothesis that the samples all have the
same mean against the alternative that the means are

not the same. If the null hypothesis is rejected at a 5 %
significance level, the Tm sample with smaller absolute
mean value is believed to be better. Otherwise, we think
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Figure 6. (a, c, e, g, i) The biases and (b, d, f, h, j) the RMSEs of the estimated Tm from (a, b) the Bevis equation, (c, d) the latitude-related
model, (e, f) our static global gridded model, (g, h) our time-varying global gridded model and (i, j) the GPT2w model at each radiosonde
station. Reference data are the radiosonde data of the year 2016. Temperature unit is Kelvin.

Figure 7. The distributions of (1) the biases and (2) the RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w compared with
the radiosonde data at 723 stations in the year 2016. Temperature unit is Kelvin.
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Table 3. Number of radiosonde sites at which the five global applied Tm estimation models had superior performance.

Superior model None Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w

Number of sites 50 46 61 39 434 93

Figure 8. Tm series of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, Tm_GPT2w and Tm_RS at the IGRA station (a) no. 62378 and (b) no. 40841.
Temperature unit is Kelvin.

that the two models perform almost as well at this ra-
diosonde site.

3. After multiple tests and comparisons, the best model at
each radiosonde station may be identified. However, at
some sites no superior model can be confirmed. All the
models are believed to have equivalent performance.

Finally, we counted the number of sites at which each Tm
model performed the best. The results are given in Table 3.
The time-varying global gridded model is superior to the oth-
ers at 434 radiosonde stations (60.03 % of all sites), while
the second-best estimation, Tm_GPT2w, is superior at only
12.86 % of the sites.

In Fig. 8 the Tm series at the IGRA station no. 62378
(29.86◦ N 31.34◦ E in Egypt) are given. We can see that large
negative biases (<−5 K) between Tm_Bevis (or Tm_LatR) and
Tm_RS exist. Tm_static performs only slightly better from July

to October. However, Tm_varying and Tm_GPT2w can eliminate
most of the seasonal errors. Different properties of Tm series
appear at another IGRA station no. 40841 (30.25◦ N 56.97◦ E
in Iran). Some observation data are missing, but we can still
see that there are large positive differences (> 5 K) between
Tm_Bevis (or Tm_LatR) and Tm_RS throughout the year. The bi-
ases of Tm_static are much smaller, but some large errors still
appear in many months. The Tm_varying, however, performs
as well as the Tm calculated from the radiosonde data, with
small biases, and captures the variations well. The time se-
ries ofTm_GPT2w are smoother and cannot capture the fluctu-
ations of the Tm time series, causing an accuracy worse than
Tm_varying.

On the other hand, even Tm_varying have large differences
from Tm_RS at a few IGRA stations. This can be explained
by the fact that our fitting analyses are based on the Tm val-
ues derived from ERA-Interim profiles. The quality of ERA-
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Figure 9. Variation in the uncertainty inQ with the value of Tm and
the uncertainty in Tm.

Interim data can be very poor in the regions with sparse ob-
servation data (Itterly et al., 2018).

5 GPS–PWV retrieval experiments

GPS–PWV has different error sources with different proper-
ties. It is complicated to evaluate the GPS–PWV uncertainty
here due to the lack of collaborated additional independent
techniques that monitor water vapor at the GPS site.

5.1 Theoretical analysis of the GPS–PWV uncertainty

Comprehensive research on the uncertainty in GPS–PWV
has been carried out by Ning et al. (2016). The uncertainties
in ZTD, ZHD and conversion factor Q have been studied in
detail. The total uncertainty in GPS–PWV is as follows:

σPWV =
1
Q√

σ 2
ZTD+

(
2.2767σPs

f (ϕ,H)

)2

+

(
Psσc

f (ϕ,H)

)2

+
(
PWV · σQ

)2
,

(10)

where σPWV, σZTD, σPs and σQ are, respectively, the uncer-
tainties of GPS–PWV, the ZTD estimation, the Ps observa-
tions and the conversion factor Q. σc = 0.0015 denotes the
uncertainty in constant C = 2.2767 in Eq. (1), PWV is the
value of GPS–PWV, and

σQ = 10−6ρwRv

√(
σk3

Tm

)2

+ σ 2
k′2
+

(
k3
σTm

T 2
m

)2

, (11)

where σk3 = 0.012× 105 K2 hPa−1, σk′2 = 2.2 K hPa−1 and
σTm , respectively, denote the uncertainties of k3, k′2 and Tm
in Eq. (4). The variation in σQ with the values of Tm and σTm

is depicted in Fig. 9. Assuming that Tm is 280 K, we find that
the σQ increases by over 60 % (from 0.069 to 0.112) as the
σTm rises from 3.0 to 5.0 K. However, the σQ is less sensi-
tive to the value of Tm. The σQ rises only by 17.96 % (about
from 0.061 to 0.075) as the value of Tm drops from 300 to
270 K with σTm = 3.0 K.

Table 4. Different typical values for σPs , σTm , Ps and PWV.

Set of σPs σTm Ps PWV
typical (hPa) (K) (hPa) (mm)
values

(a) 0.5 0–7 K 1013.25 50
(b) 0.5 0–7 K 850 50
(c) 0.5 0–7 K 1013.25 20
(d) 5 0–7 K 1013.25 50
(e) 5 0–7 K 1013.25 20

Ning et al. (2016) assumed the Tm were obtained from
NWP models so the uncertainty in Tm was set to be small
(σTm = 1.1 K). However, as shown in Sect. 4.3, the uncertain-
ties of Tm from different Tm models are significantly larger
at the radiosonde stations. For each radiosonde station, we
calculated the mean value of Tm and assigned the σTm with
the RMSEs of Tm given in Fig. 6. Then we obtained the σQ
in Eq. (11). Our statistics indicate that the σQ using our vary-
ing Ts–Tm model decreases on average by 19.26 %, 17.77 %,
7.79 % and 18.67 % with respect to the σQ, respectively, us-
ing Tm_Bevis, Tm_LatR, Tm_static and Tm_GPT2w. For example,
at the IGRA station no. 42724 (22.88◦ N 91.25◦ E in India),
σQ drops by 53 % from 0.141 of the Tm_Bevis to 0.066 of the
Tm_varying.

The uncertainty in Q will be propagated to the total un-
certainty in GPS–PWV according to Eq. (10). We obtained
the contributions of the different terms in Eq. (10) to the total
GPS–PWV uncertainty. The contribution of one term is mea-
sured by the percentage it accounts for the total σPWV. The
percentages are computed using the formulas

pZTD =
(σZTD/Q)

2

σ 2
PWV

, pPs =

[
2.2767σPs/(f (ϕ,H)Q)

]2
σ 2

PWV
,

pC =

[
Psσc/(f (ϕ,H)Q)

]2
σ 2

PWV
,pQ =

(
PWV · σQ/Q

)2
σ 2

PWV
(12)

where pZTD, pPs , pC and pQ, respectively, indicate the con-
tributions of the uncertainties associated with ZTD, Ps, con-
stant C and factor Q to the total σPWV. Following the sum-
maries of Ning et al. (2016), we assumed that σZTD = 4 mm
and σC = 0.0015. Tm identically equals 280 K since the σQ
is less sensitive to the value of Tm with respect to the σTm .
Table 4 gives five sets of typical values which are assigned to
the σPs , σTm , Ps and PWV in Eqs. (10)–(12).

The σPs equals 0.2 hPa in Ning et al. (2016); however
we enlarged its typical value to 0.5 hPa in consideration of
the possible worse performance of the surface barometers.
In Fig. 10, we illustrated the contributions of the terms in
Eq. (12) based on the assumptions (a)–(e) in Table 4. Some
feature variations of the contributions of different terms can
be found from the comparisons between different subplots:
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Figure 10. Contributions of different terms to the total uncertainty in GPS–PWV with the typical values shown in Table 4.

1. No significant difference exists between Fig. 10a and b.
Because of the small value of σc in Eq. (10), the σPWV
is not sensitive to the value of Ps. Meanwhile, the un-
certainty associated with σc contributes less than 10 %
of the σPWV.

2. With the typical values in Table 4 (values a and b), a
reduction of σTm can reduce the pQ significantly. For
example, in Fig. 10a, the pQ accounts for 69.54 % with
σTm = 6 K, and it declines to 38.19 % with σTm = 3 K.

3. As Fig. 10c shows, the uncertainty associated with σZTD
accounts for the main part of σPWV when the values of
PWV and σPs are not high. With the typical values in
Table 4 (value c), the pZTD can be up to 74.21 % with
σTm = 3 K. The pQ, however, can drop from 26.76 %
to 9.00 % as the σTm decreases from 6 to 3 K. Although
the pQ is not large under this situation, a smaller σTm can
still reduce the contribution of σQ to the σPWV.

4. The uncertainty associated with σPs dominates the error
budget of PWV when the σPs is large. In Fig. 10d and e,
the pPs is over 80 % with σTm < 3 K and σPs = 5 hPa.
In Fig. 10d, the pQ increases from 7.55 % to 23.19 % as
the σTm rises from 3 to 6 K. However, in Fig. 10e, the
pQ only grows from 1.29 % to 4.61 % with the same
variation in σTm .

Theoretical analyses of σPWV were also carried out at
two representative stations. At the IGRA station no. 42971
(20.25◦ N 85.83◦ E, in India), the mean value of PWV
is 53.88 mm. The RMSEs of Tm_Bevis, Tm_LatR, Tm_static,
Tm_varying and Tm_GPT2w are 4.30, 3.15, 2.41, 1.93 and
1.97 K. The σTm in Eq. (11) was replaced by the calculated
RMSEs, and the pZTD, pPs , pC and pQ were generated with
two typical values, 0.5 and 5 hPa, assigned to the σPs . With

σPs = 0.5 hPa, the pC accounts for around 7 %, while the pPs

accounts for around 4 % of the total σPWV. By using differ-
ent Tm estimations, the variations of pC and pPs are both
within 4 %. However, the pQ varies more evidently. It ac-
counts for averages of 55.69 %, 40.77 %, 30.70 %, 23.53 %
and 24.11 % of the σPWV with the estimations of Tm_Bevis,
Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w, respectively. The
pZTD rises with the reduction of pQ, e.g., from 36.23 % of
Tm_Bevis to 62.53 % of Tm_varying. On the other hand, with
σPs = 5 hPa, the pPs accounts for more than 75 % of the
σPWV, while the pQ decreases from 14.21 % of Tm_Bevis to
3.9 % of Tm_varying.

At another representative station, the IGRA station
no. 50557 (49.17◦ N 125.22◦ E, in northeastern China), the
mean PWV is only 12.17 mm. The RMSEs of Tm_Bevis,
Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w are 5.16, 3.94,
3.54, 2.99 and 5.10 K. We can see that the accuracy of Tm
has been improved significantly. However, because of the low
average value of PWV, the pZTD averagely contributes over
73.5 % of the σPWV, while the pQ averagely contributes less
than 10.5 % assuming σPs = 0.5 hPa and less than 1.5 % as-
suming σPs = 5 hPa. But such a discussion only concerns the
average values. In fact, even at this station there are still some
high values of PWV, for example at 12:00 UTC 22 July 2016,
the PWV reached 48 mm. For the observations with high
PWV, the improvement in the accuracy of Tm can still ex-
ert a significant positive impact on the reduction of pQ.

It is worth mentioning that the uncertainty in ZHD may
be underestimated in some situations. There are two reasons
for this. Firstly, the calculation of ZHD assumes that the wa-
ter vapor does not contribute to the mass of the atmosphere.
The ZHD error introduced by this assumption is often neg-
ligible. But in some very wet regions, the mass of water va-
por could produce significant errors in the ZHD calculation.
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Table 5. Statistics on the relative errors of different PWV retrievals.

Statistics PWVBTm PWVLTm PWVSTm PWVVTm PWVGPT2w

Mean relative RMSE of all sites 1.18 % 1.12 % 0.93 % 0.91 % 1.32 %
Number of sites with relative errors< 1.0 % 28 31 55 55 22

Secondly, and more importantly, the error of Ps in Eq. (1)
can sometimes be very large. Small σPs is reasonable when
the surface barometer is calibrated routinely and equipped
together with the GPS antenna. However, if there were sig-
nificant height difference between the GPS antenna and the
barometer, the error for ZHD would increase significantly.
Snajdrova et al. (2006) found that 10 m of height difference
approximately causes a difference of 3 mm in the ZHD. On
the other hand, Ps can be generated from NWP data if there
are no nearby barometers at GPS site. The error of Ps could
be very large using this method (Means and Cayan, 2013;
Jiang et al., 2016). In these cases, the GPS–PWV error re-
duction will be very limited due to the more precise Tm esti-
mation.

5.2 Impact of real Tm estimation

To study the impact of Tm on the real GPS–PWV retrieval,
we first downloaded GPS ZTD products (Byun and Bar-
Sever, 2009) at 74 IGS sites in the year 2016 from the
NASA Crustal Dynamics Data Information System (CD-
DIS) ftp address (ftp://cddis.gsfc.nasa.gov/pub/gps/products/
troposphere/zpd, last access: 25 February 2019). These se-
lected GPS sites were equipped with meteorological sen-
sors so that the surface pressure and temperature measure-
ments could also be obtained. ZHD was calculated using
Eq. (1). It is subtracted from ZTD to obtain ZWD. Then, Tm
was generated with six approaches: the first five Tm series
were Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w.
The sixth Tm was integrated from the ERA-Interim pro-
files and interpolated to each GPS site (Jiang et al., 2016;
Wang et al., 2016). Finally, the GPS–PWV was generated
from the ZWD and the six different Tm estimates leading
to over 100 compared points for each GPS–PWV series.
We denoted these GPS–PWV sets as PWVBTm, PWVLTm,
PWVSTm, PWVVTm, PWVGTm and PWVETm. The only dif-
ference between these GPS and PWV estimations is the Tm
estimation model; therefore, the impact of other errors is ex-
cluded.

The Tm from ERA-Interim is believed to be the most ac-
curate among our Tm estimates at the selected GPS sites.
We therefore took the PWVETm as reference values to assess
the other PWV. The relative RMSEs of PWVBTm, PWVLTm,
PWVSTm, PWVVTm and PWVGTm at these selected stations
were calculated and are illustrated in Fig. 11. Detailed statis-
tics are given in Table 5. The mean relative error of all
sites drops from 1.18 % of the PWVBTm to 0.91 % of the
PWVVTm. PWVVTm has the minimum mean relative errors

at 51.35 % of the sites, while PWVSTm is superior at 27.03 %
of the sites. PWVSTm and PWVVTm obtain relative RM-
SEs smaller than 1.0 % at 55 sites, while only 28 sites of
PWVBTm, 31 sites of PWVLTm and 22 sites of PWVGTm
perform similarly. For example, at the ALIC site (23.67◦ S
133.89◦ E, in Australia), with a mean PWV of approximately
23 mm, the relative RMSE dropped from 1.97 % of PWVBTm
to 1.10 % of PWVVTm. The time series of the relative dif-
ferences of PWVBTm, PWVLTm, PWVSTm, PWVVTm and
PWVGTm are given in Fig. 12. We found that some relative
RMSEs could be reduced by more than 2 % from PWVBTm
to PWVVTm. Obviously, PWVBTm and PWVLTm have larger
relative errors throughout the year, while the PWV differ-
ences are significantly larger only in the summer season
(when the PWV values are highest). Apparently, the Tm vari-
ations in summer are not modeled well by either the Be-
vis model and the latitude-related model. PWVSTm elimi-
nate those large differences but still retain some residual er-
rors, which are removed by more than 0.5 mm in PWVVTm.
PWVGTm has some large errors during the period from May
to July. All of these results demonstrate that our time-varying
model has a precision advantage.

5.3 Comparisons between GPS–PWV and
radiosonde PWV

Among our selected 74 IGS sites, there are only 11 sites
located within 5 km to a nearby IGRA radiosonde station.
At these common stations, we generated PWV from the ra-
diosonde data (PWVRS) by adjusting the sounding profiles to
the heights of IGS sites. It is worth noting that a geoid undu-
lation correction should be carried out on each IGS site geoid
height (Jiang et al., 2016). Then, we compared PWVBTm,
PWVLTm, PWVSTm, PWVVTm, PWVGTm and PWVETm with
PWVRS. Figure 13 shows the statistics. The RMSEs of GPS–
PWV are approximately 1–5 mm. Comparisons indicate that
the RMSEs of different GPS–PWV retrievals are very close
(differences< 0.2 mm) regardless of the applied Tm sources
at most of the selected sites. This means that other errors
(e.g., ZTD estimation errors or sounding sensors errors) in-
stead of the Tm make up the bulk of the differences between
the GPS–PWV and the radiosonde PWV. Actually, each
sounding does not represent the vertical sounding centered
at the radiosonde site because of the complex path of the bal-
loon. And GPS–PWV represents the averaged value of the
water vapor zenithal projection from all the slant signal paths
during the observation period. Such differences can intro-
duce significant uncertainty into our comparisons. However,
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Figure 11. Relative RMSEs of PWVBTm, PWVSTm, PWVVTm and PWVGTm compared with PWVETm at 74 IGS stations in the year 2016.

Figure 12. (a) PWV differences and (b) relative differences of PWVBTm, PWVLTm, PWVSTm, PWVVTM and PWVGTm compared with
PWVETm at the ALIC station in the year 2016. PWV unit is millimeters.

we still found obvious gaps between PWV at the NRIL sta-
tion (88.36◦ N 69.36◦ E, 4.1 km away from the IGRA station
no. 23078 in Russia). The RMSE decreases from 2.29 mm of
PWVBTm to 1.84 mm of PWVVTm and 1.42 mm of PWVETm.
As shown in Fig. 14, the large PWV differences appear
mainly from May to September. During those five months,
the mean GPS–PWV difference to PWVRS decreases by over
30 % from 2.52 mm of PWVBTm to 1.67 mm of PWVVTm,
and the reductions of GPS–PWV error are mainly around 1–
2 mm. This is attributed to the wetter atmosphere in these

months. As indicated by the uncertainty analysis in Sect. 5.1,
the improvement in the accuracy of Tm can be translated into
more error reduction in the GPS–PWV retrieval with higher
values of PWV.

6 Summary and conclusion

We developed two global gridded Ts–Tm models, which are,
respectively, static and time-varying with a spatial resolu-
tion of 0.75◦× 0.75◦. The models are established by an-
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Figure 13. RMSEs of the PWVBTm, PWVSTm, PWVVTm, PWVGTm and PWVETm compared with the PWVRS at 11 IGS stations in 2016.
PWV unit is millimeters.

Figure 14. PWV differences of the PWVBTm, PWVLTm, PWVSTm, PWVVTm, PWVGTm and PWVETm compared with the PWVRS at the
NIRL station in the year 2016. PWV unit is millimeters.

alyzing the ERA-Interim reanalysis data sets covering the
years 2009–2012, which indicated the significant spatial–
temporal variations in Ts–Tm relationship as well as the ra-
diosondes covering the same period. The annual, semiannual
and diurnal variations in Ts–Tm relationship are considered
in the time-varying model. The time-varying global gridded
Ts–Tm model has a significant global precision advantage
over the other globally applied models, including the Bevis
equation, the latitude-related model and the GPT2w model.
The average RMSE of Tm reduces by approximately 1 K. At
over 90 % of the radiosonde sites, our time-varying model
has RMSE smaller than 4 K, while the RMSEs larger than
5 K nearly disappear. On the other hand, in the Bevis model
or in the latitude-related model, there are more than 17 %
of the radiosonde sites with RMSEs larger than 5 K. Mul-
tiple statistical tests at the 5 % significance level identified
the significant superiority of our varying model at more than
60 % of the radiosonde sites. Analyses at the specific stations
demonstrate that the errors larger than 5 K in the estimated
Tm series can be eliminated by our varying Ts–Tm model.

More precise Tm estimations can decrease by around 20 %
of the uncertainty in the conversion factor Q, which maps
GPS–ZWD to GPS–PWV, and the reduction can be even
more than 50 % at some stations. The contribution of the un-
certainty associated with Q to the total GPS–PWV uncer-
tainty also declines when using a more precise Tm model.

The reduction is related to the value of PWV and the uncer-
tainty in the surface pressure. With GPS–PWV higher than
50 mm, the uncertainty associated with Q contributes more
than 55 % of the uncertainty in GPS–PWV when using the
Bevis equation and less than 25 % when using our varying
Ts–Tm model, assuming the ZTD and the surface pressure
are measured accurately with the uncertainties of 4 mm and
0.5 hPa, respectively. However, the uncertainty in ZTD or in
surface pressure would dominate the error budget of GPS–
PWV (> 70 %) if the value of GPS–PWV were small or the
uncertainty in surface pressure were large. In these cases,
the uncertainty associated with Q only contributes around
10 % of the GPS–PWV uncertainty or even smaller. Taking
the GPS–PWV, using ERA-Interim Tm estimates at 74 IGS
sites as the references, we found that the GPS–PWV using
our time-varying Ts–Tm model obtained the minimum mean
relative error at 51.35 % of the sites, while the GPS–PWV
using the static gridded Ts–Tm model is superior at only
27.03 % of the sites. The differences between GPS–PWV
and radiosonde PWV are approximately 1–5 mm. And our
varying Ts–Tm model can reduce the error in the GPS–PWV
retrieval by 30 % (around 1–2 mm) with respect to the Bevis
equation.

According to our experiments, we are confident that the
time-varying global gridded Ts–Tm models presented here
will help us to retrieve GPS PWV more precisely and to study

www.atmos-meas-tech.net/12/1233/2019/ Atmos. Meas. Tech., 12, 1233–1249, 2019



1248 P. Jiang et al.: Development of time-varying global gridded Ts–Tm model for precise GPS–PWV retrieval

the precise PWV variations in high temporal resolution. The
Matlab array file consisting of the global gridded coefficients
in our model, as well as codes for interpolating coefficients
at any given location, is provided in the supplement of this
study.

Data availability. – Radiosonde data: ftp://ftp.ncdc.noaa.gov/
pub/data/igra (IGRA radiosonde data, 2019);

– ERA-Interim project: https://doi.org/10.5065/D6CR5RD9
(European Centre for Medium-Range Weather Forecasts,
2019);
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