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Abstract. The study assesses the possible benefit of assim-
ilating aerosol optical depth (AOD) from the future space-
borne sensor FCI (Flexible Combined Imager) for air quality
monitoring in Europe. An observing system simulation ex-
periment (OSSE) was designed and applied over a 4-month
period, which includes a severe-pollution episode. The study
focuses on the FCI channel centred at 444 nm, which is the
shortest wavelength of FCI. A nature run (NR) and four
different control runs of the MOCAGE chemistry transport
model were designed and evaluated to guarantee the robust-
ness of the OSSE results. The synthetic AOD observations
from the NR were disturbed by errors that are typical of the
FCI. The variance of the FCI AOD at 444 nm was deduced
from a global sensitivity analysis that took into account the
aerosol type, surface reflectance and different atmospheric
optical properties. The experiments show a general benefit to
all statistical indicators of the assimilation of the FCI AOD at
444 nm for aerosol concentrations at the surface over Europe,
and also a positive impact during the severe-pollution event.
The simulations with data assimilation reproduced spatial
and temporal patterns of PM10 concentrations at the surface
better than those without assimilation all along the simula-
tions and especially during the pollution event. The advan-
tage of assimilating AODs from a geostationary platform
over a low Earth orbit satellite has also been quantified. This
work demonstrates the capability of data from the future FCI

sensor to bring added value to the MOCAGE aerosol simu-
lations, and in general, to other chemistry transport models.

1 Introduction

Aerosols are liquid and solid compounds suspended in the
atmosphere, which have sizes ranging from a few nanome-
tres to several tens of micrometres and lifetimes in the tro-
posphere varying from a few hours to a few weeks (Seinfeld
and Pandis, 1998). Stable sulfate aerosols at high altitude can
last for years (Chazette et al., 1995). The sources of aerosols
may be natural (dust, sea salt, ashes from volcanic eruptions,
for instance) or anthropogenic (from road traffic, residential
heating, industries, for instance), and they can be transported
up to thousands of kilometres. Aerosols are known to have
significant impacts on climate (IPCC, 2007) and on air qual-
ity and further on human health as WHO (2016) estimated
over 3 million deaths in 2012 to be due to aerosols.

Aerosols absorb and diffuse solar radiation, which leads to
local heating of the aerosol layer and cooling of the climate
system through the backscatter of solar radiation to space for
most of the aerosols, except for black carbon (Stocker et al.,
2013). The absorption of solar radiation modifies the vertical
temperature profile, affecting the stability of the atmosphere
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and cloud formation (Seinfeld and Pandis, 1998). Aerosols,
as condensation nuclei, play a significant role in the forma-
tion and life cycle of clouds (Seinfeld and Pandis, 1998).
Deposition of aerosols on the Earth’s surface may also af-
fect surface properties and albedo. All these effects show that
aerosols play a key role on the energy budget of the climate
system.

Aerosols, also called particulate matter in the context of air
quality, are responsible for serious health problems all over
the world, as they are known to favour respiratory and cardio-
vascular diseases as well as cancers (Brook et al., 2004). The
World Health Organization (WHO) has set regulatory lim-
its for aerosol concentrations, which are annual means of 20
and 10 µg m−3 for PM10 and PM2.5 (particulate matter with
diameters less than 10 and 2.5 µm, respectively) concentra-
tions. The European Union regulation also introduces PM10
daily mean limits of 50 µg m−3. The presence of a dense
layer of aerosols can also affect air traffic by the reduction
in visibility (Bäumer et al., 2008) and by risking disruption
in the engines of aeroplanes (Guffanti et al., 2010). There-
fore, it is essential to accurately determine the evolution of
the concentration and size of the different types of aerosols
in space and time in order to assess their effect on climate
and on air quality and to mitigate their impacts. A pertinent
approach to achieving a continuous and accurate monitoring
of aerosols is to combine measurements and models, a good
example being the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) (https://atmosphere.copernicus.eu, last access:
19 February 2019; Peuch and Engelen, 2012; Eskes et al.,
2015; Marécal et al., 2015).

Ground-based stations, which measure aerosol and gas
concentrations in situ, have been used for several decades
to monitor air quality, such as the stations in the Air Qual-
ity e-Reporting programme (EEA, 2019) from the European
Environment Agency (EEA). Other observations can also be
used to measure aerosols. The AERONET (AErosol RObotic
NETwork) programme (NASA, 2019) performs the retrieval
of the aerosol optical depth (AOD) at several ground sta-
tions (Holben et al., 1998). Similarly, AOD observations
can be retrieved from images taken in different channels
by imagers aboard low Earth orbit (LEO) or GEOstation-
ary (GEO) satellites. Generally, AOD from satellite provides
a better spatial coverage than ground-based stations at the
expense of additional sources of uncertainty, such as the
surface reflectance. For example, daily AOD products are
derived from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) (Levy et al., 2013) sensor on board Terra
and Aqua LEO satellites: AOD products at 10 km resolu-
tion (MOD 04 and MYD 04 products) or at 1 km resolu-
tion (MAIAC product). Sensors on geostationary orbit satel-
lites can continuously scan one-third of the Earth’s surface
much more frequently than low Earth orbit satellites. The SE-
VIRI (Spinning Enhanced Visible and Infrared Imager) sen-
sor, aboard MSG (Meteosat Second Generation), is an ex-
ample of a GEO sensor providing information on aerosols.

Different AODs are retrieved over lands from SEVIRI data
in the VIS0.6 and VIS0.8 channels, respectively centred at
0.635 µm (0.56–0.71 µm) and 0.81 µm (0.74–0.88 µm). AOD
products are retrieved following different methods. Carrer et
al. (2010) presented a method to estimate a daily quality-
controlled AOD based on a directional and temporal analyses
of SEVIRI observations of channel VIS0.6. Another method
consists of matching simulated top-of-the-atmosphere (TOA)
reflectances (from a set of five models) with TOA SEVIRI
reflectances (Bernard et al., 2011) to obtain an AOD for
VIS0.6. Another method (Mei et al., 2012) estimates the
AOD and the aerosol type by analysing the reflectances at
0.6 and 0.8 µm in three orderly scan times. These methods
derive AODs for specific channels from the combined analy-
sis of the data from several channels and from multiple times.

Numerical models, even if they are subject to errors, are
necessary to describe the variability of the aerosol types
and their concentrations with space and time, as a comple-
ment to the observations. Aerosol forecasts on regional and
global scales are made by three-dimensional models, such as
the chemistry transport model (CTM) MOCAGE (Sič et al.,
2015; Guth et al., 2016). MOCAGE is currently used daily to
provide air quality forecasts to the French platform Prev’Air
(Rouil et al., 2009) and also to the European CAMS ensem-
ble (Marécal et al., 2015). Data assimilation of AOD can
be used in order to improve the representation of aerosols
within the model simulations (Benedetti et al., 2009, Sič et
al., 2016). Studies on geostationary sensors have also proved
to have a positive effect of the assimilation of AOD; see e.g.
Yumimoto, et al. (2016), who assessed this positive effect
using the AOD at 550 nm from AHI (Advanced Himawari
Imager) sensor aboard Himawari-8.

The future geostationary Flexible Combined Imager (FCI,
Eumetsat, 2010), which will be aboard the Meteosat Third
Generation satellite (MTG), will perform a full disk in
10 min, and in 2.5 min for the European Regional-Rapid-
Scan, which covers one-quarter of the full disk, with a spa-
tial resolution of 1 km at nadir and around 2 km in Europe.
Like AHI, FCI is designed to have multiple wavelengths and
the assimilation of its data into models should be beneficial
to aerosol monitoring. The aim of the paper is to assess the
possible benefit of assimilating measurements from the fu-
ture MTG/FCI sensor for monitoring aerosols on a regional
scale over Europe. Since MOCAGE cannot assimilate AODs
at multiple wavelengths simultaneously (Sič et al., 2016),
the study focuses on the assimilation of AODs from a sin-
gle channel. Among the 16 channels of FCI, the VIS04 band
(centred at 444 nm) has been chosen because it covers the
shortest wavelengths, which is expected to be the most rele-
vant to detect small particles (Petty, 2006). Besides, VIS04 is
a new channel compared to MSG/SEVIRI, the shortest band
of which is around 650 nm (Carrer et al., 2010), and so as-
sessing the benefit of VIS04 over Europe is original.

As FCI is not yet operational, an OSSE (Observing Sys-
tem Simulation Experiments) approach (Timmermans et al.,
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2015) is used in this study. In an OSSE, synthetic observa-
tions are created from a numerical simulation that is as close
as possible to the real atmosphere (the nature run) and then
are assimilated in a different model configuration. The dif-
ferences between model outputs with and without assimila-
tion provide an assessment of the added value of the assim-
ilated data. OSSE have been widely developed and used for
assessing and designing future sensors for air quality moni-
toring: for carbon monoxide (Edwards et al., 2009; Abida et
al., 2017) and ozone (Claeyman et al., 2011; Zoogman et al.,
2014) from LEO or GEO satellites (Lahoz et al., 2012), and
for aerosol analysis from GEO satellites over Europe (Tim-
mermans et al., 2009a, b). Some of these studies have suc-
cessfully assessed the potential benefit of future satellites and
they have helped to design the instruments (Claeyman et al.,
2011). However cautions and limitations on the OSSE for air
quality have been addressed (Timmermans et al., 2009a, b,
2015), such as the “identical twin problem” and the control
over the boundary conditions of the model, and the accuracy
and the representativeness of the synthetic observations.

By designing an OSSE that takes into account these pre-
cautions, the present study proposes a quantitative assess-
ment of the potential benefit of assimilating AOD at 444 nm
from FCI for aerosol monitoring in Europe. The OSSE and
its experimental set-up are described in Sect. 2. Then, the
case study and an evaluation of the ability of the reference
simulation to represent a true state of the atmosphere are pre-
sented. The calculation of synthetic observations is explained
in Sect. 3. An evaluation of the control simulations is made
in Sect. 4. In Sect. 5, the results of the assimilation of FCI
synthetic observations are presented and discussed. Finally,
Sect. 6 concludes this study.

2 Methodology

2.1 Experimental set-up

Figure 1 shows the general principle of the OSSE (Timmer-
mans et al., 2015). A reference simulation, called “nature
run” (NR) is assumed to represent the “true” state of the
atmosphere. Synthetic AOD observations are generated by
combining AOD retrieved from the NR and the error char-
acteristics of FCI. These error characteristics are described
in Sect. 3. The second kind of simulations in the OSSE is
the control run (CR) simulation. The differences between NR
output and CR output should represent the errors of current
models without the use of observations. Finally, the assimi-
lation run (AR) is done by assimilation in the CR of the syn-
thetic observations. To assess the added value of the instru-
ment, a comparison is made between the output of the AR
and the NR and between the CR and the NR. If the AR is
closer to the NR than the CR, it means that the observations
provide useful information for the assimilation system. The

Figure 1. Schematic representation of the OSSE principle.

differences between AR and CR quantify the added value of
the instrument.

The NR should be as close as possible to the actual at-
mosphere because it serves as a reference for producing the
synthetic observations. The temporal and spatial variations of
the NR should approximate those of actual observations. An
evaluation of the NR, presented in Sect. 2.2, includes a com-
parison of the model with aerosol concentrations and AOD
data from ground-based stations.

In addition, the differences between the NR and the CR
must be significant and approximate those between the CR
and the actual observations. Ideally, the NR and CR should
be run with different models, as the use of the same model
could lead to over-optimistic results (Masutani et al., 2010);
this issue is called the identical twin problem. It is strongly
recommended that the spatio-temporal variability of the NR
and its differences should be evaluated with the CR to avoid
this problem (Timmermans et al., 2015). As MOCAGE is
used for both NR and CR in the present study, a method sim-
ilar to that used in Claeyman et al. (2011) is proposed. Instead
of one CR, various CR simulations (Fig. 1) are performed
in different configurations, and they are assessed indepen-
dently and compared to the NR to ensure the robustness of
the OSSE results. An evaluation of those differences is pre-
sented in Sect. 4.
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2.2 MOCAGE

The CTM model used in this study is MOCAGE (Modèle de
Chimie Atmosphérique à Grande Echelle, Guth et al., 2016),
which has been developed for operational and research pur-
poses. MOCAGE is a three-dimensional model that cov-
ers the global scale, down to regional scale using two-way
nested grids. MOCAGE vertical resolution is not uniform:
the model has 47 vertical sigma-hybrid altitude-pressure lev-
els from the surface up to 5 hPa. Levels are denser near the
surface, with a resolution of about 40 m in the lower tropo-
sphere and 800 m in the lower stratosphere.

MOCAGE simulates gases (Josse, 2004; Dufour et al.,
2005), primary aerosols (Martet et al., 2009; Sič et al.,
2015) and secondary inorganic aerosols (Guth et al., 2016).
Aerosols species in the model are primary species (desert
dust, sea salt, black carbon and organic carbon) and sec-
ondary inorganic species (sulfate, nitrate and ammonium),
formed from gaseous precursors in the model. For each type
of aerosol (primary and secondary), the same 6 bin sizes are
used between 2 nm and 50 µm: 2 nm–10 nm–100 nm–1 µm–
2.5 µm–10 µm–50 µm. All emitted species are injected ev-
ery 15 min in the five lower levels (up to 0.5 km), follow-
ing an hyperbolic decay with altitude: the fraction of pol-
lutants emitted in the lowest level is 52 % and then 26 %,
13 %, 6 % and 3 % in the four levels above. Such a ver-
tical repartition ensures continuous concentration fields in
the first levels, which guarantee proper behaviour of the of
the semi-Lagrangian advection scheme. Carbonaceous parti-
cles are emitted using emission inventories. Sea salt emis-
sions are simulated using a semi-empirical source func-
tion (Gong, 2003; Jaeglé et al., 2011) with the wind speed
and the water temperature as input. Desert dust is emit-
ted using wind speed, soil moisture and surface character-
istics based on Marticorena and Bergametti (1995), which
give the total emission mass, which is then distributed in
each bin according to Alfaro et al. (1998). Secondary in-
organic aerosols are included in MOCAGE using the mod-
ule ISORROPIA II (Fountoukis and Nenes, 2007), which
solves the thermodynamic equilibrium between gaseous, liq-
uid and solid compounds. Chemical species are transformed
by the RACMOBUS scheme, which is a combination of the
RACM scheme (Regional Atmospheric Chemistry Mecha-
nism; Stockwell et al., 1997) and the REPROBUS scheme
(Reactive Processes Ruling the Ozone Budget in the Strato-
sphere; Lefèvre et al., 1994). Dry and wet depositions of
gaseous and particulate compounds are parameterized as in
Guth et al. (2016).

MOCAGE uses meteorological forecasts (wind, pres-
sure, temperature, specific humidity, precipitation) as input,
such as the Météo-France operational meteorological fore-
cast from ARPEGE (Action de Recherche Petite Echelle
Grande Echelle) or ECMWF (European Centre for Medium-
Range Weather Forecasts) meteorological forecast from IFS
(Integrated Forecast System). A semi-lagrangian advection

scheme (Williamson and Rasch, 1989), a parameterization
for convection (Bechtold et al., 2001) and a diffusion scheme
(Louis, 1979) are used to transport gaseous and particulate
species.

2.3 Assimilation system PALM

The assimilation system of MOCAGE (Massart et al., 2009),
is based on the 3-dimensional first guess at appropriate time
(3D-FGAT) algorithm. This method consists of minimizing
the cost function J :

J (δx)= Jb (δx)+ Jo (δx)=
1
2
(δx)TB−1δx

+
1
2

N∑
i=0

(di −Hiδx)
TR−1

i (di −Hiδx), (1)

where Jb and Jo are respectively the parts of the cost func-
tion related to the model background and to the observations;
δx = x−xb is the difference between the model background
xb and the state of the system x; di = yi −Hixb(ti) is the
difference between the observation yi and the background
xb in the observations space at time ti ; Hi is the observation
operator; H is its linearized version; B is the background co-
variance matrix; and Ri is the observation covariance matrix
at time ti .

The general principal for the assimilation of AOD
(Benedetti et al., 2009) is the same as in Sič et al. (2016).
The control variable x used in the minimization is the 3-D
total aerosol concentration. After minimization of the cost
function, an analysis increment δxa, is obtained, which is a
3-D-total aerosol concentration. This increment δxa is then
converted into all MOCAGE aerosol bins according to their
local fractions of the total aerosol mass in the model back-
ground. The result is added to the background aerosol field
at the beginning of the cycle. Then the model is run over the
1 h cycle length to obtain the analysis. The state at the end
of this cycle is used as a departure point for the background
model run of the next cycle.

The observation operator H for AOD uses as input the
concentrations of all bins (6) of the seven types of aerosols
and the associated optical properties. For this computation,
the control variable x is also converted into all MOCAGE
aerosol bins according to the local fractions of the total
aerosol mass in the model background. The AOD is com-
puted for each model layer to obtain a sum of the AOD of the
total column. The optical properties of the different aerosol
types are issued from a look-up table that is computed from
the Mie code scheme of Wiscombe (1980, 1996) for spheri-
cal and homogeneous particles. The refractive indices come
from Kirchstetter et al. (2004) for organic carbon and from
the Global Aerosol Data Set (GADS, Köpke et al., 1997)
for other aerosol species. The hygroscopicity of sea salts and
secondary inorganic aerosols is taken into account based on
Gerber (1985).

Atmos. Meas. Tech., 12, 1251–1275, 2019 www.atmos-meas-tech.net/12/1251/2019/



M. Descheemaecker et al.: Monitoring aerosols over Europe 1255

While the observation operator is designed to assimilate
the AOD of any wavelength from the UV to the IR, the as-
similation system MOCAGE-PALM cannot assimilate data
on several wavelengths simultaneously (Sič et al., 2016).
This limitation is due to the choice of the control vector,
which is the 3-D total aerosol concentration: assimilating dif-
ferent wavelengths simultaneously would require rethinking
and extending the control vector, for instance splitting it by
aerosol size bins or types. This explains why the study fo-
cuses on the assimilation of the AOD of a single wavelength.

2.4 Case study

The period extends from 1 January to 30 April 2014 and in-
cludes several days of PM pollution over Europe. From 7
to 15 March, a secondary-particle episode (EEA, 2014) oc-
curs, while from 29 March to 5 April a dust plume originating
from the Sahara propagates northwards to Europe (Vieno et
al., 2016).

The MOCAGE simulation covers the whole period from
January to April 2014 on a global domain at 2◦ resolu-
tion and in a nested regional domain, which covers Europe
from 28 to 72◦ N and from 26◦W to 46◦ E, at 0.2◦ reso-
lution (see Fig. 2). A 4-month spin-up is made before the
simulation. The NR is forced by ARPEGE meteorological
analysis. Emissions of chemical species in the global do-
main come from the MACCity inventory (van der Werf et al.,
2006; Lamarque et al., 2010; Granier et al., 2011) for anthro-
pogenic gas species and biogenic species are from the Global
Emissions InitiAtive (GEIA) for the global and regional do-
main. ACCMIP project emissions are used for anthropogenic
organic and black carbon emissions on the global scale. The
TNO-MACC-III inventory for the year 2011 provides anthro-
pogenic emissions in the regional domain. TNO-MACC-III
emissions are the latest update of the TNO-MACC inventory
based on the methodology developed in the MACC-II project
described in Kuenen et al. (2014). These anthropogenic emis-
sions are completed in our regional domain, at the boundary
of the MACC-III inventory domain by emissions from MAC-
City. Daily biomass burning sources of organic and black
carbon and gases from the Global Fire Assimilation Sys-
tem (GFAS) (Kaiser et al., 2012) are injected in the model.
The NR includes secondary organic aerosols (SOAs) in or-
der to enhance its realism and to fit the observations made
at ground-based stations over Europe well. Standard ratios
from observations (Castro et al., 1999) are used to simulate
the portion of secondary carbon species, with 40 % in winter
from the primary carbon species in the emission input.

The NR is compared to the real observations from
AERONET AOD observations and AQeR surface concen-
trations, using common statistical indicators: mean bias (B),
modified normalized mean bias (MNMB), root mean square
error (RMSE), fractional gross error (FGE), Pearson corre-
lation coefficient (Rp) and Spearman correlation coefficient
(Rs). While the Pearson correlation measures the linear rela-

tion between the two data sets, the Spearman correlation is a
mean used to assess their monotonic relationship.

The AQeR stations are mainly located over western Eu-
rope (Fig. 2). After selection of the surface stations that are
representative of background air pollution (following Joly
and Peuch, 2012), 597 and 535 stations are respectively used
for the PM10–PM2.5 comparison. Figure 2 represents the
mean surface concentration of the NR and selected AQeR
measurements over the domain from January to April 2014.
The left panel shows the PM10 concentrations of the NR in
the background and the AQeR concentrations as a circle,
while the right panel shows the PM2.5 concentrations. The
concentration of the NR PM10 and PM2.5 are generally un-
derestimated compared to the observations. Nevertheless, in
both figures, the spatial variability and, particularly, the lo-
cation of maxima are reasonably well represented. Over the
European continent, the NR and AQeR data show clear max-
ima in the centre of Europe for both PM10 and PM2.5 con-
centrations, even if the NR underestimates these maxima.

Table 1 shows the statistical indicators of this compari-
son for hourly surface concentrations in PM10 and PM2.5.
A negative mean bias is observed, around −6.23 µg m−3

(∼−35.1 %) for PM10 and −3.20 µg m−3 (∼−24.7 %) for
PM2.5. The RMSE is equal to 16.2 µg m−3 for PM10 and
11.9 µg m−3 for PM2.5, while the FGE equals 0.56 and 0.543.
The factor of 2 is equal to 64.7 % and 67.5 % for PM10 and
PM2.5. Pearson and Spearman correlations are respectively
0.452 and 0.535 for PM10 and PM2.5 and 0.537 and 0.602
for PM10 and PM2.5. The NR underestimation is greater for
PM10 than for PM2.5 in relative differences. This suggests a
lack of aerosol concentrations in the PM10−2.5 (concentra-
tion of aerosols between 2.5 and 10 µm). Not taking into ac-
count wind-blown crustal aerosols may cause a potential un-
derestimation of PM in the models (Im et al., 2015). Taking
them into account requires a detailed ground-type inventory
to compute those emissions unavailable in MOCAGE. For
PM2.5, the underestimation of aerosol concentrations can be
due to a lack of carbonaceous species (Prank et al., 2016).
Other possible reasons for the negative PM bias at the sur-
face are the underestimation of emissions in the cold winter
period and the uncertainty in the modelling of stable winter
conditions with shallow surface layers.

A time-series graph of the median NR surface concen-
trations and the median surface concentrations of the AQeR
stations are presented in Fig. 3. Compared to ground-based
AQeR data (in black), the NR (in purple) generally under-
estimates the PM10 and the PM2.5 concentrations, especially
during the 7–15 March pollution episode. However, the vari-
ations and maxima of the NR concentrations of PM are gen-
erally well represented. Furthermore, around 65 % of model
concentrations are relatively close to the observations as
shown by the factor of 2 in Table 1. The variability of NR
concentrations is thus consistent with AQeR station concen-
trations.
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Figure 2. Mean PM10 (a) and PM2.5 (b) surface concentration (µg m−3) of the NR (shadings) and AQeR stations (colour circles) from
January to April 2014.

Table 1. Bias, RMSE, FGE, factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the NR simulation taking as reference
the AQeR observations for hourly PM10 and PM2.5 concentrations from January to April 2014.

Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 Rp Rs

NR PM10 −6.23 16.2 0.56 64.7 % 0.452 0.537
(∼−35.1 %)

NR PM2.5 11.9 0.543 67.5 % 0.535 0.602
−3.20 (∼−24.7 %)

Table 2 gives an evaluation of the NR against the daily
mean of the AOD at 500 nm obtained from 84 AERONET
stations in the regional domain from January to April 2014.
The statistical indicators show good consistency between the
NR and AERONET observations. However, like the results
shown on a global scale (Sič et al., 2015), MOCAGE tends to
overestimate AOD: although small, the AOD bias is positive.
While PM concentrations at the surface are underestimated in
the NR, there may be different reasons for an overestimation
of AOD. The vertical distribution of aerosol concentrations
in the model is largely controlled by vertical transport, re-
moval processes and by the prior assumptions on the aerosol
emission profiles. However, these processes may have large
variability and they are prone to large uncertainties (Sič et al.,
2015). Another possible explanation is the uncertainty of the
size distribution of aerosols that can significantly affect the
optical properties. More generally, the assumptions that un-
derly the computation of optical properties are largely uncer-
tain and they can affect the computation of AOD by a factor
of 50 % (Curci et al., 2015): the mixing state assumption, and
the uncertainty in refractive indices and in hygroscopicity
growth. These uncertainties in aerosol vertical profiles, size
distribution and optical properties may explain the decorrela-
tion between AOD and PM concentrations at the surface and
why the MOCAGE NR has a positive bias in AOD while un-

Table 2. Bias, MNMB, RMSE, FGE and Pearson correlation (Rp)
between the NR simulation and AERONET station for daily 500 nm
AOD from January to April 2014.

Bias MNMB RMSE FGE Rp

NR 0.043 0.39 0.09 0.531 0.56

derestimating PM at the surface. However, both the PM and
AOD correlation errors of the NR remain in a realistic range.

As a result, the NR simulation exhibits surface concentra-
tions and AODs in the same range compared to those from
ground-based stations and shows similar spatial and temporal
variations, which makes the NR acceptable for the OSSE.

3 Generation of synthetic AOD observations

The study focuses on the added value of assimilating AODs
at the central wavelength (444 nm) of the FCI/VIS04 spec-
tral band. Since the assimilation of AODs from several wave-
lengths simultaneously is not possible (Sect. 2.3), the choice
of the single-channel VIS04 is mainly driven by the fact that
it is the shortest wavelength of FCI, which is a priori the most
favourable for the detection of fine particles.

Atmos. Meas. Tech., 12, 1251–1275, 2019 www.atmos-meas-tech.net/12/1251/2019/



M. Descheemaecker et al.: Monitoring aerosols over Europe 1257

Figure 3. Median of the daily mean surface concentration in µg m−3 of the NR (in purple) and the AQeR station (in black). The NR
concentrations are calculated at the same locations as the AQeR stations from 1 January 2014 (Day 1) to 30 April 2014 (last day). The left
panel is for PM10 surface concentrations, while the right one is for PM2.5.

Thus, synthetic AOD observations at 444 nm are created
over the MOCAGE-simulated regional domain from the NR
simulation 3-D fields: all aerosol concentrations per type and
per size bins, and meteorological variables. At every grid
point of the NR regional domain where the solar zenith an-
gle is below 80◦ (daytime) and where clouds are absent, an
AOD value at 444 nm is computed using the MOCAGE ob-
servation operator described above (Sect. 2.3). In order to
take into account the error characteristics of the FCI VIS04
AOD, a random noise is then added to this NR AOD value.

To estimate the variance of this random noise, the general
principle is to assess and quantify the respective sensitivity
of the FCI VIS04 top-of-the-atmosphere reflectance to AOD
and to the other variables. To do this, the FCI simulator de-
veloped by Aoun et al. (2016), based on the radiative trans-
fer model (RTM) libRadtran (Mayer and Killings, 2005), has
been used. This simulator computes the reflectance in the dif-
ferent spectral bands of FCI as a function of different input
atmospheric parameters (AOD τ , total column water vapour,
ozone content), ground albedo ρg and solar zenith angle θS,
for different OPAC (optical properties of aerosols and clouds,
Hess et al., 1998) aerosol types: dust, maritime clean, mar-
itime polluted, continental clean, continental average, conti-
nental polluted and urban. The FCI simulator takes into ac-
count the spectral response sensitivity and the measurement
noise representative of the FCI VIS04 spectral band (415–
475 nm).

By applying a global sensitivity analysis to this FCI sim-
ulator that was run on a large data set (see the Appendix
for the details of the method), a look-up table of the RMSE
of AOD is derived. It depends on the OPAC type, the rela-
tive error of surface albedo, the solar zenith angle and the
ground albedo value. The classification of each MOCAGE
profile into the OPAC types relies on three parameters (Ta-
ble 3): the surface concentration, the main surface species
and the proportion in relation to the total aerosol concentra-
tions. A species is described as a main species if its concen-
tration, [species], is above the concentration of all other types
of aerosol. For example DD is a main species if [DD] > [SS]

Figure 4. Classification of the NR profiles for the 7 March 2014
at 12:00 UTC. Deep blue is for dismissed profiles, blue is for mar-
itime clean, light blue for maritime polluted, green is for continental
clean, yellow is for continental 5 average, orange is for continental
polluted, deep orange is for urban, and red is for desert dust.

and [DD] > [IWS]. An example of NR profiles (7 March 2014
at 12:00 UTC) decomposed in OPAC type is presented in
Fig. 4. A small number of the profiles are dismissed where
MOCAGE profiles do not match one of the OPAC types, such
as profiles over ocean where IWS (insoluble, water soluble
and soot; Table 3) is greater than DD (desert dust) and SS
(sea salt). A larger number of profiles are dismissed because
of night-time profiles and cloudy conditions. Figure 5 repre-
sents the average number of NR AODs that are retained per
day for assimilation. After these filters apply, between 10 %
and 20 % of profiles are kept every hour. The density of these
profiles is higher in the south of the domain, which is directly
correlated to the quantity of direct sunlight available. Over
the continent, between 1 and 4 profiles can be assimilated
per day at each grid-box location.

On every NR profiles that is kept, an AOD error is in-
troduced, by addition of a random value from an unbiased
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Table 3. Conditions for classifying the MOCAGE NR into the OPAC types. The first condition is the surface concentrations, the second is the
main specie at the surface between desert dust (DD), sea salt (SS) and IWS (insoluble, water soluble and soot) and the third is a condition of
the species over all the aerosol concentrations. A species is described as a main species if its concentrations is above all other concentrations;
for example DD is a main species if [DD] > [SS] and [DD] > [IWS].

Aerosol types Surface Main species Surface proportion
concentration in over the total PM10

µg m−3

DO. and DC. – DD
MC. – SS SS > 85 %
MPO. – SS SS < 85 %
MPC. – SS SS < 85 %
CC. 0–17 IWS
CA. 17–34 IWS
CP. 34–75 IWS
U. > 75 IWS

Figure 5. Average (from January to April) number of selected pro-
files per day available for assimilation.

Gaussian with a standard deviation derived from the AOD
RMSE look-up table, calculated as explained above. The sur-
face albedo fields are taken from MODIS using the radiative
transfer model RTTOV (Vidot et al., 2014). A relative error
of 10 % is assumed for ground albedo, which corresponds to
a realistic value (Vidot et al., 2014). An example of the syn-
thetic observations is presented in Fig. 6. It represents the NR
AOD, the synthetic observations and the noise applied to NR
AOD for the 7 March 2014 at 12:00 UTC.

4 Controls runs (CRs) and their comparison to NR

Section 2 showed an evaluation of the NR compared to real
observations. Another requirement of the OSSE is the evalu-
ation of differences between the NR and the CR. Various CR
simulations have been performed to evaluate the behaviour of
the OSSE in different CR configurations and prove its robust-
ness. The NR and CRs use different set-ups of MOCAGE.
The CRs use IFS meteorological forcings, while the NR uses
ARPEGE meteorological forcings. The use of different mete-
orological inputs is expected to yield differences in the trans-
port of pollutant species, and changes in dynamic emissions
of sea salt and desert dust. To introduce more differences be-
tween the CRs and NR, changes in the emissions are also
introduced.

Table 4 indicates the changes made to the different model
parameters to create four distinct CR simulations. The first
control run, CR1, uses the same inputs as the NR except for
the meteorological forcings. Other control runs (CR2, CR3,
CR4) do not have the SOA formation process of the NR
(Sect. 2) and CR1 simulations. Finally, CR3 and CR4 change
from other simulations by different vertical repartitions of
emissions in the five lowest levels. In CR3, the pollutants are
emitted with a slower decay with height than the NR (with
repartition from 30 % at the surface and respectively 24 %;
19 %; 15 %; 12 % for the four levels above), and in the CR4
emissions are only injected in the lowest level. These changes
aim to generate simulations that are more significantly differ-
ent from the NR than the first two control runs.

The four CRs are compared to the NR for PM10 and PM2.5
surface concentration considering virtual observations at the
same locations as the AQeR stations. A time series of daily
means of surface concentrations at simulated stations is pre-
sented in Fig. 7 for NR and CR simulations from 1 January to
30 April 2014. The PM10 concentrations of the NR (in pur-
ple) are mostly greater than the PM10 concentrations in the
CRs. During the period of late March and early April (around
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Figure 6. Example of generation of synthetic observations on the 7 March 2014 at 12:00 UTC. From the NR AOD as 444 nm (a), noise
values representative of FCI (b) are applied to every clear-sky pixel to generate the synthetic observations (c). The grey colour represents the
dismissed profiles.

Table 4. Table of differences between the NR simulation and the
CR simulations.

Forecasts SOA Repartition of emissions
from level 1 (surface layer)
up to the fifth level

NR ARPEGE Yes 52 %; 26 %; 13 %; 6 %; 3 %
CR1 IFS Yes 52 %; 26 %; 13 %; 6 %; 3 %
CR2 IFS No 52 %; 26 %; 13 %; 6 %; 3 %
CR3 IFS No 30 %; 24 %; 19 %; 15 %; 12 %
CR4 IFS No 100 %; 0 %; 0 %; 0 %; 0 %

the 90th day of simulation) the NR concentrations of PM10
are close to those of the CR2, CR3 and CR4, and less than
those of the CR1 by about a few µg m−3. In terms of PM2.5,
the CR concentrations also underestimate the NR concentra-
tion. As for PM10, around the 90th day of simulation, the
concentrations of CR1 are above the concentrations of the
NR.

These tendencies can also be observed in Fig. 8, which
represents a scatter plot of CR concentrations as a function of
NR concentrations for the daily means of surface concentra-
tion in PM10 and PM2.5 at the virtual stations. The CR1 con-
centrations are fairly close to those of the NR concentrations
with a coefficient of regression about 0.801 and 0.835 for
PM10 and PM2.5. Other CRs underestimate the NR concen-
trations. This tendency is stronger for PM10 than for PM2.5.
The regression coefficients of the CR2, CR3 and CR4 are re-
spectively 0.596, 0.583 and 0.607 for PM10 and 0.570, 0.505
and 0.647 for PM2.5. For both PM10 and PM2.5 concentra-
tions, the underestimation is more important for high values
of the NR concentrations than for low values.

The statistical indicators in Tables 5 and 6 are con-
sistent with Figs. 7 and 8. The CR1 is close to the
NR with a bias of −1.3 µg m−3 (−8.2%) for PM10
and −0.8 µg m−3 (−6.2%) for PM2.5. The CR4 bias is

around −2.9 µg m−3 (−20.5 %) for PM10 and −1.8 µg m−3

(−15.1 %) for PM2.5. The two other CRs highly under-
estimate PM10 and PM2.5 concentrations with biases of
−4.5 µg m−3 (−35.2 %) and−3.9 µg m−3 (−37.4 %) respec-
tively for CR2 and−4.8 µg m−3 (−38.1 %) and−4.4 µg m−3

(−42.6 %) for the CR3. These biases are in agreement with
the literature. Prank et al. (2016) measure a bias around−5.8
for PM10 and −4.4 µg m−3 for PM2.5 for the median of four
CTMs against ground-based stations in winter. In Marécal
et al. (2015), statistical indicators for an ensemble of seven
models are presented for winter. A bias between −3 and
−7 µg m−3 is observed for the median ensemble. The PM
concentrations of our CRs compared to the NR are charac-
teristic of models compared to observations.

Prank et al. (2016) also show other indicators of the me-
dian of models, such as the temporal correlation and the fac-
tor of 2. Their correlations are around 0.7 for PM2.5 and
0.6 for PM10 and are close to those for our CR simulations
that vary from 0.644 to 0.732 for PM2.5 and from 0.572 to
0.671 for PM10. Their factor of 2 equals 65 % for PM10 and
67 % for PM2.5. The factor of 2 of the CRs ranges between
70 % and 90 % for both PM10 and PM2.5 concentrations. The
RMSE of CR simulations ranges from 8 to 10 µg m−3 for
PM10 concentrations, which is slightly under the RMSE of
the ensemble from the study of Marécal et al. (2015), which
ranges between 10 and 15 µg m−3. The FGE of the study of
Marécal et al. is equal to 0.55, while the FGE of CRs varies
from 0.33 to 0.51. Our CR simulations slightly underestimate
the model relative error. Thus, compared to the literature, the
CRs (especially the CR3) are different enough from the NR
to be representative of state-of-the-art simulations.

Between the CRs and the NR there are important spatial
differences in the surface concentrations of PM, as demon-
strated in Fig. 9, which shows the relative differences, Pear-
son correlation and the FGE for PM10. Over the Atlantic
Ocean, the CR concentrations are relatively close to the NR,
except for the CR4 which overestimates the concentration of
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Figure 7. Median of the daily mean surface concentration of the NR (in purple) and the different CRs (CR1 in green, CR2 in yellow, CR3 in
red and CR4 in blue) determined for the same location as for the AQeR stations. Panel (a) is the PM10 mass concentration (µg m−3), while
(b) represents the PM2.5 mass concentrations.

Figure 8. Scatter plot of the CR daily surface concentrations (µg m−3) as a function of NR daily surface concentrations for PM10 (a) and
PM2.5 (b), for virtual stations and from January to April 2014. rgCRX are the linear regressions of each data set.

PM10. All CRs present high concentrations of PM10 all over
northern Africa. This corresponds to high emissions of desert
dust over this area, which cause an important overestimation
of PM10 compared to the NR. This overestimation can be ob-
served around all the Mediterranean Basin. The CRs tend to
overestimate the PM10 concentrations over Spain, Italy, the
Alps, Greece, Turkey, the north of the UK, Iceland and Nor-
way. The overestimations over the Alps, Iceland and Norway
are located at places of negligible concentrations. Over the
rest of the European continent, CRs underestimate the con-
centration of PM10, slightly for CR1, but concentrations are
very pronounced for CR2, CR3 and CR4. The area where the
consistency between the CRs and the NR is better is the At-
lantic Ocean, with a correlation ranging from 0.6 to 0.9 and
a low FGE around 0.3. Over the Mediterranean Basin the
correlation varies significantly between 0 and 1. Low cor-
relations correspond to high FGE around 1. Over the conti-
nent, the correlation varies from 0.4 to 0.9, following a west–

east axis. The correlations are slightly greater for CR1 than
for the other CRs. The FGE over the continent changes sig-
nificantly for CR1 and the other CRs, respectively around
0.35 and 0.55. Similar conclusions can be obtained for the
PM2.5 comparison (see Supplement). A similar comparison
has been done for the AOD between the CR simulations and
the NR simulation (see complementary materials).

In summary, the control runs present spatial variability
along with temporal variability. The closest CR to the NR
is the CR1. In terms of surface concentrations in PM, the
CR3 is the most distant, while in terms of AOD the CR4 is
the most distant. Those differences and the use of different
CRs, coupled with the realism of the NR, demonstrate the
robustness of the OSSE to evaluate the added value provided
by AOD derived from the FCI.
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Table 5. Bias, RMSE, FGE, factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the CR simulation taking as reference
the NR simulations for hourly PM10 concentrations from January to April 2014. The comparison is made at the same station location as for
AQeR stations.

Hourly PM10 CR stations Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 Rp Rs
vs. NR stations

CR1 −1.3 (−8.2%) 7.9 0.332 89.1 % 0.671 0.748
CR2 −4.5 (−35.2%) 9.3 0.47 75.6 % 0.609 0.709
CR3 −4.8 (−38.1%) 9.8 0.511 69.3 % 0.572 0.671
CR4 −2.9 (−20.5%) 8.7 0.412 81.9 % 0.623 0.712

Table 6. Bias, RMSE, FGE, factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the CR simulation taking as reference
the NR simulations for hourly PM2.5 concentrations from January to April 2014. The comparison is made at the same station location as for
AQeR stations.

Hourly PM2.5 CR stations Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 Rp Rs
vs. NR stations

CR1 −0.8 (−6.24%) 5.9 0.307 91.1 % 0.732 0.776
CR2 −3.9 (−37.4%) 7.1 0.452 78.4 % 0.69 0.731
CR3 −4.4 (−42.6%) 7.6 0.505 70.6 % 0.644 0.695
CR4 −1.8 (−15.1%) 6.6 0.374 85.5 % 0.665 0.73

5 Assimilation of FCI synthetic observations

The purpose of this paper is to assess the potential contribu-
tion of the FCI VIS04 channel to the assimilation of aerosols
on a continental scale. In our OSSE, MOCAGE represents
the atmosphere with a horizontal resolution of 0.2◦ (around
20 km at the equator). Synthetic observations are therefore
computed at the model resolution, although FCI scans around
1 km resolution at the equator and 2 km over Europe. To
fit with the time step of our assimilation cycle, synthetic
observations are also created every hour, although the fu-
ture FCI imager could retrieve radiance observations every
10 min over the globe, and 2.5 min over Europe with the Eu-
ropean Regional-Rapid-Scan. This means that, for each pro-
file of our simulation, only one synthetic observation is avail-
able each hour, instead of 24×10×10 at best (FCI scans 24
times an hour, with a spatial resolution 10 times higher than
the model over the Europe). The use of one observation for
each profile in an assimilation window is due to the assim-
ilation system design that does not allow multiple observa-
tions for the same profile. In practice, future FCI observations
could be averaged over each MOCAGE profile to reduce the
impact of the instrument errors on assimilated observations.

The 3D-FGAT assimilation scheme integrates the syn-
thetic observations described in Sect. 3. Before assimilation,
a thinning process is applied to the synthetic observations to
spatially keep only 1 pixel out of 4. Such thinning is use-
ful for reducing the computation time, by accelerating the
convergence of the cost function (not shown). The spatial
correlation length of the B background covariance matrix is
set to 0.4◦ in order to have a spatial impact of the assimi-

lation on the simulation while not having multiple coverage
of assimilated observations over one profile. The result of
this thinning procedure changes the assimilated fields only
slightly but significantly saves computing time. Assimilation
simulations (ARs) are run for all CR simulations using the
same generated set of synthetic observations over the period
of 4 months, from 1 January to 30 April. The standard de-
viation of errors used for B and R matrices are estimated
respectively at 24 % and 12 %, as in Sič et al. (2016).

To assess the impact of the assimilation of FCI synthetic
AOD observations, the CR forecasts and the AR analyses
are compared to the assimilated synthetic observations. Fig-
ure 10 shows the histograms of the differences between the
synthetic observations and the forecast field (in blue) and
between synthetic observations and analysed fields (in pur-
ple) for the four ARs simulations. The histograms follow a
Gaussian shape, and the distribution of the analysed values
are closer to the synthetic observations than the forecast val-
ues. The spread of the histograms is smaller for the anal-
ysed fields than for the forecast fields. The assimilation of
synthetic AODs hence improved the representation of AOD
fields in the assimilation simulations. Besides, the spatial
comparisons between the simulations and the NR show im-
provements in the AOD fields of simulations by assimilation
of the synthetic observations (see Supplement Figs. S5, S6,
S7 and S8). As the increment is applied to all aerosol bins
and PM10 corresponds to 5 of the 6 bins while PM2.5 to only
4, we expect better corrections for PM10 concentrations than
for PM2.5 concentrations.

To validate the results of the OSSEs, the simulations are
compared to the reference simulation (NR) over the period.
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Table 7. Bias, RMSE, FGE, factor of 2, Pearson correlation and Spearman correlation of the ARs simulation taking as reference the NR
simulations for hourly PM10 concentrations from January to April 2014. The comparison is made at the same station location as for AQeR
stations.

Hourly PM10 CR stations Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 Rp Rs
vs. NR stations

AR1 −1.17 (−7.21%) 7.16 0.296 92.2 % 0.739 0.791
AR2 −2.91 (−21.3%) 8.1 0.373 85.3 % 0.694 0.751
AR3 −3.53 (−26.2%) 8.67 0.417 80.4 % 0.67 0.726
AR4 −0.756 (−5.31%) 8.03 0.339 88.2 % 0.691 0.759

Figure 11 exhibits the spatial differences in the surface con-
centrations of PM10 between the ARs and the NR. It shows
the mean relative bias, the correlation and the FGE for every
simulation. Using Fig. 9 as a reference, the relative bias, the
FGE and the correlation have been improved over most parts
of the domain after assimilation for all simulations. Over
the European continent, all simulations show a strong im-
provement of the statistical indicators. For instance in CR3,
along a line that goes from Spain to Poland, the FGE de-
creases by about 0.1 after assimilation. In the eastern part
of Europe (from Turkey to Finland), the decrease in FGE
is even higher. Over northern Africa and the Mediterranean
Sea the improvement is intermediate. Nevertheless, the mean
bias over the ocean tends to increase for the simulations, es-
pecially for AR4. This can also be observed for the PM2.5
concentration comparison (see Figs. S1, S2, S3 and S4).

The assimilation of the synthetic observations has a pos-
itive impact at each layer of the model. The mean vertical
concentrations of PM10 and PM2.5 of the different simula-
tions are represented in Figs. 12 and 13, from the surface
(level 47) up to 6 km (level 30). The positive impact along the
vertical of the assimilation of AODs in the CTM MOCAGE
is due to the use of the vertical representation of the model
to distribute the increment. Sič et al. (2016) showed that the
assumption of using the vertical representation of the model
gives good assimilation results with the regular MOCAGE
set-up, which distributes emissions over the five lowest verti-
cal levels. However, the performance of the assimilation may
depend on the realism of the representation of aerosols along
the vertical in the CTM. The CR simulations, in red, overesti-
mate the PM10 concentrations of the NR, in purple, due to the
overestimation of desert dust concentrations in the CR simu-
lations. This overestimation is not present in the PM2.5 con-
centrations because this is the fraction of aerosols in which
there is little desert dust. For the first three simulations, the
vertical PM10 concentrations are corrected well by the as-
similation, while for simulation 4, the correction is less rel-
evant for the levels near the surface. The assimilation tends
to decrease the PM2.5 concentrations above level 42 and to
increase the concentrations under that level. Simulation 4
presents a decay of the surface concentrations of PM2.5. The
correction of concentrations is more pertinent for the PM10

concentrations than for the PM2.5 concentrations, which was
expected.

In AR4, the PM10 bias over the Atlantic Ocean is posi-
tive and larger than in CR4: the assimilation of FCI AODs
can be detrimental in some circumstances. A reason for such
deficiencies is proposed. In CR4, the AOD bias is negative
(see Supplement) but the PM10 bias is positive (Fig. 9) due
to a vertical distribution of emissions limited to the lowest
MOCAGE level. As a result of the assimilation, the aerosol
increments associated with the synthetic AOD observations
are positive and they are responsible for increasing the PM10
fields at the surface. In the other CRs, the AOD bias over the
Atlantic is mostly negative, as the PM bias, and the ARs are
better than the corresponding CRs. In other words, where the
surface PM bias and the AOD bias do not have the same sign,
the assimilation of AODs can be detrimental.

To evaluate the capability of the FCI 444 nm channel ob-
servations to improve aerosol forecast in an air quality sce-
nario, the AR simulations have been compared to the NR us-
ing the synthetic AQeR stations as in Sect. 4. Tables 7 and 8
show the statistics of the comparison between the ARs and
the NR for PM10 and PM2.5 concentrations. With regard to
the comparison of the CRs against the NR in Tables 5 and 6,
the ARs are more consistent with the NR. The bias is reduced
for both PM10 and PM2.5 concentrations. The RMSE and the
FGE decrease, while the factor of 2 and the correlations in-
crease for all ARs compared to their respective CRs.

The daily medians of PM10 and PM2.5 concentrations at all
stations are represented over time in Figs. 14 and 15 for the
four simulations. The assimilation reduces the gap between
the simulations and the NR over the entire period. Around the
secondary inorganic aerosol episode, on the 65th day of sim-
ulation, the improvements of PM10 and PM2.5 surface con-
centrations are significant for simulations 2, 3 and 4.

From an air quality monitoring perspective, the assimi-
lation of the FCI synthetic AOD at 444 nm in MOCAGE
improves strongly the surface PM10 concentrations in the
four simulations over the European continent for the period
January–April 2014.

To quantify the improvement in simulations through the
assimilation of FCI synthetic observations during a severe-
pollution episode for (7–15 March) over Europe, maps of rel-
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Figure 9. For each CR (CR1, CR2, CR3 and CR4), the figures represent a PM10 comparison between the NR and the CRs from January to
April 2014: the relative bias (in %), the Pearson correlation and the fractional gross error.

ative concentrations of PM10 and FGE are respectively rep-
resented for the CR comparison and for the AR comparison
in Figs. 16 and 17. The simulations CR2, CR3 and CR4 un-
derestimate PM10 concentrations for 70 % over all Europe
compared to the NR. The FGE presents high values from
0.55 to 0.85. The assimilation of synthetic AOD meaning-
fully improves the surface concentrations of aerosols over

the continent in the simulations, but the simulations still un-
derestimate the PM10 concentrations by 30 %–20 %. Impor-
tant changes in the FGE are noticeable, with values dropping
from 0.55–0.85 down to 0.2–0.4 for all simulations. Over the
other areas, the assimilation significantly reduces the relative
bias and the FGE. Thus, the assimilation of synthetic obser-
vations significantly improves the representation of the sur-
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Table 8. Bias, RMSE, FGE, factor of 2, Pearson correlation and Spearman correlation of the ARs simulation taking as reference the NR
simulations for hourly PM2.5 concentrations from January to April 2014. The comparison is made at the same station location as for AQeR
stations.

Hourly PM2.5 ARs stations Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 Rp Rs
vs. NR stations

AR1 −0.395 (−3.15%) 5.61 0.284 92.7 % 0.755 0.806
AR2 −2.28 (−20.5%) 6.31 0.364 86.6 % 0.703 0.766
AR3 −2.94 (−27.1%) 6.86 0.416 80.9 % 0.669 0.732
AR4 0.109 (0.9 %) 6.56 0.328 89.4 % 0.699 0.765

Table 9. Bias, RMSE, FGE, factor of 2, Pearson correlation and Spearman correlation of the AR3LEO simulation taking as reference the NR
simulations for hourly PM10 and PM2.5 concentrations from January to April 2014. The comparison is made at the same station location as
for AQeR stations.

Hourly AR3LEO stations Bias (µg m−3) RMSE (µg m−3) FGE FactOf2 RP RS
vs. NR stations

PM10 −4.47 (−35.1%) 9.11 0.462 75.6 % 0.656 0.717
PM2.5 −3.89 (−37%) 7.14 0.457 76.5 % 0.681 0.731

Figure 10. Histograms of differences between synthetic observa-
tions and forecast fields (blue) and between synthetic observations
and analysed fields (purple) for the four assimilation runs.

face PM10 concentrations of simulations during the pollution
episode.

In summary, the use of synthetic observations at 444 nm
of the future sensor FCI through assimilation significantly
improves the aerosol fields of the simulations over the Eu-
ropean domain from January to April 2014. These improve-
ments are located all over the domain with best results over

the European continent and the Mediterranean area. The im-
provement of the vertical profile of aerosol concentrations is
also noticeable, and it may be explained because different
parts of the column can be transported by winds in differ-
ent directions (Sič et al., 2016), although the synthetic AOD
observations do not provide information along the vertical.
The first two simulations give better results over the ocean
than simulations 3 and 4 due to a closer representation of the
vertical profile of the aerosol concentrations. This may show
an overly optimistic aspect of the OSSE of the first two sim-
ulations. The simulations lead to sufficiently reliable results
since the shapes of their vertical profile of aerosol concentra-
tions are different from those of the NR. These differences
are caused by the way emissions are injected in the atmo-
sphere (higher for simulation 3 and lower for simulation 4).
The simulations 3 and 4 present robust results over the conti-
nent, despite the differences in the vertical representation of
aerosol concentrations.

6 Discussion

Although the results have shown a general benefit of
FCI/VIS04 future measurements for assimilation in the CTM
MOCAGE, some limitations must be addressed. The AOD
does not introduce information on the vertical distribution of
PM, nor on the size distribution and type of aerosols. So, the
performance of the assimilation will largely depend on the
realism of the representation of aerosols in the CTM before
assimilation. If, for instance, the model has a positive bias
in AOD and a negative bias in surface PM10 compared to
observations, then the assimilation could lead to detrimental
results. So the AOD and PM biases should be assessed and
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Figure 11. Same legend as Fig. 9, but for assimilation runs (AR) instead of control runs (CR).

corrected as far as possible before assimilation in order to
avoid detrimental assimilation.

To identify the added value of assimilating FCI/VIS04
AOD, the results need to be compared with the assimilation
of present-day observations, such as imagers on LEO satel-
lites and in situ surface PM observations. The assimilation
of PM surface observations is indeed an efficient way to im-
prove PM concentration fields at the surface (Tombette et al.,

2009), but the correction of the fields remains confined to the
lowermost levels. While improving the PM surface fields, it
has been shown that the assimilation of AODs also gives a
better representation of aerosols along the vertical (Figs. 12
and 13) and the AOD fields. Besides, the satellite coverage is
much broader than the coverage of the in situ network and,
for instance, aerosol fields over the seas can be corrected be-
fore they reach the coast.
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Figure 12. Mean vertical profile from January to April over the do-
main of the concentrations (µg m−3) of PM10 for the four sets of
simulations (1 in a, 2 in b, 3 in c and 4 in d). The NR is in purple,
the CR is in red and the AR is in green.

Figure 13. Mean vertical profile from January to April over the do-
main of the concentrations (µg m−3) of PM2.5 for the four sets of
simulations (1 in a, 2 in b, 3 in c and 4 in d). The NR is in purple,
the CR is in red and the AR is in green.

In order to assess the added-value of high-repetitivity mea-
surements of FCI compared to a LEO satellite, a comple-
mentary experiment, called AR3LEO, has been done. This
experiment is based on the CR3 configuration of MOCAGE,
but the synthetic observations kept are only the ones at
12:00 UTC instead of the hourly observations. By taking into
account only one measurement per pixel per day, AR3LEO
should thus simulate the assimilation of a LEO satellite. The
results of AR3LEO are in Table 9 and Fig. 18. The density
of observations assimilated is about 10 times lower than the
density of FCI assimilated data. Most of the scores (except
the PM2.5 correlation) of AR3LEO are between the CR3 and
the AR3 scores, which shows and quantifies the benefit of
FCI compared to a LEO satellite. This is also confirmed on
the time series of PM10 surface concentrations (Fig. 18): the
AR3LEO simulation is closer to the CR3 simulation than to
the AR3 simulation. During the pollution episodes from 7
to 14 March 2014 (Fig. 18, time series between day 60 and
day 67, and maps), the amplitude of PM concentrations is
underestimated more in AR3LEO than in AR3. The maps of
bias and FGE show better scores in AR3 than in AR3LEO at
the locations where pollution occurs.

The results have shown the potential benefit of assimi-
lating AOD data from the future FCI/VIS04 in a chemistry
transport model to monitor the PM concentrations on a re-
gional scale over Europe. The horizontal and temporal res-
olutions of FCI (2 km horizontal grid every 10 min or even
2.5 min in Regional Rapid Scan) will, however, be much
finer than the regional scales that have been considered in
this study (0.2◦ horizontal grid every hour). The large dif-
ferences between the resolution of future FCI data and the
data used in this OSSE have two important implications that
deserve to be presented. Firstly, in order to get closer to the
future data, one could consider generating synthetic obser-
vations at the full FCI resolution and assimilate them in a
regional-scale assimilation system. The use of multiple ob-
servations using a “super-observation” approach, by spatial
and temporal averaging, should reduce the instrumental er-
rors and thus one may expect that the assimilation of real
FCI data can lead to even better results than the OSSE pre-
sented here. Secondly, it is worth considering whether high-
resolution FCI measurements could be assimilated in a high-
resolution model for kilometre-scale monitoring of air qual-
ity. However, such work is presently limited by the present
state of the art of numerical chemistry models and their in-
put emission data. The conclusions of some recent numerical
experiments with kilometre-scale air quality models (Colette
et al., 2014) are that such models are very expensive and that
the emission inventories do not have a sufficient resolution.
Still, the performances of such high-resolution models are
better than coarser resolution ones. As computing capacities
keep increasing and kilometre-scale air quality models be-
come affordable, it will be interesting to evaluate the benefit
of assimilating high-resolution FCI data in a kilometre-scale
air quality model, even if the emission data are built with
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Figure 14. Median values over the AQeR station locations of the daily mean PM10 surface concentration (µg m−3) for the NR (in purple)
and the different CR (red) and AR (green) simulations (CR-AR-1 a, CR-AR-2 b, CR-AR-3 c and CR-AR-4 d).

Figure 15. Same legend as Fig. 14 for PM2.5 concentrations.

coarse assumptions. One might expect that the assimilation
of FCI data could correct the model state enough to balance
the deficiencies of the emission inventories. For such a study,
high temporal repetitivity may be also of great interest.

7 Conclusions

An OSSE method has been developed to quantify the added
value of assimilating future MTG/FCI VIS04 AOD (444 nm)

for regional-scale aerosol monitoring in Europe. The char-
acteristic errors of the FCI have been computed from a sen-
sitivity analysis and introduced in the computation of syn-
thetic observations from the NR. An evaluation of the realis-
tic state of the atmosphere of the NR has been done, as well
as a comparison of CR simulations with the NR, in order to
avoid the identical twin problem mentioned in Timmermans
et al. (2009a). Furthermore, different control run simulations
have been set up as in Claeyman et al. (2011) to avoid this
issue. The results of the OSSE should hence be representa-
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Figure 16. PM10 comparison between the NR and the CRs from 7
to 15 March 2014: relative bias and fractional gross error.

tive of the results that the assimilation of real retrieved AODs
from the FCI sensor will bring.

Although the use of a single synthetic observation per pro-
file and the choice of an albedo error of 10 % are pessimistic,
the assimilation of synthetic AOD at 444 nm showed a pos-
itive impact, particularly for the European continental air
pollution. The simulations with data assimilation reproduced
spatial and temporal patterns of PM10 concentrations at the
surface better than without assimilation all along the sim-

Figure 17. Same legend as Fig. 16, but for assimilation runs (AR)
instead of control runs (CR).

ulations and especially during the high-pollution event of
March. The improvement of analysed fields is also expected
for other strong pollution event such as a volcanic ash plume.
This capability of synthetic observations to improve the anal-
ysis of aerosols is present for the four sets of simulations
which show the capability of future data from the FCI sen-
sor to bring an added value into the CTM MOCAGE aerosol
forecasts, and in general, into atmospheric composition mod-
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Figure 18. Results of the assimilation run AR3LEO: density of assimilated synthetic observations (a ;to be compared with Fig. 6), time
series of concentration of PM10 at the surface for NR, CR3, AR3 and AR3LEO (b) between 1 January and 30 April 2014, PM10 relative bias
and FGE of AR3LEO from 7 to 14 March 2014 (to be compared with Fig. 17).

els. Moreover, the advantage of a GEO platform over a LEO
satellite has been shown and assessed.

The results over ocean show an increase in PM concen-
tration bias after assimilation in some places, particularly for
AR4. An explanation is that AOD does not introduce infor-
mation vertically and that the correction of aerosols in the
vertical relies on the model vertical distribution. For a satis-
factory assimilation of AOD, the AOD and PM biases of the
model should be assessed and corrected as far as possible.
Another perspective is to use multiple wavelengths: using the
Ångström exponent could avoid this problem by better dis-
tributing the increment of AOD between the different bins
and hence the different species. Sič et al. (2016) also recom-
mended the use of other types of observations, such as lidars,
in the assimilation process to introduce information over the
vertical.

The results presented here in this OSSE are encourag-
ing for the use of future FCI AOD data within CTMs for
the wavelength VIS04 centred at 444 nm. The use of other
channels could bring complementary information, such as
the NIR2.2, which is expected to be less sensitive to fine

aerosols but more sensitive to large aerosols such as desert
dust and sea salt aerosols. Future work may also consider ex-
ploiting the high-resolution of FCI, following two possible
lines: either for regional-scale assimilation by using a super-
observation procedure or for kilometre-scale air quality map-
ping and for assessing the quality of emission inventories.
However, such an extension is mostly dependent on improve-
ments in the numerical chemistry models, in the input emis-
sion data and in the optimization of assimilation algorithms.

Data availability. The data and software used in this work
can be accessed through the following links. AqeR data:
http://www.eea.europa.eu/data-and-maps/data/aqereporting-8
(EEA, 2019). AERONET data: http://aeronet.gsfc.nasa.gov/
(NASA, 2019). LibRadTran software: http://www.libradtran.
org/doku.php (Mayer et al., 2019). RTTOV software and data:
https://www.nwpsaf.eu/site/software/rttov/ (EUMETSAT NWP
SAF, 2019). The MOCAGE data produced are available on request
to the contact author.
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Appendix A: Deriving AOD error variance from the
global sensitivity analysis of FCI/VIS04 reflectance

The general method is summarized in Fig. A1. A sensitivity
analysis was performed for each OPAC aerosol type, using
Monte Carlo FCI simulations of about 200 000 draws in the
prior distribution of the input parameters. The input distribu-
tions of AOD and total ozone and water vapour columns are
obtained from a MOCAGE simulation that was run through-
out the whole of 2013. The distribution of ground albedo
is deduced from the OPAC database. The profiles of the
MOCAGE simulation are classified into OPAC (Hess et al.,
1998) types by matching species as in Ceamanos et al. (2014)
and then applying classification criteria similar to the OPAC
types.

For every OPAC type, a global sensitivity analysis (GSA)
was performed between the input (AOD τ , total column wa-
ter vapour, ozone content), ground albedo ρg and solar zenith
angle θS) distributions and the output (VIS04 reflectance)
distributions of the FCI simulator. Under the assumption of
independent inputs, the Sobol (1990, 1993) indices enable
a ranking of inputs or couple of inputs with respect to their
variance-based importance in the total output variance. For
VIS04, the variability of the solar zenith angle, the ground
albedo and the AOD are the three largest Sobol indices in
that order and, together, they are at the origin of more than
98 % of the total variance of the output reflectance. Follow-
ing Sobol (1996), the GSA can also be used to determine
a truncated version of the Hoeffding (1948, ANOVA) func-
tional decomposition with key inputs, which approximates
the analysed reflectance. For all OPAC groups, the depen-
dence of reflectance for VIS04 on the total ozone column and
water vapour is negligible and is not taken into account in the
reflectance approximation. As a consequence, the reflectance
R can be approximated by the following equation:

R = f3 (θS)+ f2
(
ρg
)
+ f1 (τ )+ ε, (A1)

where f1, f2, and f3 are functions of the solar zenith angle,
the ground albedo and the AOD, respectively. The approxi-
mation error ε, exhibits a root mean square (rms) less than
0.7 W m−2 sr−1 µm−1 (1.5 % of the mean radiance values of
47.3 W m−2 sr−1 µm−1).

As a consequence of this sensitivity analysis, it is then pos-
sible to isolate the AOD τ with respect to the measured re-
flectance R, the other key inputs θS, ρg and the approxima-
tion error ε:

τ = F
(
R,θS,ρg,ε

)
. (A2)

By sampling input distributions with this equation (Monte
Carlo method), the RMSE of the AOD retrieval can be de-
rived as a function of the reflectance R, the solar zenith angle
θS, the ground albedo ρg and their uncertainties. R is associ-
ated with a measurement noise. No uncertainty is prescribed
for the solar zenith angle. For a given fixed value of rela-
tive error of ground albedo, a look-up table is built that pro-
vides the RMSE of the AOD retrieval as a function of the
solar zenith angle and the ground albedo. Such a look-up ta-
ble of the RMSE of VIS04 AOD has been computed for ev-
ery OPAC type and for different possible values of surface
albedo errors.
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Figure A1. Summary of the methodology used to derive the RMSE of AOD from the FCI reflectance simulator. Step 1 is the computation of
FCI radiance. Input parameters are the histograms of AOD, ozone total column, total water vapour content, ground albedo and solar zenith
angle. The libRadtran simulator simulates the distribution of radiance and reflectance in the VIS04 channel and takes into account the signal-
to-noise ratio of FCI. Step 2 is the approximation of the reflectance in functions of key parameters using a global sensitivity analysis method
and Sobol indices. Step 3 is the retrieval of the AOD RMSE using random noise of measurement and the uncertainty of key parameters.
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