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Abstract. Volatile organic compounds (VOCs) present a
unique challenge in air quality research given their impor-
tance to human and environmental health, and their complex-
ity to monitor resulting from the number of possible sources
and mixtures. New technologies, such as low-cost air qual-
ity sensors, have the potential to support existing air qual-
ity measurement methods by providing data in high time
and spatial resolution. These higher-resolution data could
provide greater insight into specific events, sources, and lo-
cal variability. Furthermore, given the potential for differ-
ences in selectivities for sensors, leveraging multiple sen-
sors in an array format may even be able to provide insight
into which VOCs or types of VOCs are present. During the
FRAPPE and DISCOVER-AQ monitoring campaigns, our
team was able to co-locate two sensor systems, using metal
oxide (MOx) VOC sensors, with a proton-transfer-reaction
quadrupole mass spectrometer (PTR-QMS) providing spe-
ciated VOC data. This dataset provided the opportunity to
explore the ability of sensors to estimate specific VOCs and
groups of VOCs in real-world conditions, e.g., dynamic tem-
perature and humidity. Moreover, we were able to explore
the impact of changing VOC compositions on sensor per-
formance as well as the difference in selectivities of sen-
sors in order to consider how this could be utilized. From
this analysis, it seems that systems using multiple VOC sen-
sors are able to provide VOC estimates at ambient levels for
specific VOCs or groups of VOCs. It also seems that this
performance is fairly robust in changing VOC mixtures, and
it was confirmed that there are consistent and useful differ-
ences in selectivities between the two MOx sensors studied.
While this study was fairly limited in scope, the results sug-

gest that there is the potential for low-cost VOC sensors to
support highly resolved ambient hydrocarbon measurements.
The availability of this technology could enhance research
and monitoring for public health and communities impacted
by air toxics, which in turn could support a better understand-
ing of exposure and actions to reduce harmful exposure.

1 Introduction

1.1 Background

Volatile organic compounds (VOCs) are ubiquitous in daily
life: from the naturally occurring scents of flowers blooming
in the spring to VOCs resulting from human activity, such
as BTEX emissions from vehicles, compounds emitted when
cooking, and even fragrances in cleaning supplies and per-
sonal care products (McDonald et al., 2018). In addition to
their ubiquitous nature, VOCs are wide ranging in terms of
potential risks to our health. Many VOCs that pose a dan-
ger to human health are classified as hazardous air pollutants
(HAPs) by the U.S. EPA (Woodruff et al., 1998). For exam-
ple, two of the more toxic and prevalent compounds from
the HAP list are benzene and formaldehyde, both of which
pose a variety of risks from acute toxic effects to long-term
carcinogenic risks depending on the level of exposure (Suh
et al., 2000). The inhalation of benzene on shorter timescales
can result in neurologic symptoms, such as dizziness, drowsi-
ness, headaches, and unconsciousness (Suh et al., 2000).
Formaldehyde has been cited as a concern for indoor air
quality as it is a respiratory and sensory irritant (Rumchev
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et al., 2007). One study found that children exposed to a me-
dian level of 20 µg m−3 or more of benzene in their homes
were 8 times more likely to have asthma than children liv-
ing in homes with lower levels of benzene; a similar link was
found between formaldehyde and asthma, with researchers
finding a 3 % increase in the risk of having asthma for ev-
ery 10 µg m−3 increase in formaldehyde exposure (Rumchev
et al., 2007). Additionally, researchers have found that both
compounds rank among the highest in terms of cancer risk
when personal exposure across microenvironments and dif-
ferent exposure pathways are taken into consideration (Loh
et al., 2007).

Beyond these two compounds there are many other VOCs
that warrant concern. The RIOPA study measured VOC con-
centrations outside of homes to examine the impact of prox-
imity to nearby emission sources on exposure. This study
found certain VOC levels elevated 1.5–4 times above am-
bient levels for homes less than 50 m from a source (Kwon
et al., 2006). Among the VOCs studied during RIOPA were
benzene and perchloroethylene, another known carcinogen.
Researchers also found that living within 25 m of a source of
either of these two compounds increased the lifetime upper-
bound cancer risk by 50 %–200 % compared to living more
than 250 m from a source (Kwon et al., 2006) – highlighting
the importance of studying VOCs at increased spatial resolu-
tions. Another study found that cancer risks as well as non-
cancer neurological and respiratory risk benchmarks, as de-
fined by the U.S. EPA, were exceeded in two environmental
justice communities for several compounds, including ben-
zene (Wu et al., 2012). Beyond the health effects, VOCs are
often the cause of odor complaints, such as those tied to in-
dustrial activity. Even if there are no confirmed health effects
from a pollutant, exposure to odors can cause quality of life
issues and have hidden societal costs such as stress-related
physical disorders (Beloff et al., 2000).

Given the prevalence of hazardous VOCs, more measure-
ments and data could help inform actions to reduce VOCs
and the public’s exposure. However, given the spatial and
temporal variability for VOC sources and complex mixtures
of VOCs that occur in the environment, new approaches
may be needed to supplement existing methods. Currently
there are a variety of methods to quantify ambient VOCs,
including real-time instruments, whole air sampling tech-
niques, and passive methods capable of providing accurate
speciated measurements (Król et al., 2010; Kumar and Ví-
den, 2007). However, relying on a single high-quality in-
strument may miss important spatial patterns, and using
a distributed method such as sorption tubes that provide
time-averaged values may miss important temporal patterns.
Next-generation monitoring technologies, such as low-cost
air quality sensors, used in combination with conventional
techniques are an approach that may be able to help ad-
dress these needs. Low-cost sensing systems often cost or-
ders of magnitude less than conventional instruments on a
per-unit basis and are simpler to deploy and operate, making

them particularly well-suited to provide preliminary or sup-
plementary data for community-based projects or projects in
partnership with environmental justice communities where
resources may be limited (Shamasunder et al., 2018). De-
ployments of these sensing systems have already demon-
strated the capacity to provide information on pollutant vari-
ability at small scales (Cheadle et al., 2017; Sadighi et al.,
2018; Collier-Oxandale et al., 2018a), to differentiate re-
gional trends from local emissions (Heimann et al., 2015),
and to support personal exposure monitoring (Piedrahita et
al., 2014; Jerrett et al., 2017). However, sensor performance
in regards to quantification is an ongoing challenge for this
technology. While some studies have demonstrated success
quantifying sensors for gas-phase or criteria pollutants (Zim-
merman et al., 2018; Casey et al., 2019; Cross et al., 2017),
this task may be more complicated for VOC sensors given
that ambient VOCs exist in complex and dynamic mixtures.

1.2 Previous VOC sensor research

One of the reasons quantification is a challenge for low-cost
sensors is their cross-sensitivity to environmental factors,
such as temperature and humidity, and also to confounding
gases (Lewis et al., 2016). Addressing this issue of cross-
sensitivity is more complicated for VOC sensors compared
to single-chemical sensors as there are many more confound-
ing species to consider and calibration models will need to be
trained to target specific VOCs or groups of VOCs (Lewis et
al., 2016). Several reviews provide an overview of the dif-
ferent sensors and systems available for measuring VOCs,
including information on strengths and limitations, and per-
formance evaluations based on laboratory tests and examples
found in the literature (Spinelle et al., 2017a, b; Szulczynski
and Gebicki, 2017; Williams and Kaufman, 2015). These re-
views also discuss the cross-sensitivity and selectivity issue:
when considering the potential for sensors to make ambi-
ent measurements of benzene, the reviews noted that most
sensors lack the selectivity and sensitivity for these mea-
surements when sensors were tested individually (Spinelle
et al., 2017a, b). Researchers have also confirmed via lab-
oratory tests that the limit of detection for most electro-
chemical and MOx sensors is too high for ambient mea-
surements, and while photo ionization detector (PID) sen-
sors are capable of lower detection limits with linear re-
sponses, these suffer from cross-sensitivities caused by in-
terfering compounds. Similarly, laboratory evaluations con-
ducted by the U.S. EPA seemed to indicate there is the po-
tential for these systems to record environmentally relevant
levels of VOCs; however, they also found that only two of
the five systems tested seemed capable of detecting VOCs
below 25 ppb. While much of the current literature seems to
suggest that the sensors currently available either lack low
detection limits or the selectivity to pick out the compounds
of concern, there are examples of deployments and labora-
tory studies presenting some innovative techniques for using
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these sensors and analyzing the data that could yield useful
information.

For example, De Vito et al. (2008) applied a neural net cal-
ibration to an array consisting of five different MOx sensors
and provided a relatively stable benzene prediction with less
than 2 % error, for a period of 6 months. Furthermore, this
study was conducted at a stationary monitoring site near a
road, where the sensor system was subject to ambient tem-
perature and humidity variations as well as varied concen-
trations of other VOCs (De Vito et al., 2008). Speaking to
the potential for improving sensor quantification, the results
of this study meet the Data Quality Objectives (DQO) out-
lined by the European Commission Air Quality Directive
for indicative benzene measurements, which call for a rel-
ative error of less than 30 % (Spinelle et al., 2017a). In an
earlier study, Wolfrum et al. (2006) demonstrated the use
of MOx sensors (the Figaro TGS 2602) in arrays to differ-
entiate and quantify three different VOCs (toluene, acetone,
and isopropanol) in a laboratory setting. In addition to detect-
ing these compounds at sub-parts per million levels (approx-
imately 0.1–1 ppm), analysis confirmed the sensor array’s
ability to predict individual pollutants in the presence of a
confounding VOC, further speaking to the potential for VOC
sensors (Wolfrum et al., 2006). Another study by Eugster
and Kling (2011), using a similar MOx sensor (the Figaro
TGS 2600), demonstrated the detection of ambient methane
in a remote area of Alaska throughout dynamic environmen-
tal conditions.

Other techniques being piloted to improve the capabili-
ties of low-cost sensors include temperature-controlled op-
eration (TCO) and/or utilizing a pre-concentrator (Schütze et
al., 2017). TCO makes use of the fact that different gases re-
act with the surface of the sensor at different temperatures
as well as the dynamic response after cleaning the surface
via heating to elevated temperatures (Schütze et al., 2017).
In one such study, researchers found that by applying TCO
to a sensor system with MOx sensors, they were able to
achieve an accuracy of ±0.2–2 ppb depending on the target
gas concentration (benzene) and level of confounding gas(es)
(Sauerwald et al., 2018). Another study, also using TCO and
multiple MOx sensors, demonstrated the ability to differen-
tiate VOCs (benzene, formaldehyde, and naphthalene) at the
parts per billion level, even in the presence of a confound-
ing gas (ethanol) at much higher concentrations than the tar-
get gases (Leidinger et al., 2014). This differentiation was
achieved using linear discriminant analysis and was able to
correctly classify the gas 95 %–99 % of the time for concen-
trations of 4.7, 100, and 20 ppb for benzene, formaldehyde,
and naphthalene, respectively (Leidinger et al., 2014). In ad-
dition to TCO, another technique under consideration is the
addition of an open pre-concentrator in which a target gas
could accumulate on an adsorbing material and then be ther-
mally desorbed for analysis (Schütze et al., 2017; Leidinger
et al., 2016). A system such as this would facilitate lower
detection limits for MOx sensor systems. In addition to dif-

ferent techniques for collecting and processing sensor data,
another option is to combine low-cost sensors with other
measurement techniques. For example, a study in Philadel-
phia involved combining low-cost sensors (in this case PID
sensors) and passive adsorption tubes (Thoma et al., 2016).
The passive adsorption tubes provided speciated, quantified
VOC data, while the sensor data along with meteorological
information provided valuable information regarding pollu-
tant trends and emission sources (Thoma et al., 2016). While
there are many challenges associated with the use of VOC
sensors, the potential this technology has to complement cur-
rent monitoring efforts necessitates the exploration of these
innovative solutions.

During the FRAPPE–DISCOVER-AQ campaign in Col-
orado, our team placed two low-cost sensor systems at
the Platteville Atmospheric Observatory (PAO), co-located
with a proton-transfer-reaction quadrupole mass spectrome-
ter (PTR-QMS) that provided speciated VOC data. Each sen-
sor system included two different MOx VOC sensors in ad-
dition to other gas-phase and environmental sensors. It is this
combination of the availability of speciated VOC data and
the dynamic environmental conditions of a field deployment
that make this dataset and the subsequent analysis unique.
There are numerous studies exploring the performance of
these types of sensors in the lab when exposed to differ-
ent VOCs and even complex VOC mixtures. There are sev-
eral field studies examining the deployment of these sensors;
however, these studies tend to involve a single VOC reference
instrument (e.g., benzene) or target VOC. This dataset will
help to further inform best practices and procedures for using
these sensors thanks to the added complexity of our reference
data. In this paper we explore the quantification of these sen-
sors for individual and grouped VOCs. We also examine the
different selectivities of the two sensors to better understand
how these differences can be leveraged. Finally we try to un-
derstand how consistent sensor performance might be across
different atmospheric compositions. These results build off
previous work that involved quantifying one of the MOx sen-
sors for ambient levels of methane, allowing us to explore the
advantages of multi-sensor systems (Collier-Oxandale et al.,
2018b).

2 Methods

2.1 Deployment overview

In the summer of 2014, during the FRAPPE and
DISCOVER-AQ campaigns (Pfister et al., 2017), our team
deployed a network of low-cost sensors systems in an attempt
to quantify the small-scale spatial variability of pollutants.
However, these measurement campaigns also provided the
valuable opportunities to co-locate our systems with high-
quality, reliable reference instruments providing the oppor-
tunity to improve sensor quantification and validation. One
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Figure 1. The map in (a) illustrates the placement of the Platteville site with respect to the nearby cities Denver and Boulder and oil and gas
activity as indicated by active and inactive wells (COGCC, 2017). Panel (b) shows the inside of a Y-Pod (a newer version of the U-Pod),
which depicts the sensors used and the general design of the system. There were some updates to the circuit board, but the sensors used are
the same. Panel (c) shows the placement of the two U-Pods on the NATIVE Mobile Research Facility at the Platteville site.

such co-location was at the PAO, where two sensor systems,
termed U-Pods, were co-located with the NATIVE Mobile
Research Facility maintained by researchers from Penn State
(Halliday et al., 2016). The two U-Pods were co-located on
the roof of the NATIVE Mobile Research Facility for approx-
imately 1 month from mid-July to mid-August; Fig. 1c in-
cludes a photo of the two U-Pods. This site offered a unique
dataset given the potential for different types of VOCs. The
PAO is in a rural area to the northeast of populated urban ar-
eas and surrounded by nearby oil and gas activity; there was
the potential for typical traffic and urban emissions as well as
emissions from oil and gas activity, and possibly even from
local agriculture. Figure 1a illustrates the site’s placement in
relation to nearby cities and active/inactive oil and gas wells.

In addition to the potential for a range of different VOCs,
the potential for relatively high levels of VOCs also made
the PAO a site well-suited for exploring the capabilities of
VOC sensors. As some researchers have observed, levels of
VOCs in regions with heavy oil and gas development can
be higher than in typical urban environments (Helmig et
al., 2014). Informing our work, a study undertaken prior to
the FRAPPE and DISCOVER-AQ campaigns found several
species of alkanes and benzene to be on average higher in
the rural oil and gas production area compared to the nearby
urban area of Denver (Thompson et al., 2014). In some in-
stances, the dynamic ranges of VOCs in cities may be an or-
der of magnitude less than those observed near sources in oil
and gas productions areas (Warneke et al., 2013, 2014; Bor-
bon et al., 2013). Therefore, while enhanced levels of VOCs
may support this initial field work, it is important to consider
how sensor performance may vary in environments with dif-
ferent levels of VOCs or different VOC compositions.

This deployment is described in greater detail in our pre-
vious paper (Collier-Oxandale et al., 2018b). While VOC

quantification was not the original intent of the deployment,
it was something we were able to explore from the unique
dataset provided through this co-location. Due to this analy-
sis not being anticipated, techniques such as TCO were not
incorporated; however, we did examine the use of a multi-
sensor system in the context of relatively simple deployment
and sensor performance quantification procedures. Thus, this
work provides an opportunity to learn about VOC sensor po-
tential at a fundamental level, under typical field conditions.

2.2 Reference measurements

As previously mentioned, there were many reference in-
struments in operation at the PAO site, including a PTR-
QMS that provided high-time-resolution data for the VOC
species listed in Table 1 (Halliday et al., 2016; De Gouw
and Warneke, 2007). Routine operating parameters and pro-
cedures were applied and the PTR-QMS was run in mul-
tiple ion detection mode (Halliday et al., 2016). Halliday
et al. (2016) provide a detailed description of the oper-
ation of the PTR-QMS during this campaign as well as
more information on the other measurements occurring at
the NATIVE Mobile Research Facility in a study examin-
ing ambient benzene. The analysis presented here also re-
lies on data from a Los Gatos instrument (model number
911-001), which utilizes cavity-enhanced absorption spec-
troscopy (CEAS) in which the optical cavity creates an effec-
tive path length several kilometers long resulting in improved
sensitivity (O’Shea et al., 2013). This instrument was also
maintained and operated by the NATIVE Mobile Research
Facility team. In addition to the speciated VOC and methane
data, the Penn State NATIVE Mobile Research Facility was
outfitted to measure the other pollutants listed in Table 1. All
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Table 1. Reference data utilized in this analysis and the instruments used to collect those data.

Reference pollutant Instrumentation Reference pollutant Instrumentation

Acetaldehyde PTR-QMS Methane (CH4) Los Gatos CEAS
Acetone propanol PTR-QMS Carbon monoxide (CO) Thermo CO analyzer
Benzene PTR-QMS Carbon dioxide (CO2) LI-COR 7000
C8 alkylbenzenes PTR-QMS Nitric oxide (NO) Thermo NOy analyzer
C9 alkylbenzenes PTR-QMS Nitrogen dioxide (NO2) Environment SA analyzer
Formaldehyde PTR-QMS Ozone (O3) Thermo O3 analyzer
Methanol PTR-QMS Hydrogen sulfide (H2S) PTR-QMS
Toluene PTR-QMS

the reference data were retrieved from the DISCOVER-AQ
data repository (NASA, 2015).

2.3 MOx sensors and the U-Pod platform

MOx sensors are composed of a metal-oxide surface (often
tin dioxide), a sensing chip to measure changes in conduc-
tivity, and a heater. The general mechanism is that oxygen
molecules adsorb to the metal oxide surface, trapping elec-
trons. When the sensor comes into contact with the target re-
ducing gas, these oxygen molecules react and are removed,
allowing the electrons to flow and increasing the conductiv-
ity across the surface (Wang et al., 2010). While the principle
is simple, complications arise during quantification of pollu-
tant concentrations, as the reactions occurring on the sensor
surface are impacted by changes in temperature and humid-
ity (Wang et al., 2010; Sun et al., 2012) as well as the fact
that these sensors are cross-sensitive to gases other than the
target gas (Spinelle et al., 2017b). Adding to this complexity,
the nanostructure of the metal-oxide surface itself can also
influence sensitivity and selectivity (Sun et al., 2012; Shen
et al., 2018). These sensors were developed for and are typi-
cally used in scenarios in which high pollutant concentrations
would be expected, such as in an industrial setting or inside
a vehicle engine.

Two VOC sensors are incorporated into our sensing plat-
form, the TGS 2600 and the TGS 2602 (Figaro, Inc.). They
are advertised for the detection of “air contaminants”; the
manufacturer specifies a few different contaminants to which
they are sensitive. These include methane, carbon monoxide,
isobutane, ethanol, and hydrogen for the TGS 2600 (Figaro,
2005a). Hydrogen, ammonia, ethanol, hydrogen sulfide, and
toluene sensitives are specified for the TGS 2602 (Figaro,
2005b). Several of these contaminants are not VOCs; how-
ever, as we are utilizing these sensors for the detection of
VOCs we will continue to identify them as VOC sensors.
Additionally, both data sheets list a typical detection range
of approximately 1–30 ppm (Figaro, 2005a, b). However, as
indicated by previous studies, sub-parts per million levels of
detection appear possible for both the TGS 2600 (Eugster
and Kling, 2012) and the TGS 2602 (Wolfrum et al., 2006).

Table 2. Complete list of sensors used in the U-Pod.

Sensor type U-Pod

Temperature and relative humidity RHT03 (a.k.a. DHT22)
Temperature and pressure 47 Bosch BMP085
Carbon dioxide ELT S-100 NDIR
Ozone SGX Corporation MiCS-2611
VOC sensor 1 Figaro TGS 2600 MOx
VOC sensor 2 Figaro TGS 2602 MOx
Additional optional sensors AlphaSense B4 series

(CO, NO, NO2, O3, SO2),
Baseline Mocon PID

The other environmental and gas-phase sensors used in the
U-Pod are listed in Table 2 for reference.

The U-Pod is an embedded sensor system based on
an open-source design developed and assembled by our
lab (Mobile Sensing Technology, 2017). These systems
are housed in a small weatherproof case, approximately
20 cm× 25 cm× 10 cm, and use fans to pull air over the
sensors and facilitate active flow. The U-Pods draw roughly
11 W of power and were powered by 12 V AC/DC power
adapters for this deployment; however they are capable of
being powered by car batteries and/or solar power if remote
deployment is necessary. The data are logged to an onboard
micro-SD card at a rate of one data point every 6–25 s, de-
pending on how the system is programmed. Figure 1b in-
cludes a diagram of the interior or a Y-Pod, a newer ver-
sion of the technology utilizing the same sensors. U-Pods and
newer versions of the system (the Y-Pods) have been used in
several indoor and outdoor air quality studies that included
sensor quantification and an examination of spatial variabil-
ity or air quality trends (Cheadle et al., 2017; Sadighi et al.,
2018; Collier-Oxandale et al., 2018a).

2.4 Data processing and analysis rationale

The variable voltage values associated with the changing
conductivity of the sensors are recorded to a micro-SD card
and this voltage is then converted to a normalized resistance
value (Rs/R0), which is typically the form used for sensor
data analysis (Eugster and Kling, 2012; Piedrahita et al.,
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2014). The resistance is first calculated using Eq. (1), pro-
vided by the sensor manufacturer. In this equation Rs is the
changing resistance in the sensor driven by the concentra-
tion of the target gas, while Vc is the circuit voltage, Rl is
the load resistance, and Vout is the logged voltage. The R0
value is typically the sensor resistance in clean air, and this
value is used to normalize the resistance values. When cali-
brating in the field R0 is identified as the maximum resistance
value for the training period, or when the air is cleanest. For
the following analysis this normalized term, Rs/R0, is used.
During processing, minute medians are calculated from the
sub-minute raw data, and warm-up data (the first half hour of
operation after a U-Pod has been powered off for any period
over half an hour) are removed.

Rs =
Vc×Rl

Vout
−Rl (1)

To facilitate analysis, the minute-median data were matched
to the reference data using the nearest minute. These matched
sensor (Table 2) and reference data (Table 1) were then 5 min
averaged in blocks in order to reduce the potential for any
lags resulting from issues with time matching the data, par-
ticularly between short-term spikes. Additionally, if 3 min or
more was missing from either the sensor dataset or the ref-
erence dataset, then the whole 5 min average was excluded
from the analysis. Occasional gaps in the reference datasets
last from a few minutes to a few hours and vary by instru-
ment; missing data were typically due to calibration events.
One of the U-Pods, identified as P1 for this study, experi-
enced a power failure resulting in approximately 3 days of
data loss; the remaining data are complete. The second U-
Pod, identified as P2 in this analysis, experienced intermittent
power failure resulting in approximately 12 days of data lost
in total out of the 22 days of deployment. However, the sen-
sors remained fully functional throughout the deployment,
despite power failures. While this analysis primarily utilizes
data from U-Pod P1, the data from P2 still provide an oppor-
tunity to validate our observations drawn from the P1 analy-
sis.

To assess a VOC sensor’s capabilities for use in the
field, we applied typical quantification and analysis tech-
niques. Given the cross-sensitives previously mentioned,
researchers have found “field calibration” or “field nor-
malization” to be a promising method to mitigate cross-
sensitivities and calibrate for a target pollutant. Field cal-
ibrations are implemented by co-locating low-cost sensor
systems with high-quality reference instruments (typically
regulatory-grade, Federal Reference Method/Federal Equiv-
alence Method monitors), often before and after a field de-
ployment, and then generating a calibration model using an
approach such as multiple linear regression or machine learn-
ing (Sadighi et al., 2018; Zimmerman et al., 2018; Cross et
al., 2017). This technique allows predictive calibration mod-
els to be built for the conditions which sensors will experi-
ence in the field, such as diurnal environmental trends and

background pollutants. While laboratory studies are valuable
for understanding sensor capabilities and limitations in a con-
trolled environment, researchers have continually observed
that field as opposed to lab calibrations provide better pollu-
tant estimations (Piedrahita et al., 2014; Castell et al., 2017).
Therefore, the co-located data from the PAO site were used
to conduct a typical field calibration by selecting a portion of
the data from the beginning and the end of the deployment
to build calibration models. The remaining data were used as
testing data.

The models selected utilize multiple linear regression
(MLR). While more complex machine learning techniques
have proved very successful (Zimmerman et al., 2018; Casey
et al., 2019; De Vito et al., 2008), we wanted to start with a
simpler quantification method that is more easily understood
and interpreted. Models were trained to estimate benzene,
summed aromatic species, summed total VOC species, and
methane. For summed signals, the parts per billion of carbon
values for each compound were calculated as the number of
carbon atoms in the compound multiplied by the volumetric
concentration of the same compound; these parts per billion
of carbon values were then summed (Chen et al., 2014). The
summed aromatics signal was calculated as the sum of the
parts per billion of carbon concentration values for benzene,
C8 alkylbenzenes, C9 alkylbenzenes, and toluene. The total
VOC species signal was calculated by summing the parts per
billion of carbon values for all of the available species mea-
sured by the PTR-QMS: acetaldehyde, acetone, benzene, C8
alkylbenzenes, C9 alkylbenzenes, formaldehyde, methanol,
and toluene. The unit parts per billion of carbon was selected
as the value to be summed as it was thought that this unit
would provide a more meaningful summed signal. The sum
of parts per billion of carbon values takes into account some
of the differences between the individual compounds con-
tributing to this sum. While this method does weight our sig-
nal for larger compounds, this seems a reasonable approach
as we also expect the size of the compound to factor into
the magnitude of sensor response since we are measuring
changes based on a chemical reaction on the sensor’s surface.

Table 3 lists the multiple linear regression models utilized.
Model 1 is a simple model including the two MOx VOC sen-
sors, an interaction between the two sensors, environmental
predictors (e.g., temperature and humidity), and time to ad-
dress drift. While Model 1 is the same for each target pollu-
tant, Model 2 is different for each target group. For Model 2,
predictors were added to improve the resulting statistics and
residuals for a given target pollutant or pollutant group. In
addition to simulating a field calibration, we also utilized
bootstrapping and analysis of variance to obtain a more fun-
damental understanding of the sensors’ selectivities and the
consistency of their behavior. Model 1 was selected for this
analysis as it is similar to multiple linear regression models
typically used when exploring sensor performance (Spinelle
et al., 2015; Zimmerman et al., 2018; Casey et al., 2019). The
additional predictors added to Model 2, determined through
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Table 3. Multiple linear regression models used.

Model identifier Model

Model 1: for all C = p1+p2×VOC1+p3×VOC2+p4× (VOC1×VOC2)+p5× temp.+p6× abs. hum.+p7× time

Model 2: for benzene C = p1+p2×VOC1+p3×VOC2+p4× (VOC1×VOC2)+p5× temp.+p6× abs. hum.+p7× time
+p8×VOC2(V )+p9× (temp.×VOC2)

Model 2: for aromatics C = p1+p2×VOC1+p3×VOC2+p4× (VOC1×VOC2)+p5× temp.+p6× abs. hum.+p7× time
+p8×VOC2(V )+p9× (temp.×VOC2)

Model 2: for VOCs C = p1+p2×VOC1+p3×VOC2+p4× (VOC1×VOC2)+p5× temp.+p6× abs. hum.+p7× time
+p8× (ln(temp.)× abs. hum.)

Model 2: for methane C = p1+p2×VOC1+p3×VOC2+p4× (VOC1×VOC2)+p5× temp.+p6× abs. hum.+p7× time
+p8×CO2

Model predictors: VOC1 – Figaro 2600 R/R0; VOC2 – Figaro 2602 R/R0; temp – temperature (◦C); abs. hum. – absolute humidity; time – continuous time; VOC2(V) –
Figaro 2602 voltage signal; CO2 – carbon dioxide concentration (in this case from the reference data). C is the concentration value being solved for, either an individual or
group of VOCs.

trial and error, facilitate a look into whether there might be
potential to improve these models by addressing the patterns
in the residuals.

Here we clarify how target VOCs and groups of VOCs
were selected: benzene and summed aromatic species (in-
cluding C8 and C9 alkylbenzenes) were selected for health
reasons, as discussed in Sect. 1. While benzene health risks
are the most well-understood, the other common aromatic
species (e.g., the BTEX compounds benzene, ethylbenzene,
toluene, and xylene) also present similar concerns for human
health (Adgate et al., 2014). The summed total VOC signal
was selected to provide some insight into the sensors’ ca-
pacity to predict total non-methane organic compounds (TN-
MOCs) or possibly total non-methane hydrocarbons (TN-
MHCs). This signal was calculated by summing the parts per
billion of carbon values for all of the available species mea-
sured by the PTR-QMS: acetaldehyde, acetone, benzene, C8
alkylbenzenes, C9 alkylbenzenes, formaldehyde, methanol,
and toluene. This type of measurement may be useful in an
area concerned with a broad array of air toxics or when used
in combination with a method of VOC speciation.

3 Results and discussion

3.1 Field calibration performance

In the following sections, we show the results of the two
MLR models for predicting each of the target VOCs or
groups of VOCs. In each case, a time series is included to
qualitatively illustrate the models’ ability to predict trends
and VOC concentrations, while regression statistics note the
performance of the model across training and testing data and
any changes from Model 1 to Model 2. The training periods
have been highlighted in yellow and are the same training
and testing periods used in the previous methane quantifi-
cation work (Collier-Oxandale et al., 2018b). Also included

are scatter plots to highlight improvements in testing data
from Model 1 to Model 2 and box plots of the residuals (ob-
served – predicted) to show where the majority fall (despite
the wide variance apparent in the scatter plot). Additional
residual plots are available in the Supplement (Fig. S2)

3.1.1 Estimating benzene and summed aromatic
species

Figures 2 and 3 present the results for benzene and the
summed aromatic level quantification. Overall, both models
capture the diurnal trends and short-term elevated concentra-
tions, although the models underpredict the highest concen-
tration events. Model 2 performs better than Model 1, with
R2 values of 0.67 and 0.64 for benzene and summed aromat-
ics, respectively. In both cases, Model 2 pulls some of the
more extreme values closer to the 1 : 1 line. For the aromat-
ics, Model 2 also results in closer fitting values at low con-
centrations. Furthermore, the RMSE values for the Model 2
testing data, 0.52 and 11.25 ppbC for benzene and summed
aromatics, respectively, are less than the dynamic range ob-
served in this dataset, suggesting estimations can be made
at the ambient levels observed during this deployment. The
underprediction of the benzene and summed aromatic peaks
is most likely due to a limitation associated with sensor re-
sponse time. The response time for the PTR-QMS has a 1 s
per species integration time during the 1 min measurement
cycle (De Gouw and Warneke, 2007); however the MOx sen-
sors respond more slowly as they are relying not only on a
chemical reaction on the surface of the sensor, but also the
diffusion of the target gas to that surface. This means that a
sensor may not be able to reach steady state in the time it
takes for a plume to pass.

Despite this limitation, these two figures seem to suggest
that these sensors can provide real-time estimates on aromat-
ics and possibly even BTEX-level estimates, a measure that
could be especially valuable for exposure and health studies.

www.atmos-meas-tech.net/12/1441/2019/ Atmos. Meas. Tech., 12, 1441–1460, 2019



1448 A. M. Collier-Oxandale et al.: Understanding the ability of low-cost MOx sensors

Figure 2. Panel (a) depicts a time series including the benzene data from the PTR-QMS and the fitted sensor data from Model 1 (in blue)
and Model 2 (in fuchsia). The text box includes the following statistics: coefficient of determination (R2) and the root-mean-squared error
(RMSE) in that order for each testing and training dataset. Panel (b) depicts a scatter plot of the testing data for Model 1 (in blue) and Model 2
(in fuchsia); the 1 : 1 line has also been added. Panel (c) depicts box plots of the residuals with the whiskers at the fifth and 95th percentiles
(in red).

Figure 3. Panel (a) depicts a time series including the summed aromatic data from the PTR-QMS (benzene, toluene, C8 and C9 alkylben-
zenes), and the fitted sensor data from Model 1 (in blue) and Model 2 (in fuchsia). The text box includes the following statistics: coefficient
of determination (R2) and the root-mean-squared error (RMSE) in that order for each testing and training dataset. Panel (b) depicts a scatter
plot of the testing data for Model 1 (in blue) and Model 2 (in fuchsia); the 1 : 1 line has also been added. Panel (c) depicts box plots of the
residuals with the whiskers at the fifth and 95th percentiles (in red).

Given that ethylbenzene and xylenes are C8 alkylben-
zenes, the relatively strong performance of the summed aro-
matics prediction supports the idea that these sensors are
suited for more targeted BTEX concentration estimates. Ad-
ditionally, it is possible that more advanced analytical tech-
niques, such as neural networks, could find better preforming
models, as shown in the work of De Vito et al. (2008) with
MOx sensors and benzene.

3.1.2 Estimating summed VOCs

Figure 4 illustrates the performance of both models for the
sum of all VOC compounds available from the PTR-QMS.
Again, there are improvements with the more specialized
Model 2, which corrects for some of the overpredictions. The

resulting RMSE values of 13.38 and 12.78 ppbC and reason-
ably high R2 values of 0.59 and 0.62 for Models 1 and 2,
respectively, suggest this performance is suitable for certain
ambient studies as the uncertainty is again well below the
observed dynamic range. This analysis also demonstrates the
stability of these models, as the signal being predicted is a
sum whose precise composition varies in time. For instance,
the PTR-QMS signals from the aromatic species are well-
correlated with each other (Fig. S1), but the aromatics are not
well-correlated with any of the OVOCs (oxygenated volatile
organic compounds), meaning the relative amounts of these
compounds vary, potentially making the task of signal pre-
diction more challenging. These results may also support the
assertion that these sensors could be suited to support TN-
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Figure 4. Panel (a) depicts a time series including the summed VOC data from the PTR-QMS (acetaldehyde, acetone, formaldehyde,
methanol, and the aromatic species) and the fitted sensor data from Model 1 (in blue) and Model 2 (in fuchsia). The text box includes the
following statistics: coefficient of determination (R2) and the root-mean-squared error (RMSE) in that order for each testing and training
dataset. Panel (b) depicts a scatter plot of the testing data for Model 1 (in blue) and Model 2 (in fuchsia); the 1 : 1 line has also been added.
Panel (c) depicts box plots of the residuals with the whiskers at the fifth and 95th percentiles (in red).

Figure 5. Panel (a) depicts a time series including the methane data from the Los Gatos cavity ring-down instrument and the fitted sensor
data from Model 1 (in blue) and Model 2 (in fuchsia). The text box includes the following statistics: coefficient of determination (R2) and
the root-mean-squared error (RMSE) in that order for each testing and training dataset. Panel (b) depicts a scatter plot of the testing data for
Model 1 (in blue) and Model 2 (in fuchsia); the 1 : 1 line has also been added. Panel (c) depicts box plots of the residuals with the whiskers
at the fifth and 95th percentiles (in red).

MOC or TNMHC measurements, a measurement sometimes
made in areas where VOCs are a concern and real-time data
are desired. For example, a network of these sensors might
be able to provide additional information on the variability
or transport of TNMOCs or TNMHCs when used in con-
junction with a higher-quality instrument. However, speci-
ated VOC measurements, made using canisters or field gas
chromatographs for example, are also used. In terms of lim-
itations, the models again underpredict the short-term peaks
and this summed VOC estimate is noisier than for the previ-
ous two target VOCs (benzene and summed aromatics).

3.1.3 Estimating methane

Figure 5 depicts the performance of the models for methane
quantification. As with the previous VOCs and groups of
VOCs, the methane calibration models are able to predict pe-
riods of elevated methane and indicate some of the shorter-
term methane plumes. There are also the same limitations
as noted in the previous section, mainly the underprediction
of peaks. Expanding on our previous methane quantification
work, which utilized only the Figaro TGS 2600 sensor, in-
cluding the second VOC sensor improves our ability to pre-
dict methane levels. The R2 and RMSE for the testing data
in this previous work were 0.50 and 0.383 ppm, respectively
(Collier-Oxandale et al., 2018b). Simply adding an additional
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sensor to the model results in an R2 and RMSE of 0.58 and
0.24 ppm for the Model 1 testing data. Model 2 performs
even better. While the inclusion of a second VOC sensor does
help to better target and predict methane, there is still room
for improvement as is evidenced by the curvature in Fig. 5b.
As previously noted, it is possible that nonlinear models or
the use of a more advanced machine learning technique could
facilitate further improvements. However, the overall results
indicate that the use of multiple gas sensors does help mit-
igate the cross-sensitivities noted in the previous paper and
improve the performance of the calibration model (Collier-
Oxandale et al., 2018b).

3.1.4 Model accuracy, specialization, and robustness

The cumulative distributions of the relative error (in percent)
for each set of fitted data (including the testing period only)
are shown in Fig. 6. Considering the relatively simple de-
ployment and quantification procedures, this figure empha-
sizes the utility and potential for these MOx sensors. Ap-
plying the 30 % relative error DQO for indicative benzene
measurements required by the European Air Quality Direc-
tive to our measurements, upwards of 98 % and 84 % of the
methane and summed VOC estimates meet this benchmark
(Spinelle et al., 2017a). For benzene and the summed aro-
matics, this number is lower, 43 % and 38 %, respectively.
However, these larger relative errors seem to be primarily
driven by fairly small differences in low observed concen-
trations and the associated predictions, for example, a 100 %
relative error resulting from an observed value of 0.5 ppb and
a predicted value of 1 ppb. If low values are excluded from
the datasets (instances in which the reference data are be-
low 0.5 ppb for benzene and below 10 ppbC for the summed
aromatics, roughly the RMSE for each dataset), then the pro-
portion of data meeting the benchmark increases to 67 % for
benzene and 63 % for summed aromatics. Excluding these
low values might be reasonable for a study using sensors as
the higher concentrations are most likely what would be of
interest. However, it is important to reiterate that its likely
different ranges and compositions of VOCs will be encoun-
tered in different environments. To better understand what
sensor performance may look like at lower concentrations,
the regression analysis from Sect. 3.1.1 was repeated for
benzene using only values less than 0.75 ppbV. The upper
limit was selected as the range of benzene observed during
the CalNex campaign in Los Angeles found benzene to be
typically between ∼ 0.1 and 0.6 ppbV (Warneke et al., 2013;
Borbon et al., 2013). The resulting plots are available in the
Supplement (Fig. S4). For this new analysis, the R2 values
for the testing data remain fairly high at 0.68 for both Mod-
els 1 and 2, and the RMSE is 0.12 ppb, which is lower than
the new dynamic range. While it is possible this consistent
performance across different ranges of benzene is helped by
well-correlated aromatic compounds that are essentially en-
hancing the trend for the sensor to detect, it may also suggest

Figure 6. Cumulative distributions of relative sensor error for all
fitted testing or validation data; the two dotted lines represent the
fitted testing data for benzene and summed aromatics, with the low
values removed from the reference data.

that it is possible to train these calibration models for detec-
tion at lower levels. It would be helpful for future studies to
more closely examine the lower detection limits and accu-
racy of these types of sensors for low levels of VOCs in the
field.

Given the limitations caused by cross-sensitivities, under-
standing how consistently sensors perform across changing
compositions of VOCs is of high importance. While labora-
tory studies have illustrated the potential to identify specific
pollutants in the presence of known confounders (Leidinger
et al., 2014, 2017), the complex nature of field data requires
a different approach. In Fig. 7, the residuals from Model 2
are plotted against other VOCs. Figure 7a depicts the residu-
als for the benzene model versus the parts per billion of car-
bon sum of all remaining non-methane VOCs (NMVOCs).
Figure 7b depicts the summed aromatic residuals versus the
parts per billion of carbon sum of all non-methane and non-
aromatic species. Figure 7c depicts the summed VOC resid-
uals versus methane, and in Fig. 7d the methane residuals
are plotted versus the parts per billion of carbon sum of all
non-methane VOCs. For each plot, two concentrations, in-
dicated by colored markers, were selected to be held con-
stant; these are roughly the 75th and 95th percentile values
for the predicted datasets. The intention of this analysis was
to examine the effects of varying levels of VOCs on model
performance, and the reason for selecting the 75th and 95th
percentile values was based on an interest in measuring el-
evations in VOCs. The strength of low-cost VOC sensors,
particularly as approaches to improve sensitivity are devel-
oped, will likely be in monitoring for relatively large ele-
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vations above background; therefore this is the application
being considering.

Figure 7b and c suggest that the predictions are robust
across changing concentrations of other VOCs, as there are
no positive or negative trends. In Fig. 7c, the residuals seem
to be largest for lower levels of methane and smaller for
high levels of methane, which possibly suggests that summed
VOCs are easier to estimate in the presence of higher concen-
trations of methane. However, this pattern is less apparent
when we hold the estimated VOC concentrations constant.
The negative and positive trends in Fig. 7a and d emphasize
that there is room for improvement in the models that predict
a single compound. In Fig. 7a, the positive trends once again
highlight underprediction of the highest benzene elevations.
Given the correlation between benzene and the other BTEX
species, it is possible that this positive trend is due primar-
ily to these underpredictions of high benzene levels coincid-
ing with high levels of other BTEX compounds, in which
case the estimates themselves may still be fairly robust to
changing levels of VOCs. This is supported by the 75th per-
centile values, which do not change substantially as the levels
of other VOCs vary from roughly 10 to 75 ppbC. However,
in Fig. 7d, the negative trends suggest that overpredictions
by the model may be driven by cross-sensitivities that are
not adequately corrected for as these overpredictions corre-
spond to higher summed NMVOC concentrations. In this in-
stance, higher levels of NMVOCs driving overestimations of
methane highlight the need to improve the calibration model
or utilize other approaches such as additional sensor signals
to ensure that enhanced methane is truly methane and not
a confounding compound. However, Fig. 7a and d still do
not display any clear patterns, such as a well-defined linear
relationship, again indicating some robustness amid chang-
ing VOC compositions. The Supplement (Fig. S3) contains
plots of the Model 2 residuals versus individual VOC species.
Comparing the residuals to individual species rather than
the summed totals better reveals which confounding species
seem to be influencing our estimates. For example, positive
linear trends in residuals present in both the benzene and
summed aromatics Model 2 reveal that the behavior of the
aromatic species (benzene, toluene, C8 alkylbenzenes, and
C9 alkylbenzenes) is not fully captured by our models. How-
ever, for the residuals of both the benzene and summed aro-
matics Model 2 estimates, individual OVOCs do not display
any sort of trend or pattern in the residuals.

In an effort to further understand model robustness and
specialization, we explored model fit statistics during times
when the target VOCs were well-correlated versus poorly
correlated with a potentially confounding VOC species. For
this analysis, we applied a 1 h moving window to the data
and calculated (1) the R2 between the target VOC(s) and an-
other/other VOC(s), (2) the RMSE for our Model 2 results
for that hour, and (3) the average target VOC(s) concentra-
tion for that hour. These plots, Fig. 8, help to confirm whether
or not our models are being specialized to our target VOC(s).

Table 4. Coefficient of determination (R) between reference data
pairs and fitted sensor data pairs.

PT-RMS Fitted sensor Fitted sensor
Pollutant pair data data data

(Model 1) (Model 2)

Benzene vs. VOCs 0.906 0.936 0.877
Benzene vs. methane 0.464 0.901 0.826
Benzene vs. aromatics 0.957 0.989 0.987
Methane vs. VOCs 0.531 0.902 0.864

For example, if our models are predicting VOCs in a more
general sense and not specializing for our targets, we would
expect lower RMSE values to correspond to higher R2 values
and higher RMSE values to correspond to lower R2 values.
Lower R2 values would correspond to periods of greater dif-
ferentiation among VOC signals, potentially corresponding
to higher RMSE values if the signals our models are pre-
dicting are more general. Conversely, if the models are be-
ing specialized to the target VOCs we would expect to see
RMSE values that are more or less independent of correla-
tions among different target VOC(s).

For our Model 2 for benzene, most of the RMSE values for
each hour are below the overall RMSE for the model. For the
points that are above the overall RMSE, many of these are for
the high benzene concentrations – the underpredicted peaks.
Furthermore, these higher benzene RMSE values actually oc-
cur when we see high correlation between the summed VOCs
and benzene, suggesting that the model is not simply fitting
a more general VOC signal. Conversely, the high RMSE val-
ues do occur when there is low correlation between benzene
and methane (Fig. 8c), but there is still no clear trend of high
RMSE for low correlation and low RMSE values for high
correlation. For the summed VOCs, there is also not a clear
relationship between correlation and RMSE values.

These results provide supporting evidence that the mod-
els are becoming specialized to the intended target VOC or
group of VOCs. Table 4 provides further support for this
point by illustrating lower correlation between fitted datasets
for Model 2 versus Model 1 and when there is lower corre-
lation between the reference datasets. The pollutant pair in
Table 4 worthy of a closer look is the benzene and summed
aromatics. In this case these two reference datasets are very
highly correlated, and it is not possible to confirm that the
sensors are predicting benzene specifically, or a more gen-
eral BTEX signature. The additional plots of residuals for the
benzene Model 2, in the Supplement, do indicate trends with
regards to the benzene data and the other aromatic species.
Therefore, while it seems that the models can be trained to
predict specific or different groups of VOCs, for highly cor-
related species or groups (that the sensors are selective for) it
may be more difficult to make this distinction. Sensor users
should be careful to not over-assign meaning to signals that
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Figure 7. Complete residuals verses other non-target VOCs. The complete residuals for the Model 2 results are in black. The blue and fuchsia
points that represent two values are held constant. For (a), the constant benzene values selected were 0.75 and 1.6± 0.05 ppb. For (b), the
summed aromatics values selected were 19 and 38± 1 ppbC. For (c), the summed VOC values selected were 47 and 67± 1 ppbC. For (d),
the methane values selected were 2.5 and 3± 0.05 ppm.

Figure 8. Plots of error (RMSE) versus the coefficient of determination (R2) for the target VOC or group versus a nontarget potentially
confounding VOC or group. These values are calculated on the basis of a 1 h moving window and the points are colored according to the
average of the target pollutant or group for that hour. The black dotted line on each is the overall RMSE determined in Sect. 3.1.

are more likely to be indicative of VOC types or groups rather
than specific species.

3.2 Sensor selectivity and consistency

The availability of speciated VOC data also allowed us to
compare the selectivity of each sensor. Given that the man-

ufacturer lists different compounds as target gases for each
sensor, we expected a difference in the selectivity between
the two VOC sensors. Furthermore, it is likely that differ-
ences in selectivity aided the specialization of the calibration
models in Sect. 3.1.
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Table 5. Analysis of variance results for the Figaro 2600 sensor signal (Rs/R0).

Run Actd. Acet. Benz. C8 C9 Form. Meth. Tol. CH4 CO CO2 O3 NO2 H2S Temp. AH Time Error

1 – – – – – – – – – – – – – – 42.65 4.14 5.35 47.86
2 2.23 0.06 3.23 0.04 0.01 0.37 0.27 0.67 6.42 10.16 0.08 0.23 0.08 0.26 8.18 19.71 6.84 41.16
3 3.45 0.43 5.30 0.07 0.65 1.55 0.12 0.91 – – – – – – 31.20 10.00 5.16 41.14
4 3.48 1.09 3.80 0.00 0.21 1.58 0.32 0.78 9.18 – – – – – 19.34 13.26 9.11 37.84
5 2.58 0.42 2.75 0.02 0.00 0.61 0.11 0.60 10.42 8.85 – – – – 16.41 15.62 7.61 33.99
6 – – – – – – – – 8.27 16.86 0.00 0.00 3.35 0.02 3.66 21.13 5.60 41.11
7 – – – – – – – – – 18.45 4.81 0.00 4.37 0.21 3.81 19.65 3.22 45.47
8 6.63 – 5.42 – – – 0.28 – 9.36 9.77 – – – – 17.06 14.04 6.60 30.83

Table 6. Analysis of variance results for the Figaro 2602 sensor signal (Rs/R0).

Run Actd. Acet. Benz. C8 C9 Form. Meth. Tol. CH4 CO CO2 O3 NO2 H2S Temp. AH Time Error

1 – – – – – – – – – – – – – – 16.42 3.34 1.77 78.47
2 0.07 0.89 1.91 0.18 0.00 0.36 0.39 0.07 3.95 1.39 0.60 0.72 0.53 0.12 40.91 3.38 3.83 40.68
3 0.79 1.16 3.31 0.02 0.91 0.92 0.95 0.11 – – – – – – 34.16 3.71 7.43 46.53
4 0.54 0.42 1.47 0.02 0.23 1.06 0.54 0.03 12.32 – – – – – 44.37 2.48 3.54 32.96
5 0.39 0.60 1.17 0.04 0.12 1.36 0.65 0.01 12.21 0.74 – – – – 44.54 2.38 3.90 31.90
6 – – – – – – – – 7.05 4.13 1.38 0.80 0.08 0.75 34.89 1.51 1.51 47.90
7 – – – – – – – – 0.00 4.90 10.94 0.57 0.00 1.83 29.57 1.28 2.67 48.24
8 0.83 – 10.63 – – – 0.77 - 11.04 0.34 – – – – 42.70 2.04 2.65 29.00

We used analysis of variance to determine what the differ-
ences in selectivities might be and the results of this analysis
are listed in Tables 5 and 6. The application of this technique
is similar to previous studies in which it was used to deter-
mine the effects of confounding species (Collier-Oxandale
et al., 2018b; Eugster and Kling et al., 2012). These tables
list the results of multiple runs in which different variables
were included to determine their ability to explain the vari-
ance in the raw sensor signals. For instance, the first run in-
cludes only environmental parameters and time, and for both
sensors this set of predictors leaves the highest percentage
of variability to residual error. Additional runs include all
available reference signals (Run 2), or all available TNMHCs
(Run 3). The final run in each case selects one VOC out of
highly correlated groups (e.g., benzene for the aromatics and
acetaldehyde for the aldehydes) and also results in the small-
est portion of variance left to residual error, hence provid-
ing the strongest sets of explanatory variables. Comparing
the two tables, the consistently important explanatory vari-
ables are highlighted in light grey. In Table 5, we see that
acetaldehyde, benzene, methane, and carbon monoxide are
consistently important predictors for the Figaro 2600 signal,
with methane and carbon monoxide as the most important.
In Table 6, the percent of variance in the Figaro 2602 sensor
explained by benzene becomes more dominant, while carbon
monoxide and the aldehydes are no longer important predic-
tors. The lack of sensitivity to carbon monoxide for the Fi-
garo 2602 sensor could be especially valuable in identifying
the effects of this cross-sensitivity and correcting for it. It is
important to note here that we do not expect the Figaro 2602
to be sensitive to pure methane (based on laboratory tests
and manufacturer information), so it is probable that this re-

sponse is driven by other light alkanes co-emitted and corre-
lated with methane. Overall, this analysis confirms a differ-
ence in selectivities, which supports the idea that these two
sensors can together be leveraged in VOC and source iden-
tification. Furthermore, while this analysis has been limited
to two Figaro VOC sensors, we would expect these selectiv-
ities to be consistent given the high correlation we have ob-
served among Figaro sensors of the same type in past studies
(Collier-Oxandale et al., 2018b).

Additional ANOVA results are available in the Supple-
ment (Fig. S4), including results of this analysis conducted
on subsets of the data to test the robustness of our conclu-
sions. The different subsets include the complete data, day
vs. night data, and periods of elevated concentrations of spe-
cific compounds. Essentially these figures reinforce the con-
clusions drawn from the results above. Even across different
subsets of data, the Figaro 2602 seems to be more responsive
to aromatic species and the methane signal, while lacking
sensitivity to carbon monoxide and the OVOCs. The Figaro
2600 is consistently responsive to methane, aromatic com-
pounds, carbon monoxide, and to a lesser extent the alde-
hyde species. For the subsets in which we see low percent-
ages of variance explained by predictors, this may be due to
relatively lower concentrations of the pollutants revealed to
be important (Fig. S5 illustrates the main differences in the
subsets of data). As the conclusions drawn from the ANOVA
results seem to be consistent across different runs and subsets
of data, this supports the likelihood of consistency in sensor
selectivities.

In addition to insights into selectivity, these results also
reiterate the importance of the cross-sensitivities to environ-
mental parameters like temperature and humidity. As indi-
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Table 7. Model 1 regression statistics, excluding MOx sensor data (original results, where the MOx sensor was included, are in parentheses
for comparison).

Training Testing

R2 RMSE R2 RMSE

Benzene (ppb) 0.22 (0.68) 0.55 (0.35) 0.08 (0.58) 0.83 (0.58)
Aromatics (ppbC) 0.24 (0.63) 12.6 (8.81) 0.09 (0.56) 17.72 (12.33)
Summed VOCs (ppbC) 0.26 (0.68) 15.13 (9.95) 0.07 (0.59) 20.72 (13.38)
Methane (ppm) 0.42 (0.75) 0.32 (0.21) 0.22 (0.58) 0.35 (0.24)

Figure 9. The box plots above illustrate the results of training on a randomly selected 15 % of the data and testing on the remaining
85 % 25 times, using each sensor individually, the two sensors as predictors, and the two sensors plus an interaction between them. Panels
(a) and (b) depict the R2 and RMSE, respectively, for the testing data. Note all of the data have been normalized and the whiskers are the
fifth and 95th percentiles. The x axis indicates the VOC or group being predicted.

cated in Tables 5 and 6 temperature and/or humidity often
explain a greater percentage of variance in the sensor signal
than the pollutants of interest. While the residuals from the
regression analysis in Sect. 3.1 indicate that the models seem
to be adequately correcting for temperature and humidity ef-
fects (Fig. S2), the effects of these parameters are complex.
We know that temperature can impact not only the rate of
reactions occurring at the sensor surface, but also the rate
of desorption (Schütze et al., 2017; Sun et al., 2012). This
behavior means that temperature has the potential to impact
the rates of response and recovery for the sensors as well as
the magnitude of responses. Figure S6 provides an impres-
sion of these complexities. However, even though the pol-
lutants explain a smaller percentage of the variance in sen-
sor signal, performing the regression analysis from Sect. 3.1
with the sensor data excluded illustrates the value of the sig-
nals from the MOx sensors. Table 7 lists the results of the
regression analysis for each Model 1 with all VOC sensor

data excluded: relying solely on environmental sensor data
results in a higher RMSE and a much lower R2, particularly
for the testing data. This table also includes the original re-
sults in parentheses for comparison. Plots in the Supplement
(Fig. S7) further illustrate how including the sensor signal
significantly improves our ability to predict short-term en-
hancements in pollutant levels and our ability to accurately
track diurnal patterns.

To better understand the consistency of the observed dif-
ferences in sensor selectivities, we utilized bootstrapping for
model training while also moving through different combi-
nations of VOCs as predictors. Here each scenario was run
25 times with 15 % of the dataset (in 3 h blocks) randomly
selected for training and the remaining 85 % of the data used
for testing. Figure 9 shows the results for the testing data. The
intended prediction datasets were calculated by first sum-
ming the species in parts per billion of carbon or parts per
million of carbon and then normalizing the resulting sum
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to better make relative comparisons. These results continue
to support the conclusions drawn thus far. The Figaro 2602
(noted as Fig2) is better at predicting BTEX compounds than
the Figaro 2600 (noted as Fig1); however, the opposite is true
when predicting methane and carbon monoxide. The poor-
est performance results from the predictions of summed oxy-
genated VOCs. The model including both sensors and an in-
teraction term nearly always provides the best results, indi-
cating the power in leveraging the difference in selectivities
between the two sensor types.

On a final note, regarding the consistency of these con-
clusions, this bootstrap analysis as well as the original re-
gression analysis was repeated for the second U-Pod (P2)
co-located at this site (the results are available in the Sup-
plement, Figs. S8 and S9). In these results we see simi-
lar trends and behavior, but with poorer performance and
greater variability. This poorer performance is likely due to
the more fragmented nature of the data, as well as the possi-
bility that the intermittent power failures affected the sensor
signal enough to decrease the performance. Overall, the sim-
ilarities in results suggest consistency within sensor types.

An important issue related to sensor consistency is drift.
Sensor signals may drift over time due to losses in sensitiv-
ity, the effects of ambient conditions, or even siting impacts
(Masson et al., 2015; Miskell at al., 2017). As an example
of magnitude, a study using the Figaro 2600 sensor over the
course of 3 months in rural Alaska calibrated the sensors for
methane at the start of the study and observed a drift of 0.01
and 0.008 ppm week−1 across the two deployed sensors (Eu-
gster and Kling, 2012). The length of our deployment did
not allow for a comprehensive look at drift; however, we did
look briefly at inter-sensor variability. To do this, we com-
pared the correlation coefficients (R) for the two co-located
sensors for a 24 h period at the beginning and end of the de-
ployment. The R values for the Figaro 2600 were 0.955 and
0.953 at the beginning and end, respectively, suggesting that
if the signals are drifting, this drift may be consistent across
sensor type. Conversely, the R values for the Figaro 2602
were 0.611 and 0.835 at the beginning and end, respectively.
While it is difficult to explain these two differing trends given
the limitations in terms of number of sensors and the length
of the deployment, this example highlights the importance
of quantifying or correcting for sensor drift, as well as un-
derstanding inter-sensor variability. The results are mixed in
the literature as well, with some studies demonstrating high
correlation among sensors of the same type (Sadighi et al.,
2018) and others demonstrating high variability (Castell et
al., 2017). As more field work is conducted with low-cost
sensors, it would also be beneficial for researchers to con-
sider whether and how drift is affected by the differing com-
pounds a VOC sensor is exposed to.

One final issue related to sensor consistency is understand-
ing how robust sensor performance is to new environments.
Given the constraints of this deployment we were not able
to study sensor performance at different sites, but this will

be an important area for future research. As was discussed
in Sect. 2.1 not only do VOC levels vary across different
environments but also VOC compositions (Thompson et al.,
2014). In new locations, both the environmental parameters
and potentially confounding pollutants may vary as well. A
few studies have considered the transferability of calibra-
tions to new environments (Castell at al., 2017; Malings et
al., 2019). One finding is that calibration models can over-
fit to the location where the model was trained (Vikram et
al., 2019). Another study found that changes in the dominant
local sources of pollutants may result in poorer performance
for MOx ozone sensors (Casey and Hannigan, 2018). For this
reason, it is important that training datasets encompass the
conditions and pollutant levels that sensors will be exposed
to at field sites.

3.3 Leveraging sensor differences to learn about
potential sources

Given the observed differences in selectivities, it is possible
that sensor arrays may be able to provide useful information
even in the absence of co-locations and field calibrations.
For example, the ratios among different VOC sensors may
be able to provide insight into VOC types or sources. This
approach may be especially powerful if used in conjunction
with methods such as passive sorption tubes; sensors could
indicate emission events and a rough idea of VOC composi-
tion and then sampling tubes could provide more quantitative
speciation.

Here we compared sensor ratios to reference pollutant ra-
tios and trends. For this analysis, the baseline was identi-
fied and removed from both the sensor and the reference
data using a technique applied to sensor data by Heimann
and colleagues (2015). The purpose of this baseline removal
was to isolate short-term emissions and remove the larger
regional/diurnal trends. We then calculated the Rs/R0 ratio
as the Figaro 2600 / Figaro 2602 and removed ratio values
deemed “insignificant”; insignificant values were identified
as ratios for which the data from one or both sensors were be-
low a given threshold. The threshold was 0.05 for the Figaro
2600 and 0.1 for the Figaro 2602. These thresholds were cal-
culated as the average difference between paired values from
the two co-located U-Pods P1 and P2. This was necessary as
a low ratio could result from either the Figaro 2602 values
being high or both the sensor values being low; in the latter
case a low ratio may have been misleading. Finally, the dif-
ferent ratios were examined for correspondence to specific
patterns in the reference data. Figure 10 below notes a few
interesting ratios and trends. A complete look at these ratios
in relation to reference data is available in Fig. S10.

While the results of this analysis are limited to this sin-
gle deployment, they suggest that this approach has potential.
In Fig. 10a, we see a low ratio of signals from Figaro 2600
(Fig1) and Figaro 2602 (Fig2); the Fig1 : Fig2 ratio indicated
in fuchsia corresponds to a higher toluene-to-benzene ratio
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Figure 10. Each panel displays two pollutants plotted together (from the reference dataset). Panel (a) is benzene versus toluene, panel (b) is
methane versus benzene, and panel (c) is carbon dioxide versus benzene. All of the points are plotted (black circles). Points corresponding
to certain sensor ratios are then colored according to the colors listed in each legend. Other relevant information, for example a ratio of 2 for
the toluene-to-benzene ratio or relationships from previous studies are indicated by black lines.

Figure 11. Histogram of complete sensor ratios for each hour us-
ing moving correlation window vs. the ratios for a select subset of
data with high correlation between benzene and methane (> 0.85),
a ratio of benzene : methane typically associated with oil and gas
activity (< 1.0 ppb ppm−1), and a significant change in methane
(> 0.5 ppm).

in the PTR-QMS data. As Halliday et al. (2016) observed,
toluene-to-benzene ratios above 2.0 at this location are more
likely to be the result of traffic, while lower ratios are more
likely to be indicative of oil and gas emissions. If this VOC
sensor ratio were to consistently identify periods with high
toluene-to-benzene ratios regardless of other concentrations
and VOC compositions, this could be a powerful tool for
differentiating between traffic and oil and gas emissions.
Further supporting this point, a larger Fig1 : Fig2 ratio indi-

cated in yellow corresponds to data points that fall below the
toluene-to-benzene ratio of 2.0, with a ratio of approximately
0.89. When examining this ratio, indicated in yellow, with re-
gards to the benzene and methane reference data (Fig. 10b),
this Fig1 : Fig2 ratio is similar to ratios of benzene : methane
observed in other studies occurring in oil and gas production
areas (Helmig et al., 2014; Warneke et al., 2014; Pétron et
al., 2014). Thus, this analysis supports the idea that different
sensor ratios may be indicative of emissions from different
sources such as vehicles or oil and gas activity. Two final ob-
servations are as follows: the Fig1 : Fig2 ratio closest to a 1 : 1
relationship (indicated in green in Fig. 10) both falls below
the toluene : benzene ratio greater than or equal to 2.0 and
corresponds to many of the enhancements in benzene that
seem to occur independent of enhancements in carbon diox-
ide. These observations suggest that this Fig1 : Fig2 ratio, in
green, is associated with relatively larger hydrocarbons (e.g.,
benzene) originating from volatilization or evaporation rather
than combustion. One possibility is that both the sensor ra-
tio indicated in green and the sensor ratio indicated in yel-
low correspond to emissions from oil and gas activity; they
may even relate to different activities or aspects of produc-
tion. Though of course these observations would need to be
demonstrated to be consistent across different locations and
with respect to differing background VOCs to ensure their re-
liability – the results here are limited to this single time and
place.

One point worth addressing is the poor correlation in the
sensor ratios associated with the lower benzene : methane ra-
tios (i.e., the points indicated in yellow in Fig. 10b). How-
ever, applying an analysis technique developed by Halliday
et al. (2018) provides additional support for the assertion
that emissions from oil and gas activity are associated with
this particular sensor ratio. To apply this technique, a rolling
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correlation was used to calculate (1) the correlation coeffi-
cients for each 1 h window, (2) the average benzene : methane
ratio, (3) the average sensor ratio, and (4) the change in
methane. Figure 11 depicts a histogram of the average sen-
sor ratios for the complete dataset and for a subset in purple.
The subset includes hourly averages with R values higher
than 0.85, benzene : methane ratios < 1 ppb ppm−1 (the typ-
ical range observed in an oil and gas area), and changes in
methane > 0.5 ppm. This technique allows us to essentially
extract periods when emissions are likely the result of oil and
gas activity (based on the benzene : methane ratio), are ac-
tively occurring (based on the correlation), and are relatively
large (based on the change in methane levels). As shown in
Fig. 11, the periods that meet these conditions seem to be as-
sociated with the sensor ratio indicated in yellow in Fig. 10,
further supporting the idea that sensor ratios may be able to
assist with source identification.

4 Conclusion

While more field research is necessary to provide better in-
sight into VOC sensor performance across new and differ-
ent environments, here we have provided an overview of the
potential for MOx VOC sensors. Not only were calibration
models capable of providing concentration estimates rele-
vant for ambient studies, but these models also appear to be
specialized to the target pollutants and robust across chang-
ing compositions of other VOCs. Furthermore, this analysis
confirmed a difference in selectivity between two MOx VOC
sensors, a difference which can be leveraged in the develop-
ment of calibration models, to identify and mitigate cross-
sensitivities, and potentially in source classification. Cross-
sensitivities to confounding species are currently a major
concern, for low-cost sensors in general and in particular for
VOC sensing. However, given the differences in selectivity it
seems that multiple sensors could be used to strategically de-
termine the gases most likely affecting a sensor. For example,
a carbon monoxide sensor and the Figaro 2602 could help to
confirm whether methane is the main driver of a response
from the Figaro 2600. Furthermore, if the demonstrated as-
sociation between sensor ratios and source types is shown
to be consistent, multi-sensor devices could be a powerful
tool for collecting preliminary or supplementary data in ar-
eas affected by numerous and complex sources – like envi-
ronmental justice communities. These sensors can provide
information at higher spatial and temporal resolution than is
currently available. While there are a number of uncertainties
and limitations as discussed throughout this paper, through
thoughtful use these tools may be able to provide valuable
information as we also work to improve them. A few initial
best practices to consider may include (1) calibrating sen-
sors or characterizing their performance both before and af-
ter the field deployment in order to address drift, (2) ensuring
that training data cover the conditions expected in the field

in terms of both environmental conditions and the pollutant
concentrations and compositions, and (3) learning as much
as possible about potential cross-sensitivities and then incor-
porating multiple sensors of different selectivities into your
platform.

Given their cost and the relative ease of deployment, these
tools have the potential to provide information to support
public health research or community-based environmental
justice studies or even supplement research by regulatory or
academic communities, for example, by guiding exposure
studies or providing a better idea of the impact of nearby
sources on overburdened communities. Often in environmen-
tal justice communities lacking resources, even cursory in-
formation on VOCs and local emissions could be valuable.
These types of sensors could also supplement conventional
monitoring approaches. For example, regulatory agencies
sometimes utilize TNMHC measurements, and MOx sensors
may be able to supplement these instruments again by pro-
viding greater spatial resolution. Multi-sensor systems could
also provide time-resolved information, adding to data col-
lected using a speciated method such as VOC canisters or
passive sorption tubes. Future research will hopefully ex-
plore these applications as well as further quantify the capac-
ity and limitations of these sensors; however, the usefulness
demonstrated here speaks to the potential MOx sensors have
to provide new insights into the complex and dynamic VOC
types and sources impacting our lives and communities.

Code and data availability. The sensor data utilized in this anal-
ysis, as well as the code used to develop and explore calibration
models, are available for MatLab here: https://data.mendeley.com/
datasets/hkn2tbcp67/1 (Collier-Oxandale, 2019). Original versions
of the reference data provided by the NATIVE Mobile Research
Facility team are available through the official NASA DISCOVER-
AQ data archive at https://www-air.larc.nasa.gov/cgi-bin/ArcView/
discover-aq.co-2014 (last access: April 2018, Thompson, 2014;
Whisthaler, 2015).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/amt-12-1441-2019-supplement.
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ing VOCs in atmospheric air I. On-line gas ana-
lyzers, TRAC-Trend Anal. Chem., 29, 1092–1100,
https://doi.org/10.1016/j.trac.2010.05.007, 2010.

Kumar, A. and Víden, I.: Volatile organic compounds: Sampling
methods and their worldwide profile in ambient air, Environ.
Monit. Assess., 131, 301–321, https://doi.org/10.1007/s10661-
006-9477-1, 2007.

Kwon, J., Weisel, C. P., Turpin, B. J., Zhang, J., Korn, L. R.,
Morandi, M. T., Stock, T. H., and Colome, S.: Source Prox-
imity and Outdoor-Residential VOC Concentrations: Results
from the RIOPA Study, Environ. Sci. Technol., 40, 4074–4082,
https://doi.org/10.1021/es051828u, 2006.

Leidinger, M., Sauerwald, T., Reimringer, W., Ventura, G., and
Schütze, A.: Selective detection of hazardous VOCs for indoor
air quality applications using a virtual gas sensor array, J. Sens.
Sens. Syst., 3, 253–263, https://doi.org/10.5194/jsss-3-253-2014,
2014.

Leidinger, M., Rieger, M., Sauerwald, T., Alépée, C., and Schütze,
A.: Integrated pre-concentrator gas sensor microsystem for ppb
level benzene detection, Sensor Actuat. B-Chem., 236, 988–996,
https://doi.org/10.1016/j.snb.2016.04.064, 2016.

Leidinger, M., Baur, T., Sauerwald, T., Schütze, A., Reimringer, W.,
Spinelle, L., and Gerboles, M.: Highly sensitive benzene detec-
tion with MOS gas sensors, Proceedings Sensor 2017, 92–97,
https://doi.org/10.5162/sensor2017/A4.3, 2017.

Lewis, A. C., Lee, J., Edwards, P. M., Shaw, M. D., Evans, M. J.,
Moller, S. J., Smith, K., Ellis, M., Gillott, S., White, A., and
Buckley, J. W.: Evaluating the performance of low cost chemical
sensors for air pollution research, Faraday Discuss., 189, 85–103,
https://doi.org/10.1039/C5FD00201J, 2016.

Loh, M. M., Levy, J. I., Spengler, J. D., Houseman, E. A., and Ben-
nett, D. H.: Ranking cancer risks of organic hazardous air pol-
lutants in the United States, Environ. Health Persp., 115, 1160–
1168, https://doi.org/10.1289/ehp.9884, 2007.

Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zim-
merman, N., Kara, L. B., Presto, A. A., and R. Subrama-
nian: Development of a general calibration model and long-
term performance evaluation of low-cost sensors for air pol-
lutant gas monitoring, Atmos. Meas. Tech., 12, 903–920,
https://doi.org/10.5194/amt-12-903-2019, 2019.

Masson, N., Piedrahita, R., and Hannigan, M.: Quantification
method for electrolytic sensors in long-term monitoring of ambi-
ent air quality, Sensors, 15, 27283–27302, 2015.

McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H.,
Akherati, A., Cappa, C. D., Jimenez, J. L., Lee-Taylor, J.,
Hayes, P. L., McKeen, S. A., Cui, Y. Y., Kim, S. W., Gen-
tner, D. R., Isaacman-VanWertz, G., Goldstein, A. H., Harley,
R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and Trainer,
M.: Volatile chemical products emerging as largest petrochem-

ical source of urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.

Miskell, G., Salmond, J., Grange, S., Weissert, L., and Hen-
shaw, G.: Reliable Long-Term Data from Low-Cost Gas Sen-
sor Networks in the Environment, Eurosensors 2017, 1, 400,
https://doi.org/10.3390/proceedings1040400, 2017.

Mobile Sensing Technology: U-Pod open-source construction and
parts information, available at: http://mobilesensingtechnology.
com/ (last access: October 2017), 2018.

NASA: Discover-AQ Database, available at: https:
//www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?
GROUND-PLATTEVILLE=1?GROUND-PLATTEVILLE=1
(last access: May 2018), 2015.

O’Shea, S. J., Bauguitte, S. J.-B., Gallagher, M. W., Lowry, D.,
and Percival, C. J.: Development of a cavity-enhanced absorp-
tion spectrometer for airborne measurements of CH4 and CO2,
Atmos. Meas. Tech., 6, 1095–1109, https://doi.org/10.5194/amt-
6-1095-2013, 2013.

Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S.
A., Frost, G. J., Trainer, M., Tans, P., Andrews, A., Kofler,
J., Helmig, D., Guenther, D., Dlugokencky, E., Lang, P., New-
berger, T., Wolter, S., Hall, B., Novelli, P., Brewer, A., Conley,
S., Hardesty, M., Banta, R., White, A., Noone, D., Wolfe, D.,
and Schnell, R.: A new look at methane and nonmethane hydro-
carbon emissions from oil and natural gas operations in the Col-
orado Denver-Julesburg Basin, J. Geophys. Res.-Atmos., 119,
6836–6852, https://doi.org/10.1002/2013JD021272, 2014.

Pfister G., Flocke, F., Hornbrook, R., Orlando, J., Lee, S., and
Schroeder, J.: Final Report: Process-Based and Regional Source
Impact Analysis for FRAPPÉ and DISCOVER-AQ 2014,
National Center for Atmospheric Research, report available at:
https://www.colorado.gov/airquality/tech_doc_repository.aspx?
action=openandfile=FRAPPE-NCAR_Final_Report_July2017.
pdf (last access: May 2018), 2017.

Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang,
Y., Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The
next generation of low-cost personal air quality sensors for quan-
titative exposure monitoring, Atmos. Meas. Tech., 7, 3325–3336,
https://doi.org/10.5194/amt-7-3325-2014, 2014.

Rumchev, K., Brown, H., and Spickett, J.: Volatile Organic Com-
pounds: Do the present a risk to our health?, Rev. Environ.
Health, 22, 39–55, 2007.

Sadighi, K., Coffey, E., Polidori, A., Feenstra, B., Lv, Q.,
Henze, D. K., and Hannigan, M.: Intra-urban spatial variabil-
ity of surface ozone in Riverside, CA: viability and valida-
tion of low-cost sensors, Atmos. Meas. Tech., 11, 1777–1792,
https://doi.org/10.5194/amt-11-1777-2018, 2018.

Sauerwald, T., Baur, T., Leidinger, M., Reimringer, W., Spinelle, L.,
Gerboles, M., Kok, G., and Schötze, A.: Highly sensitive ben-
zene detection with metal oxide semiconductor gas sensors –
an inter-laboratory comparison, J. Sens. Sens. Syst., 7, 235–243,
https://doi.org/10.5194/jsss-7-235-2018, 2018.

Schütze, A., Baur, T., Leidinger, M., Reimringer, W.,
Jung, R., Conrad, T., and Sauerwald, T.: Highly sensi-
tive and selective VOC sensor systems based on semi-
conductor gas sensors: how to?, Environments, 4, 20,
https://doi.org/10.3390/environments4010020, 2017.

Shamasunder, B., Collier-Oxandale, A., Blickley, J., Sadd, J., Chan,
M., Navarro, S., Hannigan, M., and Wong, N. J.: Community-

www.atmos-meas-tech.net/12/1441/2019/ Atmos. Meas. Tech., 12, 1441–1460, 2019

https://doi.org/10.1021/es405046r
https://doi.org/10.1016/j.envres.2017.04.023
https://doi.org/10.1016/j.trac.2010.05.007
https://doi.org/10.1007/s10661-006-9477-1
https://doi.org/10.1007/s10661-006-9477-1
https://doi.org/10.1021/es051828u
https://doi.org/10.5194/jsss-3-253-2014
https://doi.org/10.1016/j.snb.2016.04.064
https://doi.org/10.5162/sensor2017/A4.3
https://doi.org/10.1039/C5FD00201J
https://doi.org/10.1289/ehp.9884
https://doi.org/10.5194/amt-12-903-2019
https://doi.org/10.1126/science.aaq0524
https://doi.org/10.3390/proceedings1040400
http://mobilesensingtechnology.com/
http://mobilesensingtechnology.com/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1?GROUND-PLATTEVILLE=1
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1?GROUND-PLATTEVILLE=1
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1?GROUND-PLATTEVILLE=1
https://doi.org/10.5194/amt-6-1095-2013
https://doi.org/10.5194/amt-6-1095-2013
https://doi.org/10.1002/2013JD021272
https://www.colorado.gov/airquality/tech_doc_repository.aspx?action=openandfile=FRAPPE-NCAR_Final_Report_July2017.pdf
https://www.colorado.gov/airquality/tech_doc_repository.aspx?action=openandfile=FRAPPE-NCAR_Final_Report_July2017.pdf
https://www.colorado.gov/airquality/tech_doc_repository.aspx?action=openandfile=FRAPPE-NCAR_Final_Report_July2017.pdf
https://doi.org/10.5194/amt-7-3325-2014
https://doi.org/10.5194/amt-11-1777-2018
https://doi.org/10.5194/jsss-7-235-2018
https://doi.org/10.3390/environments4010020


1460 A. M. Collier-Oxandale et al.: Understanding the ability of low-cost MOx sensors

based Health and exposure study around urban oil developments
in South Los Angeles, Int. J. Environ. Res. Pub. He., 15, 138,
https://doi.org/10.3390/ijerph15010138, 2018.

Shen, Z., Zhang, X., Ma, X., Mi, R., Chen, Y., and Ruan, S.: The
significant improvement for BTX (benzene, toluene and xylene)
sensing performance based on Au-decorated hierarchical ZnO
porous rose-like architectures, Sensor Actuat. B-Chem., 262, 86–
94, https://doi.org/10.1016/j.snb.2018.01.205, 2018.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and
Bonavitacola, F.: Field calibration of a cluster of low-cost
available sensors for air quality monitoring – Part A: Ozone
and nitrogen dioxide, Sensor Actuat. B-Chem., 215, 249–257,
https://doi.org/10.1016/j.snb.2015.03.031, 2015.

Spinelle, L., Gerboles, M., Kok, G., Persijn, S., and Sauerwald, T.:
Performance evaluation of low-cost BTEX sensors and devices
within the EURAMET Key-VOCs Project, Proceedings, 1, 425,
https://doi.org/10.3390/proceedings1040425, 2017a.

Spinelle, L., Gerboles, M., Kok, G., Persijn, S., and Sauer-
wald, T.: Review of Portable and Low-Cost Sensors
for the Volatile Organic Compounds, Sensors, 17, 1520,
https://doi.org/10.3390/s17071520, 2017b.

Suh, H. H., Bahadori, T., Vallarino, J., and Spengler, J. D.: Crite-
ria air pollutants and toxic air pollutants, Environ. Health Persp.,
108, 625–633, 2000.

Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong,
L.-T., and Liu, J.-H.: Metal oxide nanostructures and their
gas sensing properties: a review, Sensors, 12, 2610–2631,
https://doi.org/10.3390/s120302610, 2012.

Szulczynski, B. and Gebicki, J.: Currently commercially avail-
able chemical sensors employed for detection of volatile or-
ganic compounds in outdoor and indoor air, Environments, 4, 21,
https://doi.org/10.3390/environments4010021, 2017.

Thoma, E. D., Brantley, H. L., Oliver, K. D., Whitaker, D.
A., Mukerjee, S., Mitchell, B., Wu, T., Squier, B., Esco-
bar, E., Cousett, T. A., Gross-Davis, C. A., Schmidt, H.,
Sosna, D., and Weiss, H.: South Philadelphia passive sam-
pler and sensor study, J. Air Waste Manage., 66, 959–970,
https://doi.org/10.1080/10962247.2016.1184724, 2016.

Thompson, A.: DISCOVER-AQ Dataset: Platteville, NA-
TIVE Data, NASA DISCOVER-AQ Database, available at:
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.
co-2014?GROUND-PLATTEVILLE=1#THOMPSON.ANNE/
(last access: April 2018), 2014.

Thompson, C. R., Hueber, J., and Helmig, D.: Influ-
ence of oil and gas emissions on ambient atmo-
spheric non-methane hydrocarbons in residential areas
of Northeastern Colorado, Elem. Sci. Anth., 2, 000035,
https://doi.org/10.12952/journal.elementa.000035, 2014.

Vikram, S., Collier-Oxandale, A., Ostertag, M., Menarini, M., Cher-
mak, C., Dasgupta, S., Rosing, T., Hannigan, M., and Griswold,
W. G.: Evaluating and Improving the Reliability of Gas-Phase
Sensor System Calibrations Across New Locations for Ambi-
ent Measurements and Personal Exposure Monitoring, Atmos.
Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-30, in
review, 2019.

Wang, C., Yin, L., Zhang, L., Xiang, D., and Gao, R.: Metal ox-
ide gas sensors: sensitivity and influencing factors, Sensors, 10,
2088–2106, https://doi.org/10.3390/s100302088, 2010.

Warneke, C., Gouw, J. A. De, Edwards, P. M., Holloway, J. S.,
Gilman, J. B., Kuster, W. C., Graus, M., Atlas, E., Blake, D.,
Gentner, D. R., Goldstein, A. H., Harley, R. A., Alvarez, S., Rap-
penglueck, B., Trainer, M., and Parrish, D. D.: Photochemical
aging of volatile organic compounds in the Los Angeles basin:
Weekday-weekend effect. J. Geophys. Res.-Atmos., 118, 5018–
5028, https://doi.org/10.1002/jgrd.50423, 2013.

Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G.,
Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B.,
Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and
Roberts, J. M.: Volatile organic compound emissions from the
oil and natural gas industry in the Uintah Basin, Utah: oil and gas
well pad emissions compared to ambient air composition, Atmos.
Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-
10977-2014, 2014.

Wisthaler, A.: DISCOVER-AQ Dataset: Platteville, PTRMS
Data, NASA DISCOVER-AQ Database, available at: https:
//www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?
GROUND-PLATTEVILLE=1#WISTHALER.ARMIN/ (last
access: April 2018), 2015.

Williams, R. and Kaufman, A.: Next Generation Air Monitoring
(NGAM) VOC Sensor Evaluation Report. U.S. Environmental
Protection Agency, Washington, DC, EPA/600/R-15/122 (NTIS
PB2015-105133), 2015.

Wolfrum, E. J., Meglen, R. M., Peterson, D., and Sluiter, J.: Metal
oxide sensor arrays for the detection, differentiation, and quan-
tification of volatile organic compounds at sub-parts-per-million
concentration levels, Sensor Actuat. B-Chem., 115, 322–329,
https://doi.org/10.1016/j.snb.2005.09.026, 2006.

Woodruff, T. J., Axelrad, D. A., Caldwell, J., Morello-Frosch, R.,
and Rosenbaum, A.: Public health implications of 1990 air toxics
concentrations across the United States, Environ. Health Persp.,
106, 245–251, 1998.

Wu, X., Fan, Z., Zhu, X., Jung, K. H., Ohman-strickland,
P., Weisel, C. P., and Lioy, P. J.: Exposures to volatile
organic compounds (VOCs) and associated health risks
of socio-economically disadvantaged population in a “hot
spot” in Camden, New Jersey, Atmos. Environ., 57, 72–79,
https://doi.org/10.1016/j.atmosenv.2012.04.029, 2012.

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk,
A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A
machine learning calibration model using random forests to im-
prove sensor performance for lower-cost air quality monitoring,
Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-
11-291-2018, 2018.

Atmos. Meas. Tech., 12, 1441–1460, 2019 www.atmos-meas-tech.net/12/1441/2019/

https://doi.org/10.3390/ijerph15010138
https://doi.org/10.1016/j.snb.2018.01.205
https://doi.org/10.1016/j.snb.2015.03.031
https://doi.org/10.3390/proceedings1040425
https://doi.org/10.3390/s17071520
https://doi.org/10.3390/s120302610
https://doi.org/10.3390/environments4010021
https://doi.org/10.1080/10962247.2016.1184724
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#THOMPSON.ANNE/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#THOMPSON.ANNE/
https://doi.org/10.12952/journal.elementa.000035
https://doi.org/10.5194/amt-2019-30
https://doi.org/10.3390/s100302088
https://doi.org/10.1002/jgrd.50423
https://doi.org/10.5194/acp-14-10977-2014
https://doi.org/10.5194/acp-14-10977-2014
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#WISTHALER.ARMIN/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#WISTHALER.ARMIN/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#WISTHALER.ARMIN/
https://doi.org/10.1016/j.snb.2005.09.026
https://doi.org/10.1016/j.atmosenv.2012.04.029
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018

	Abstract
	Introduction
	Background
	Previous VOC sensor research

	Methods
	Deployment overview
	Reference measurements
	MOx sensors and the U-Pod platform
	Data processing and analysis rationale

	Results and discussion
	Field calibration performance
	Estimating benzene and summed aromatic species
	Estimating summed VOCs
	Estimating methane
	Model accuracy, specialization, and robustness

	Sensor selectivity and consistency
	Leveraging sensor differences to learn about potential sources

	Conclusion
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	References

