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S1 Relationships between optical and microphysical properties in subadiabatic boundary layer clouds 

S1.1 Linking cloud microphysical and optical properties 

Here we present several key relationships summarised by Grosvenor et al. (2018), which resulted in relationships between 

cloud optical depth 𝜏, effective radius re, liquid water path LWP and geometric thickness H for subadiabatic clouds. 

The extinction coefficient for a collection of droplets is: 5 

𝛽#$%(𝑧) = 𝜋∫ 𝑄#$%(𝑟)𝑟.𝑛(𝑟)	𝑑𝑟
2
3           (S1) 

Where Qext is the extinction efficiency, the ratio of extinction and geometric cross section for a given droplet. Given that for 

cloud droplets in the A-band, 𝑟# ≫ 𝜆, we take the approximation 𝑄#$% = 2, which is the asymptotic limit from Mie theory for 

large size parameters.  

Next we require the droplet effective radius, which is the ratio of the third to the second moments of the droplet size 10 

distribution: 

𝑟#(𝑧) =
∫ 789(7)	:7;
<
∫ 7=9(7)	:7);
<

           (S2) 

And the relation of liquid water content to the droplet volume: 

𝐿(𝑧) = ?@AB
C ∫ 𝑟C𝑛(𝑟)2

3 		𝑑𝑟          (S3) 

Combining Eqs. (S1)—(S3) results in: 15 

𝛽#$%(𝑧) =
CDEFG
?AB

	 H(I)
7E(I)

           (S4) 

We then introduce the ratio of the effective and volumetric mean droplet radii as: 

𝑘 = K7L
7E
M
C
            (S5) 

For the commonly used gamma distribution of drop sizes, this is related to the width of the distribution.  We assume that this 

is constant with height, and its value tends to be near 0.8 in marine clouds. The liquid water content is also related to the 20 

volumetric mean radius via: 

𝐿(𝑧) = ?@ABNO7L8

C
            (S6) 

Combining Eqs. (S5) and (S6) and substituting into Eq. (S4), then integrating over the cloud gives optical depth: 

𝜏P = 𝑄#$% K
C

?AB
M
=
8 (𝑁:𝜋𝑘)

R
8 ∫ 𝐿(𝑧)

=
8

IGST
IUVWE

	𝑑𝑧         (S7) 

S1.2 Comparing subadiabatic and homogeneous clouds 25 

In the adiabatic cloud model we have: 

𝐿(𝑧) = 𝑓Y:𝑐[𝑧            (S8) 
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And therefore, taking geometric thickness H as ztop-zbase: 

𝜏P,Y: =
CDEFG
]
KC^VOPB

?AB
M
=
8 (𝑁:𝜋𝑘)

R
8𝐻

`
8          (S9) 

For a homogeneous cloud we have a constant liquid water content with height, i.e. 𝐿(𝑧) = 𝐴 :	

𝜏P,bcdc = 𝑄#$% K
Ce
?AB

M
=
8 (𝑁:𝜋𝑘)

R
8𝐻          (S10) 

The homogeneous cloud optical depth differs from the subadiabatic cloud in that optical depth scales with H instead of H5/3, 5 

and otherwise differs by a ratio of 5A2/3/3. We can compare their optical properties by consider the effect on optical depth of 

the difference in structure for an equal LWP. In this case, to conserve mass: 

𝐴 = ^VOPBf
.

            (S11) 

And Eq. (S10) becomes: 

𝜏P,bcdc = 𝑄#$% K
C^VOPB
gAB

M
=
8 (𝑁:𝜋𝑘)

R
8𝐻

`
8	         (S12) 10 

Or more explicitly we compare 𝜏P,Y: for the subadiabatic cloud and 𝜏P,bcdc	 for the homogeneous cloud first by simplifying: 

𝑋 = 𝑄#$% K
C^VOPB
?AB

M
=
8 (𝜋𝑘)

R
8           (S13) 

Which makes the optical depths: 

𝜏P,Y: =
C
]
𝑋𝑁:,Y:

R
8 𝐻

`
8	           (S14) 

And: 15 

𝜏P,bcdc = 2i
=
8𝑋𝑁:,bcdc

R
8 𝐻

`
8           (S15) 

i.e. these two clouds show the same scaling of 𝜏P with H but vary by a factor of: 

jk,lSmS
jk,VO

= ]
C
2i

=
8 	nNO,lSmS

NO,VO
o
R
8
           (S16) 

Note that while Nd is constant within each cloud, it is not necessarily the same in the homogeneous case as it is in the 

subadiabatic case. 20 

Referring back to Equations (S3) and (S5) and Nd constant with height: 

𝐿(𝑧) = ?@ANO7E8(I)
Cp

           (S17) 

With the subadiabatic L(z) this can be rearranged to determine that 𝑁:,Y:
R
8  is: 

𝑁:,Y:
R
8 = KCp^VOPB

?@AB
M
R
8 𝑧

R
8	𝑟#,Y:iq (𝑧)          (S18) 

Whereas with the homogeneous L(z) this becomes: 25 

𝑁:,bcdc
R
8 = KCp^VOPB

?@AB
M
R
8 Kf

.
M
R
8 	𝑟#,bcdciq           (S19) 
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When substituting Eqs. (S18) and (S19) into (S16), the first terms in the brackets cancel and we obtain: 

jk,lSmS
jk,VO

= ]
C
2i

=
8 	Kf

.I
M
R
8 7E,VO(I)

7E,lSmS
= ]

r
Kf
I
M
R
8 7E,VO(I)

7E,lSmS
	        (S20) 

Therefore a homogeneous cloud has the same optical depth as a subadiabatic cloud of the same H and LWP provided that: 

𝑟#,bcdc =
]
r
𝑟#,Y:(𝐻)           (S21) 

Or alternatively: 5 

𝑟#,bcdc = 𝑟#,Y: K
q.]
.qr

𝐻M ≅ 𝑟#,Y:(0.58𝐻)         (S22) 

S1.3 Calculating prior cloud thickness 

The subadiabatic and homogeneous clouds are expected to have the same optical depth for a fixed H and LWP given that an 

appropriate re is used. The next question is how to calculate an appropriate prior cloud pressure thickness. As part of the 

OCO2CLD-LIDAR-AUX retrieval, we make a prior estimate of the cloud optical depth based on a lookup table using the 10 

continuum A-band radiances. And the retrieval assumed re = 12 µm. Therefore we express LWP as LWP(𝜏,re) and relate this 

to H using Eq. (S8). Firstly, we combine Eq. (S8) and (S17) and evaluate them at cloud top: 

𝐿(𝐻) = 𝑓Y:𝑐[𝐻 = ?@ABNOp7E8

C
	          (S23) 

𝐻 = ?@ABNOp7E8

C^VOPB
            (S24) 

Integrating Eq. (S8) and inserting for H using (S24): 15 

𝐿𝑊𝑃 = q
.
𝑓Y:𝑐[𝐻. = q

.
𝑓Y:𝑐[ K

?@ABNOp
Cp^VOPB

M
.
𝑟#r         (S25) 

Next, we also insert Eq. (S24)’s expression for H into Eq. (S9), for the adiabatic 𝜏P(𝐻): 

𝜏P =
CDEFG
]
KC^VOPB

?AB
M
=
8 (𝑁:𝜋𝑘)

R
8 K?@ABNOp7E

8

C^VOPB
M
`
8         (S26) 

Collecting the terms in Eq. (S26) and expressing as a function of 𝑟#]: 

𝑟#] =
]^VOPB
?DEFGAB

(𝑁:𝜋𝑘)i.𝜏           (S27) 20 

Inserting this into Eq. (S2): 

𝐿𝑊𝑃 = q
.
𝑓Y:𝑐[ K

?@ABNOp
C^VOPB

M
. ]^VOPB
?DEFGAB

(𝑁:𝜋𝑘)i.𝑟#𝜏        (S29) 

Once again, collecting and cancelling terms results in: 

𝐿𝑊𝑃 = q3AB
zDEFG

𝑟#𝜏            (S30) 

Or for H, 25 

𝐻 = { .3AB7Ej
zDEFG^VOPB

            (S31) 
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We take the following values: fadcw = 1.9×10-3 g m-4, Qext = 2 and 𝜌[= 1,000 kg m-3. Note that re here refers to the cloud top 

value. From Eq. (S21), the homogeneous value to use is equivalent to the 5/6ths of this value.  

2 Vertical profile of extinction in subadiabatic and homogeneous clouds 

Taking Eq. (S3), which relates extinction to L(z) and re(z), we consider their vertical profiles in a subadiabatic cloud, rearrange 

Eq. (S6) and use Eq. (S5) to make re(z) the subject: 5 

𝑟#(𝑧) = K CH(I)
?@ABNOp

M
R
8           (S32) 

Substitute this into Eq. S4: 

𝛽#$%(𝑧) =
CDEFG
?AB

K?@ABNOp
C

M
R
8 𝐿

=
8(𝑧)          (S33) 

And taking the liquid water profile from Eq. (S8): 

𝛽#$%(𝑧) =
CDEFG
?AB

K?@ABNOp
C

M
R
8 (𝑓Y:𝑐[𝑧)

=
8         (S34) 10 

i.e. the extinction scales with z2/3 in a subadiabatic cloud and: 

𝛽#$%(𝑧) = 𝐴𝑧
=
8            (S35) 

Integrating Eq. (S35) shows that A is related to H and 𝜏 and: 

𝛽#$%(𝑧) =
]j

Cf
`
8	
𝑧
=
8            (S36) 

This contrasts with a homogeneous cloud whose profile is: 15 

𝛽#$%(𝑧) =
j
f

            (S37) 

For constant H and 𝜏, example extinction profiles are displayed in Figure S1. It is clear that the cloud extinction in the 

subadiabatic model is weighted more heavily towards cloud top. 
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Figure S1. Example extinction coefficients for a cloud of the same H and 𝝉 for a homogeneous or subadiabatic structure. This ignores 
atmospheric molecular absorption. 
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