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Abstract. Low-cost sensors (LCSs) are an appealing solution
to the problem of spatial resolution in air quality measure-
ment, but they currently do not have the same analytical per-
formance as regulatory reference methods. Individual sen-
sors can be susceptible to analytical cross-interferences; have
random signal variability; and experience drift over short,
medium and long timescales. To overcome some of the per-
formance limitations of individual sensors we use a cluster-
ing approach using the instantaneous median signal from six
identical electrochemical sensors to minimize the random-
ized drifts and inter-sensor differences. We report here on a
low-power analytical device (<200 W) that is comprised of
clusters of sensors for NO2, Ox , CO and total volatile organic
compounds (VOCs) and that measures supporting parame-
ters such as water vapour and temperature. This was tested
in the field against reference monitors, collecting ambient air
pollution data in Beijing, China. Comparisons were made of
NO2 and Ox clustered sensor data against reference methods
for calibrations derived from factory settings, in-field sim-
ple linear regression (SLR) and then against three machine
learning (ML) algorithms. The parametric supervised ML al-
gorithms, boosted regression trees (BRTs) and boosted linear
regression (BLR), and the non-parametric technique, Gaus-
sian process (GP), used all available sensor data to improve
the measurement estimate of NO2 and Ox . In all cases ML
produced an observational value that was closer to reference
measurements than SLR alone. In combination, sensor clus-
tering and ML generated sensor data of a quality that was

close to that of regulatory measurements (using the RMSE
metric) yet retained a very substantial cost and power advan-
tage.

1 Introduction

Low-cost sensors (LCSs) are an attractive prospect for use in
complex urban environments where more atmospheric mea-
surements are required to build up a better-resolved map
of highly heterogeneous pollution patterns. There are nu-
merous reports of low-cost, low-powered sensors commer-
cially available for most of the criteria pollutants. Air pol-
lution measurement has been historically a heavily regu-
lated analytical environment. Many countries have extensive
programmes of air quality measurement, and measurements
are often situated within a legal framework with prescribed
methods of measurement. Air quality monitoring stations use
relatively power-intensive equipment, have a high start-up
cost and require skilled personnel for calibration and mainte-
nance. A consequence is that, even in wealthy countries, ob-
servations are sparse with sites often located 1–10 km2 apart
(McKercher et al., 2017). Pollutants often exhibit steep spa-
tial concentration gradients over short distances (Broday et
al., 2017), and limited measurement locations mean hotspots
are often missed (Mead et al., 2013).

LCSs provide an opportunity to increase the density of
atmospheric measurements and reduce the uncertainty that
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arises when interpolating between current reference mon-
itors. This has many uses, most notably allowing better
validation of atmospheric models (Broday et al., 2017).
The lower-power and size associated with LCSs, along
with high-frequency measurements, makes them an attrac-
tive prospect for mobile use and for personal exposure as-
sessment (Williams et al., 2013). Many low-cost sensors are
commercially available, either as stand-alone sensors or as
multisensory platforms (Caron et al., 2016; Jiao et al., 2016)
(for example, AQMesh; Broday et al., 2017). There has been
a rapid expansion in the number of publications evaluating
such devices recently. Single devices containing sensors for
the measurement of criteria pollutants such as CO, NO2, total
volatile organic compound (VOC) and O3 cost a fraction of
the price (approximate sensor box cost is GBP 5000) of es-
tablishing an equivalent measurement site with reference in-
struments (Mead et al., 2013) (GBP 200 000). Perhaps more
importantly sensors can be placed in locations where power
is limited or can only be generated through solar resources.
The operating costs of low-power devices are also a very at-
tractive feature.

However, the literature contains many examples of where
LCS approaches can suffer from relatively poor analytical
performance when compared against the reference instru-
ments. Whilst such a comparison is perhaps not always ap-
propriate to make in such a highly regulated field of measure-
ment, the benchmark test of any new analytical device will
be against the regulatory reference. Significant uncertainty
in measurements is introduced because individual sensors
each have a unique response to simple environmental con-
ditions such as humidity and temperature (Smith et al., 2017;
Moltchanov et al., 2015). This can lead to a relatively high
degree of inter-sensor variability and response drift (Lewis et
al., 2016; Spinelle et al., 2017) over durations as short as a
few hours (Jiao et al., 2016; Masson et al., 2015), rendering
in-laboratory calibrations (where the interfering variables are
controlled or non-existent) ineffective (Smith et al., 2017).
Electrochemical (EC) sensors can display some chemical
cross-interferences with other pollutants that are likely to be
present (Mead et al., 2013; Lewis et al., 2016; Masson et
al., 2015), and accounting for these can be difficult when the
relative concentration ratios of the target measurand and in-
terferences change. Metal oxide sensors (MOSs) often lack
selectivity and provide only a rough bulk measure of a par-
ticular pollutant class such as VOCs, and the responses gen-
erated can depend on the chemical content of the mixture
presented to the sensor.

Although some LCS vendors supply a factory calibration
with their sensors, these are not always applicable in the real
world, where ambient conditions are substantially different
to the calibration conditions in the factory. Previous stud-
ies have shown that sensors co-located with reference in-
struments can be used to reproduce typical pollution patterns
(Jiao et al., 2016; Mead et al., 2013), but there is a significant
challenge when attempting to calculate absolute pollutant

concentrations with a single deployed sensor device. Recent
efforts using multivariate regression models (Zampolli et al.,
2004) and pattern recognition analysis (Jiao et al., 2016) have
characterized these responses to the environmental condi-
tions and provided insight into processes that generate the
sensor signal (Zampolli et al., 2004; Hong et al., 1996). Thus
far, there is no agreed standard calibration or correction pro-
cedures for sensor data, or indeed what data standards low-
cost sensor data should work towards. For reference monitors
in the UK, NOx , CO and O3 instruments must produce repro-
ducible measurements for 3 months that are within 5 % of
the average for a certain concentration in the field and results
that are linear over a set range (EU, 2008). For NOx this is 0–
2000 ppb, for O3 this is 0–500 ppb and CO this is 0–50 ppm
to ensure that both rural and urban concentration ranges are
taken into account. Although the target performance of low-
cost sensors is highly application dependent, these standards
do provide a guide for comparison and highlight the need not
only for high-accuracy measurements but also reproducibil-
ity over long (months) timescales. In order for low-cost sen-
sors to be used in atmospheric monitoring or research appli-
cations the uncertainty and reproducibility must be quantified
across a range of likely environmental conditions.

If regulatory reference methods are taken as the bench-
mark, the implication with current single sensors would be
very frequent calibration, possibly hourly or daily. Previous
work shows that clustering sensors and using the median sen-
sor signal of the cluster can help minimize some of the effect
of medium-term noise and limit the effects of inter-sensor
variability (Smith et al., 2017). This practice was adopted
here during the building and development of a multi-sensor
instrument deployed alongside reference instruments.

2 Experiment

2.1 Analytical description of the instrument

A range of different sensors were mounted into sealed
flow cells such that the sensing element of each was ex-
posed to a continually flowing sample of air. The flow
cells were in turn installed inside in a 4U aluminium box
(177 mm H× 460 mm D×483 mm W), which had a metal
partition to keep the sensors shielded from electrical inter-
ference from the pumps and power supplies (Fig. 1). The
number of sensors and their type are shown in Table 1.

Two microcontrollers (Arduino Uno) were used to col-
lect the data from the sensors. Each Arduino recorded 3 Hz
data from 25 sensors, and this was then averaged to 2 s and
sent to a LattePanda mini-computer for formatting and stor-
age. Two KNF pumps drew ambient air through a sample
line at atmospheric pressure over the sensors at a constant
rate (ca. 4 L min−1). Two fans were installed on the box
panels to pull air through the box in an attempt to reduce
instrument overheating. The power supplies were selected
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Figure 1. Schematic representation of the gas flow paths and basic layout of the sensors and components within the device.

Table 1. Summary of sensors used within the instrument.

Measurand Sensor type Manufacturer Number of sensors Number of
in each cluster clusters

Carbon monoxide (CO) Electrochemical CO-B4 Alphasense 6 1
Oxidizing gases (Ox ) Electrochemical OX-B431 Alphasense 6 1
Nitrogen dioxide (NO2) Electrochemical NO2-B43F Alphasense 6 1
Total VOC Metal oxide TGS2602 Figaro 8 4
Temperature and humidity Transducer (HPP809A031) TE Connectivity 1 2

for their low electrical noise, and Adafruit ADS1115 16-
bit ADC (analogue-to-digital converter) boards further min-
imized this issue. A schematic of the instrument is shown
in Fig. 1. The overall power budget of the device when op-
erating was approximately 52 W, with a breakdown of com-
ponents as follows: 18 EC sensors, 9 W; 32 MOSs and in-
ternal heaters, 9.4 W; two relative humidity and temperature
sensors, 0.01 W; two diaphragm pumps, 16.8 W; two fans,
2.8 W; two Arduino Uno microcontroller boards, 0.58 W;
LattePanda micro-computer, 10 W; three power supplies,
3 W.

We note that this type of approach differs from the ma-
jority of LCS air quality instruments described in the litera-
ture and that are commercially available. In most cases the
emphasis in LCS design has been minimizing cost and size.
Clearly an instrument that contains >40 individual sensors
is not optimized with cost or size as its main design goals.

Instead, we have focused on data reliability as well as the ad-
vantages associated with electrical power consumption com-
pared against a suite of traditional reference instruments.

Figure 2 summarizes in simple terms how device costs and
power consumption compare between a single sensor device,
a six-sensor clustered approach and a reference instrument,
using the example of ozone. The clustered approach, whilst
more expensive than a single sensor, retains a very substan-
tial power advantage over the reference, creating potential
for deployment in remote or off-grid locations, or in devel-
oping countries where electrical supplies can be both costly
and unreliable. The next key question therefore is whether
a more complex and expensive clustered sensor instrument
can meet similar data quality as reference instruments and
therefore offer a direct alternative but with lower power and
operational costs.
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Figure 2. Cost (blue) and power (purple) competitiveness for a sin-
gle Ox EC sensor device, a clustered six-sensor device and a refer-
ence UV ozone monitor.

2.2 Sensor test deployment in Beijing

The multi-sensor instrument described in Sect. 2.1 was de-
ployed alongside research-grade reference instruments in
Beijing, China, during a large air quality experiment between
29 May and 26 June 2017. Beijing has well documented is-
sues with air quality (Zhang et al., 2016) meaning concen-
trations of pollutants were anticipated to be elevated and to
show a large dynamic range. Beijing also experiences warm,
humid summers (Chan and Yao, 2008); during the deploy-
ment reported here, air temperature fluctuated between 15.6
and 41.2 ◦C and absolute humidity ranged between 3.82 and
17.83 g m−3. In combination these conditions provide a ro-
bust and wide-ranging test of instrument performance.

Both sensors and reference instruments were located at the
Institute of Atmospheric Physics (IAP) site (latitude 39.978,
longitude 116.387), which is situated to the north of central
Beijing. All instruments were housed in converted sea con-
tainer laboratories for this study. Reference instruments for
NO2 and Ox were co-located and sampled from the same
3 m high inlet, with sample bypass flow provided by a com-
mon diaphragm pump. The NO2 reference measurement was
by cavity-attenuated phase shift (CAPS) spectroscopy (Tele-
dyne T500U, Teledyne, California), with a 100 ppb NO2 in
N2 calibration source. The NO2 reference measurements had
5 % uncertainty and 0.1 ppbv precision. O3 reference was
measured at 1 min averages by a Thermo Scientific UV ab-
sorption photometer (Model 49i), traceable for calibration to
the UK National Physical Laboratory primary ozone stan-
dard with an uncertainty of 2 %, and a precision of 1 ppb.
The sensor instrument collected continuous data as part of
the Beijing campaign (Edwards et al., 2017).

2.3 Data analysis approaches

The approach of clustering low-cost sensors was used to
improve sensor reproducibility as previously discussed in
(Smith et al., 2017), whereas the simple linear regression
(SLR) and machine learning (ML) techniques were ap-
plied to improve sensor accuracy by correcting for cross-
sensitivities.

The median voltage signal from of each of the sensor clus-
ters was calculated automatically by the built-in computing
device and software, and then that value converted to con-
centration units using four different numerical techniques:
(i) SLR, (ii) boosted regression trees (BRTs), (iii) boosted
linear regression (BLR) and (iv) Gaussian process (GP).

ML techniques (methods ii–iv) are powerful tools for iden-
tifying relationships between variables and have been shown
to support improved concentration estimates that correct in-
terferences in low-cost sensors (Geron, 2017; Zimmerman et
al., 2018; Lin et al., 2018; Esposito et al., 2016; Hagan et al.,
2018).

The full dataset from all sensors (chemical and environ-
mental) was used in the ML algorithms with a subset of the
time series (2–8 June 2017) treated as training data. Follow-
ing training, the ML algorithms were then applied to the test-
ing dataset (8–26 June 2017), outputting a corrected con-
centration value. The median of each sensor cluster of CO,
NO2, O3, VOC, plus humidity and temperature, were used
by the three different ML algorithms to determine the viabil-
ity and relative performance of supervised, self-optimization
techniques as a method for correcting for cross-interferences.
Examples of both parametric (BLR and BRT) and non-
parametric (GP) techniques were assessed. BRT was chosen
as a numerical method since it provides diagnostics about
how the decision trees are constructed, essentially identify-
ing which sensor signals are used in the calculation (Chen
and Guestrin, 2016; Geron, 2017). The results can then be
compared to known relationships from previous laboratory
studies, ensuring that the prediction is in large part a mea-
surement rather than a model value. GP was used because of
its proven ability to handle noisy data and it ability to pro-
vide the estimations of uncertainty for each data point in the
testing data (Geron, 2017; Rasmussen and Williams, 2006).

3 Results and discussion

3.1 How clustering improves performance

Previous laboratory studies (Smith et al., 2017) have shown
that clustering sensors was one potential technical approach
to reduce the effects of hour to day drift in individual sen-
sor response and limit the effects of inter-sensor manufac-
turing variability. The median sensor signal was shown to be
a more reliable predictor of the true pollutant value (vs. the
mean), and the effect of deteriorating or highly variable sen-

Atmos. Meas. Tech., 12, 1325–1336, 2019 www.atmos-meas-tech.net/12/1325/2019/



K. R. Smith et al.: An improved low-power measurement of ambient NO2 and O3 1329

Figure 3. Comparison of slopes of concentrations derived from
clusters of NO2 EC sensors against a reference instrument for ambi-
ent Beijing air. As the number of sensors used increases, the spread
in data narrows, as seen through the difference in slope. If data from
three out of six sensors are used there are 20 possible permutations
of sensors. The average signal of each was calculated, then plotted
against the reference NO2 CAPS measurements, and the gradient
was extracted. The 20 gradients of these correlation plots (sensi-
tivities) are then plotted in the box plots above, with the median,
25th percentile, and 75th percentile in the box and the 5th and 95th
percentile on the whiskers.

sors was minimized. This approach has been extended here
to field observations and to a wider range of different chem-
ical species. The EC sensors output two voltages: one from
the working electrode (WE) and one from the auxiliary elec-
trode (AE). The standard calibration procedure subtracts the
effect of the auxiliary electrode from the working electrode
(the electrode exposed to the ambient air and oxidizing com-
pounds) effectively helping to correct for some of the tem-
perature and humidity effects. The manufacturer supplies in-
dividual conversion factors and equations for each sensor and
these were applied to each sensor prior to use within the clus-
ter. Each sensor within a cluster was initially normalized to
give a common voltage output.

We use the raw sensor voltages and the manufacturer’s cal-
ibration values to gain an initial concentration. One method
of determining the improvement in the concentration esti-
mated by the sensors is to compare the range of slopes ob-
tained against reference instrument for a range of different
numbers of sensors. This is shown for the first time for an
electrochemical NO2 sensor in Fig. 3. As the number of sen-
sors in a cluster is increased, the observed range of values
for the unique permutations of the groups narrows consid-
erably, greatly improving measurement precision. The slope
does not, however, converge on 1 : 1 since there is a differ-
ence in the factory calibration of the sensors compared to the

reference instrument. The cluster vs. reference comparison
using simple factory calibration can be seen in Fig. 4a.

3.2 Simple linear regression (SLR)

The first data calibration approach used was SLR, applied
to calibrate the median sensor signal using the reference in-
strument concentration from the first 5 days of the experi-
ment (the training period). The sensor concentrations were
corrected using linear parameters from training period cali-
bration, and subsequent sensor performance was assessed by
comparing against the co-located reference instrument. Us-
ing the NO2 EC sensor cluster as an example, linear param-
eters in the form of y =mx+ c were determined using a lin-
ear least-squares fit between the NO2 CAPS reference instru-
ment and the median NO2 EC sensor for the first 5 days of
the sensor instrument deployment. Once trained in this man-
ner, these linear calibration factors based on SLR were used
to calibrate the median NO2 sensor and were unchanged for
the remainder of the experiment.

The different pollutant clusters showed variable perfor-
mance against their respective reference over the 21 days. We
use root-mean-square error (RMSE) here as a metric to eval-
uate the performance of various clusters and different data
calibration approaches. We also calculate the RMSE between
two approximately co-located NO2 reference-grade instru-
ments (4.3 ppb) during the same field deployment to quan-
tify what might be considered the “optimum comparison”
that could be expected between the sensors and the refer-
ence approach. During the campaign a localized source of
NO and NO2 was emitted into the vicinity downwind of the
second NO2 CAPS instrument and hence not observed by
it. For a fair comparison of the two NO2 reference measure-
ments the data between 10 and 14 June, when the localized
emissions of NO and NO2 occurred, were removed. Unfor-
tunately, there was not a co-located CO reference instrument
or multiple co-located reference observations of O3 available
for this study. The CO sensor median was still included with
the total VOC median, relative humidity and temperature in
the sensor variables for training and testing the ML algo-
rithms, but we were unable to make a comparison.

Applying SLR, the NO2 sensor cluster gave a RMSE of
10.42 ppb and RMSE of 10.44 ppb for the Ox cluster me-
dian signal with the sum of the NO2+O3 reference mea-
surements. The ambient NO2 concentrations varied over a
wide range from below 2 ppb to in excess of 200 ppb, and
the clustered NO2 package performed well at capturing this
range of observed concentrations but with substantial dis-
crepancies between the median NO2 EC sensor and the NO2
CAPS reference instrument when the reference NO2 concen-
trations were below 10 ppb. This finding fits well with previ-
ous work that shows the impact of cross-sensitivities on EC
sensors is most important at low target compound concentra-
tions (Lewis et al., 2016). The Alphasense OX-B431 sensors
detected both O3 and NO2. They respond proportionately but
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Figure 4. (a) Comparison of the median NO2 sensor using individual factory calibrations, (b) the NO2 GP prediction ±2σ , (c) NO2 BRT
prediction and (d) NO2 BLR prediction ML techniques. The purple shaded area shows the data used to train the ML algorithms. The black
line in all subplots is the York NO2 CAPS measurement, which was used as a reference. Panel (e) shows the relative humidity (%) and
temperature (◦C) during the sensor instrument deployment. Note that panels (b), (c) and (d) are plotted with a logarithmic y axis.

independently to concentrations of O3 and NO2; hence, the
Ox EC sensors were calibrated with and compared to the
sum of the O3 and NO2 reference measurements. The me-
dian value from the Ox cluster showed the best correlation
with the respective reference measurements (Ox R2

= 0.95,
NO2 R

2
= 0.86).

3.3 Using machine learning (ML) algorithms to
calibrate the median sensor cluster

Each ML algorithm was trained and then tested using the
same 1 min average sensor data as the SLR in Sect. 3.2, split
into the same training and testing sets each time. The training
data were the first 8490 data points of the measurement pe-
riod, and the testing set was the remaining 25 956 data points.
For BRT and BLR the Python XGBoost implementation was
used to train, cross-validate and test the models. This scal-
able learning system is open source, computationally effi-
cient and has performed well on other platforms (Rasmussen
and Williams, 2006). Both BRT and BLR have different hy-
perparameters that allow the ML algorithm to be tuned so
that the algorithm can detect trends within the data, without
overfitting. Hyperparameters, such as the learning step, can
be increased or decreased to allow a good fit to the train-
ing data and to optimize the performance of the algorithm

(Geron, 2017). To tune the ML algorithm hyperparameters a
5-fold cross-validation of the training set was used to build
the classification models, with a randomization seed of 42
each time. The seed randomizes the data, so the value of the
seed does not matter, just that it is consistent for the cross-
validation. During the cross-validation process, the algorithm
trained on one of the five subsets of the training dataset and
made a prediction based on these learnt relationships over
the other four subsets of data to test out the associated rules
it has found. The hyperparameters were decided by minimiz-
ing the mean absolute error (MAE) between the predicted
subsets of data and the training label (Shi et al., 2017). Once
decided, these hyperparameters were fixed and the algorithm
then tested on data that it has not yet seen, i.e. the testing
dataset.

BRT uses gradient-boosted regression trees to integrate
large numbers of decision trees, and this improves the over-
all performance of the trees (Rasmussen and Williams, 2006;
Friedman, 2001). Through a process where many decision
trees are working on the training dataset, the algorithm gen-
erates a set of rules by which the training data are linked
to the training label (Shi et al., 2017). By discarding trees
that do not have much impact on the MAE, the algorithm is
more efficient at determining the relationships between vari-
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ables. The nature of decision trees means BRT is not lim-
ited to identifying linear functions, unlike BLR. During the
same cross-validation process as described for BRT, BLR
identifies the linear relationships between the sensor vari-
ables and uses these correlations to predict the compound
response during the testing period. BLR is simpler than BRT
but works well when there are multiple linear trends between
variables. GP uses the Gaussian distribution over functions
and can be a powerful tool for regression and prediction pur-
poses (Rasmussen and Williams, 2006). It is a flexible model
which generalizes the Gaussian distribution of the functions
that make up the properties of each variables function (Ras-
mussen and Williams, 2006). GP can be used as a supervised
learning technique once suitable properties for the covari-
ance functions (kernels) are found; then a GP model can be
created and interpreted (Roberts et al., 2013). For this study
there were two kernels used to train and predict the sensor
data. These were matern32 (k1) and linear (k2) functions.
They were added together (k1+k2) to enable both linear (k2)
and non-linear (k1) relationships between the variables to be
detected, as it was observed in the laboratory that the rela-
tionships between the variables could be either (Lewis et al.,
2016; Smith et al., 2017). The hyperparameters were then
self-optimized using the training data by the open-source
Python package running the algorithm, GPy. The GP-, BRT-
and BLR-predicted responses were then compared to the ref-
erence data over the testing period, and a RMSE was calcu-
lated to investigate how well the ML algorithm performed.

3.4 Sensor cluster data with ML processing – NO2
cluster

Figure 4 shows the predicted NO2 time series using the me-
dian cluster value and the three ML calibrations compared
with the reference measurement. The median sensor with in-
dividual factory corrections (Fig. 4a) clearly detects the ma-
jor trend in NO2 concentration but often under-predicts at
times when the NO2 concentration is low. At higher con-
centrations the median sensor over-predicts the NO2 signal,
leading to a RMSE of 86.7 ppb.

3.4.1 Gaussian process (GP)

The GP ML algorithm predicted the NO2 concentration with
a RMSE of 5.2 ppb compared to the reference measure-
ment, the lowest for all the different ML techniques. The
Matern32 kernel is adept at capturing the more typical (sub
50 ppb) NO2 concentrations, due to its ability to model cross-
sensitivities on the sensor signals but struggled to extrapolate
to highest concentrations. One advantage of using GP to pre-
dict compound concentrations is that an uncertainty on the
predicted values is also calculated. This uncertainty is shown
in Fig. 4b (light yellow shading), as ±2 standard deviations
on the predicted data points. It is clear that there are periods
when there is more uncertainty in the prediction. There are

four main periods where the GP prediction appeared low, and
the uncertainty was high: 15:00 UTC on 8 June, 17:00 UTC
on 9 June, 14:00 UTC on 15 June and 14:00 UTC on 16 June.
These over-extrapolated data points all occurred when the
temperature reached 40 ◦C and exceeded the maximum tem-
perature recorded during the training period (35.8 ◦C), coin-
ciding with when the NO2 concentration and relative humid-
ity were low (Fig. 4e). Machine learning techniques all have
difficulty making predictions when the testing and training
datasets cover different variable space, but the calculation
of a prediction uncertainty highlights when this could po-
tentially be an issue and could be used to inform calibration
strategies.

3.4.2 Boosted regression trees (BRT)

The BRT prediction (Fig. 4c) was very good during periods
when the test data did not exceed concentrations of NO2 seen
in the training data (∼ 79 ppb). However, the classification
nature of the BRT algorithm means it is incapable of extrap-
olation, so the prediction cannot capture the high concentra-
tions of NO2 that were observed between 10 and 14 June (the
NO2 CAPS instrument recorded a maximum NO2 concentra-
tion of 222.2 ppb during the testing period). During this time
a localized source of NO and NO2 was emitted. Overall, the
RMSE between the BRT NO2 prediction and the NO2 CAPS
reference measurement was 7.2 ppb, an improvement on SLR
(10.4 ppb) of∼ 30 % despite its inability to capture NO2 con-
centrations outside of those experienced during the training
data period. This improvement for the lower concentrations
of NO2 is due to the BRT model’s ability to better correct
for some cross-sensitivities on the sensor signals, such as the
effect of humidity. With the dates omitted for the localized
source of NO and NO2 (described in Sect. 3.2) the RMSE
for BRT prediction was 6.1 ppb, showing that the BRT pre-
diction does well at capturing the trends in NO2 when ex-
trapolation is not required.

The BRT algorithm outputs a gain feature called gain,
which can be used to identify how much each variable con-
tributes to the predicted sensor response and these are shown
in Fig. 5a. The median NO2 sensor signal was (encourag-
ingly) the largest contributor to the NO2 concentration pre-
diction, followed by data from the CO cluster and the relative
humidity sensor. This is consistent with previous laboratory
results, where it was observed that the NO2 sensor signal had
a CO interference and was affected by changing humidity
(Lewis et al., 2016).

3.4.3 Boosted linear regression (BLR)

The BLR-predicted NO2 concentration was comparable to
the GP prediction, with a RMSE of 6.6 ppb. When the NO
and NO2 localized source was removed the RMSE did not
change substantially (6.3 ppb) suggesting that this technique
was good at extrapolating to the NO2 concentrations outside
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Figure 5. Breakdown of contribution from each variable used by the
BRT algorithm to predict the clustered (a) NO2 sensor and (b) Ox
concentrations.

the range of the training data. BLR assumes purely linear
trends between variables, meaning it does not represent non-
linear relationships, but the linear nature of the relationships
allows BLR to extrapolate trends beyond the ranges seen in
the training data. Figure 5d shows the predicted BLR NO2
signal fully capturing the maximum NO2 concentrations be-
tween 10 and 14 June. Overall, the RMSE between the BLR
prediction and NO2 reference measurement was slightly bet-
ter than the BRT, suggesting that the inter-sensor relation-
ships were often approximately linear over the variable space
observed. The similarity between the GP and BLR predic-
tions is not surprising given the use of the linear kernel in
the GP algorithm. The BLR also over-extrapolated the pre-
dicted NO2 concentration during the same periods as the GP
prediction, suggesting that the linear kernel contributed sub-
stantially to the GP prediction but that the training data were
not adequate to capture deviations from this linearity.

Figure 7a summarizes how a progressively improved
RMSE can be achieved, as NO2 sensors are first used in a
cluster, and then the various different numerical methods are
applied to calibration, ultimately producing a performance
that is close to the reference vs. reference RMSE. Figure 7a
also highlights the evidence that the uncertainty in the sen-
sor concentrations is greatly reduced if the sensors are cali-
brated in field (using SLR) or if ML procedures are applied.
The GP prediction was the ML calibration technique that
was closest to the RMSE between the two reference instru-
ments. The RMSE and normalized root-mean-square error
(NRMSE) were calculated after the application of SLR and
ML for different reference concentration ranges to indicate
where the greatest improvement of the sensor data occurred
(see Table 2). The RMSE and NRMSE (calculated by divid-
ing the RMSE by the mean of the concentration bin) were
determined between the reference NO2 observations and the

sensor values for four equally spaced reference concentra-
tion bins. The ML techniques produced the greatest improve-
ments in the concentration estimates for the lower concen-
trations of the target measurand where the effect of cross-
interferences is more significant. The BRT and GP in partic-
ular displayed large improvements for the lower NO2 refer-
ence observations. At the higher concentrations of NO2, the
ML algorithms displayed less improvement, where the con-
ditions were outside those of the training data variable space.
This was very noticeable for the BRT algorithm due to its
inability to extrapolate.

3.5 Sensor cluster data with ML processing – Ox

cluster

The data from the median Ox sensor vs. the NO2+O3 ref-
erence measurements are shown in Fig. 6, along with the
best performing ML data-processing method. During peaks
in Ox concentration the factory-calibrated sensor values tend
to produce overestimates of the Ox concentrations (e.g. max-
imum Ox concentration observed by reference was 253 ppb,
the median Ox sensor 426 ppb). The ML technique with the
lowest RMSE, BRT, brought the Ox concentration estimate
much closer to the reference observations (see Fig. 6); how-
ever, during peaks in Ox concentration, the BRT-predicted
Ox concentration estimate was under-predicted due to BRT’s
inability to extrapolate.

A summary of RMSE improvements implemented for all
methods can be found in Fig. 7b. BLR and BRT performance
was near identical indicating the Ox sensors have largely lin-
ear relationships governing their performance, at least over
the variable space observed. The 30 % of the data used to
train the ML algorithms included a range of Ox concentra-
tions much more representative of the total observation pe-
riod than was the case for NO2, and so only limited extrap-
olation beyond the training dataset was needed. The BRT al-
gorithm gain was again used to determine the largest con-
tributing variables to the BRT Ox prediction, Fig. 5b. The
median Ox sensor value made the largest contribution to
the BRT Ox prediction (92 %). The median CO sensor con-
tributed 1.5 % to the prediction. The NRMSE was calculated
for four equally sized reference Ox concentration bins for
each analytical method used, in a similar manner to Table 2
for NO2. The NRMSE improved for SLR and the ML algo-
rithms across all concentration ranges, with BLR and BRT
optimal for reducing the error estimate the most. The error
was the highest at the higher Ox concentrations for BRT,
which was expected due to BRT’s inability to extrapolate.

3.6 A measurement vs. a sensor model

ML algorithms are skilful at detecting patterns within a
dataset, and the work shown in this study is evidence that
they can improve the performance of LCSs, as measured by
a reported concentration value compared to a reference. Each
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Table 2. The NRMSE and RMSE between the NO2 reference and sensor datasets at different concentration ranges. For each calibration
method used in the paper, the data were binned into 25 % of the observed reference concentration. The RMSE and the NRMSE were
calculated for each concentration bin and the results for NO2 and Ox are summarized in the table below. The NRMSE was calculated by
dividing the RMSE between the reference observations and the sensor values by the mean reference concentration for the respective bin.

NRMSE of reference vs. NO2 concentration
estimate (RMSE/ppb)

Concentration range as a % of the Median SLR BLR BRT GP
maximum concentration of reference NO2

0 %–25 % 1.04 (20.7) 0.59 (11.7) 0.32 (6.3) 0.28 (5.6) 0.29 (5.8)
25 %–50 % 0.69 (47.5) 0.19 (13.3) 0.12 (8.2) 0.22 (15.2) 0.11 (7.9)
50 %–75 % 0.72 (94.9) 0.23 (30.8) 0.26 (34.6) 0.55 (72.5) 0.26 (33.5)
75 %–100 % 0.85 (153.1) 0.10 (17.4) 0.10 (18.8) 0.67 (120.0) 0.10 (18.2)

Figure 6. Factory-calibrated median sensor concentration (grey), reference O3+NO2 data (black) and BRT Ox prediction (blue) for a cluster
of Ox sensors. The reference measurements that were used as the training label are displayed in red. Inset: the correlation plot for the testing
dataset, comparing the reference data and the BRT-predicted Ox sensor signal.

of the sensor predictions made by the ML algorithms could
be justified by previous experience with working with sim-
ilar EC sensors in the laboratory and from reported studies.
For example, the predicted NO2 sensor response was formed
based upon decision trees that were primarily influenced by
the median NO2 sensor value, and then small adjustments
were made to the prediction using the median CO EC and
humidity data. This is reasonable based on previous labo-
ratory experiments showing NO2 sensors responding to CO
and changing humidity. When using the sensors to correct
cross-interferences and changing meteorological conditions,
the prediction is an optimized version of the sensor response
that essentially calibrates for identified cross-sensitivities.

However, ML algorithms can also be used to make pre-
dictions of compounds, for example, nitric oxide (NO), that
are simply correlated to other air pollution variables but that
are not physically measured by a specific sensor. As an ex-
ample, in this study a reference-grade NO measurement was

made from the same sampling line as the sensor instrument
and this was used to make a NO prediction using BRT, based
on information gathered by the other chemical sensors. From
previous laboratory studies it is known that NO is a cross-
interference on the NO2 and Ox EC sensors (Lewis et al.,
2016), and therefore we could expect that an NO prediction
would use these two variables. However, ambient NO con-
centrations are closely linked to the concentrations of NO2
and O3 via steady-state interconversion, and this underlying
chemistry might also be identified by the algorithm and used
to predict NO.

Using a BRT model and sensor cluster median values from
the sensor instrument deployment, it was possible to cor-
rectly identify when the major NO peaks would occur and
predict NO concentrations with a RMSE of 10.5 ppb, even
though our instrument did not actually contain a NO sensor.
This corresponds to a NRMSE of 0.37. For comparison, the
NRMSE for the BRT NO2 and Ox predictions were 0.11 and
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Figure 7. Comparison of the RMSE calculated for electrochemical
sensor signal data treatment including individual sensors and a clus-
ter of six using factory calibration, SLR and three ML techniques;
when available, a reference vs. reference RMSE is also included.
(a) NO2; (b) Ox .

0.08, respectively, and the two NO2 reference instruments
gave a NRMSE of 0.06, so the NO prediction contains a high
degree of uncertainty although appears to be quite good ini-
tially. When we interrogate the decision tree model, however,
we find that the prediction is largely based on the chemi-
cal relationship between NO2 and Ox and not on any cross-
sensitivities of sensor signals. In this rather extreme example
it could be claimed that this NO prediction is not a measure-
ment but a model (Hagler et al., 2018) and highlights the
challenge of interpreting low-cost sensor measurements that
exist in something of an analytical grey area due to their re-
liance on complex calibration algorithms.

4 Conclusions

Using a combination of clustering sensors and ML data pro-
cessing, a lower-cost and relatively low-power air quality in-
strument has made measurements of NO2 and Ox that were
close to the RMSE of reference instruments (over the pe-
riod of study). Clustering of sensors adds little to the over-
all power budget of an instrument but is a very easy way to
overcome individual sensor drift and irreproducibility. Fur-
ther data treatments such as in-field calibration with SLR
or supervised ML techniques can further optimize the sen-
sor data. SLR was seen to improve median sensor concen-
trations to some degree but struggled to accurately calibrate
the sensor data at the lower concentrations. ML techniques

were able to further improve the sensor performance because
they could correct multiple trends between the sensor vari-
ables eliminating some cross-interferences. BLR and BRT
were seen to be most powerful at predicting the compound
response and used information content from other variables
that was reasonable based on previous lab studies. The GP
approach was advantageous in that a standard error could be
calculated for each predicted data point. Therefore, this iden-
tified regions within the data where the prediction was more
uncertain, for example, if the testing data significantly devi-
ated from the variable space observed during training. BLR
was the simplest technique and worked well when the func-
tions between the sensor variables were linear, for example,
during the Ox sensor prediction. The time required to train
and run the model was reduced when using BLR and BRT
over GP. A longer period of data collection, of at least a few
months to a year of sensor data, is needed to establish how
long such algorithms accurately predict the reference obser-
vations. It appears that as a minimum the use of ML cali-
bration techniques would increase the time required between
physical calibrations and allow the use of sensor instruments
as part of a network or allow it to run in isolated environ-
ments, after the instrument was calibrated over as large a
range of conditions, that it is likely to experience, as possi-
ble. Data that occur outside the training data ranges can then
be flagged and treated with a higher level of uncertainty.

Data availability. Sensor data for this research have been sub-
mitted to the PURE repository and have received the fol-
lowing DOI: https://doi.org/10.15124/1a0c64b0-433b-4eec-b5c7-
64d3de0a0351 (Edwards et al., 2017). The reference data can be
found on the CEDA website under the Atmospheric Pollution and
Human Health in a Developing Megacity (APHH) project.
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