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Abstract. Peak fitting (PF) and partial least squares (PLS)
regression have been independently developed for estimation
of functional groups (FGs) from Fourier transform infrared
(FTIR) spectra of ambient aerosol collected on Teflon
filters. PF is a model that quantifies the functional group
composition of the ambient samples by fitting individual
Gaussian line shapes to the aerosol spectra. PLS is a data-
driven, statistical model calibrated to laboratory standards
of relevant compounds and then extrapolated to ambient
spectra. In this work, we compare the FG quantification
using the most widely used implementations of PF and
PLS, including their model parameters, and also perform a
comparison when the underlying laboratory standards and
spectral processing are harmonized. We evaluate the quan-
tification of organic FGs (alcohol COH, carboxylic COOH,
alkane CH, carbonyl CO) and ammonium, using external
measurements (organic carbon (OC) measured by thermal
optical reflectance (TOR) and ammonium by balance of
sulfate and nitrate measured by ion chromatography). We
evaluate our predictions using 794 samples collected in the
Interagency Monitoring of PROtected Visual Environments
(IMPROVE) network (USA) in 2011 and 238 labora-
tory standards from Ruthenburg et al. (2014) (available
at https://doi.org/10.1016/j.atmosenv.2013.12.034). Each
model shows different biases. Overall, estimates of OC by
FTIR show high correlation with TOR OC. However, PLS
applied to unprocessed (raw spectra) appears to underpredict
oxygenated functional groups in rural samples, while other
models appear to underestimate aliphatic CH bonds and OC
in urban samples. It is possible to adjust model parameters
(absorption coefficients for PF and number of latent vari-

ables for PLS) within limits consistent with calibration data
to reduce these biases, but this analysis reveals that further
progress in parameter selection is required. In addition,
we find that the influence of scattering and anomalous
transmittance of infrared in coarse particle samples can
lead to predictions of OC by FTIR which are inconsistent
with TOR OC. We also find through several means that
most of the quantified carbonyl is likely associated with
carboxylic groups rather than ketones or esters. In evaluating
state-of-the-art methods for FG abundance by FTIR, we
suggest directions for future research.

1 Introduction

Atmospheric aerosol, also called particulate matter (PM), is
made up of organic compounds, inorganic salts, trace ele-
ments, black carbon, and water, among other substances. Ac-
counting for its total mass in terms of its speciated composi-
tion is desirable for regulatory and epidemiological reasons,
and this goal poses a substantial challenge for environmen-
tal analytical measurement. Organic compounds in particular
can contribute 20 %–80 % of the atmospheric aerosol mass
(Lim and Turpin, 2002; Zhang et al., 2007), but the large
number of molecule types present in these samples eludes
exhaustive characterization. Typical methods for character-
izing this organic fraction include quantification of total car-
bon by evolved gas analysis and mass fragment analysis by
mass spectrometry (e.g., Rogge et al., 1993; Chow et al.,
1993; Hallquist et al., 2009; Laskin et al., 2012). Alterna-
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tively, reconstruction of organic aerosol mass by functional
group (FG) abundance in these mixtures has been demon-
strated to provide high recovery (Maria et al., 2003). In ad-
dition, describing organic mass (OM) in terms of FGs has
been useful for source apportionment as it captures particu-
lar emission characteristics (e.g., hydroxyl groups in marine
sprays and biogenic secondary organic aerosol, ketonic car-
bonyl from burning) as well as atmospheric processes (e.g.,
carboxylic acid formation from photooxidation) (e.g., Dece-
sari et al., 2007; Russell et al., 2011; Liu, 2014). Recent
work has demonstrated the capacity of FG analysis to bridge
the gap between molecular speciation and atomic compo-
sition obtained by chromatography and mass spectrometry
measurements, and chemically explicit model simulations
(Ruggeri and Takahama, 2016; Ruggeri et al., 2016). FGs
can be characterized by nuclear magnetic resonance spec-
troscopy (NMR), Raman spectroscopy, gas chromatography
with mass spectrometry (GC-MS), liquid chromatography,
reaction or derivitization and spectrophotometry, and Fourier
transform infrared spectroscopy (FTIR) (Maria et al., 2003;
Decesari et al., 2007; Dron et al., 2010; Kalafut-Pettibone
and McGivern, 2013; Craig et al., 2015; Ranney and Zie-
mann, 2016). In this work, we focus on the application mid-
infrared (mid-IR) spectroscopy with FTIR, especially since it
can be applied inexpensively and nondestructively to particu-
late matter collected on widely used polytetrafluoroethylene
(PTFE) filters, and its spectrum obtained corresponds to that
characterized by its gravimetric mass.

Some of the earliest work in studying organic aerosol com-
position in Los Angeles smog and synthetic smog generated
in the laboratory was studied using infrared spectroscopy
(Mader et al., 1952), and this tool is often used qualita-
tively for identifying organic aerosol constituents and mon-
itoring changes induced under controlled laboratory condi-
tions (e.g., Hung et al., 2005; Presto et al., 2005; Fu et al.,
2013; Kidd et al., 2014; Chen et al., 2016; Yu et al., 2017).
The FG analysis approach to quantification of organic matter
(OM) was pioneered by Allen and co-workers (Palen et al.,
1992; Allen et al., 1994) and further extended by other re-
searchers (Blando et al., 1998; Maria et al., 2002; Coury and
Dillner, 2008; Russo et al., 2014). This method typically re-
quires two steps: (1) estimating molar abundances of indi-
vidual bond types from measured absorbances, and (2) relat-
ing bond abundances to FG and carbon content such that the
OM mass can be obtained from their summation (Russell,
2003). On the second point, Takahama and Ruggeri (2017)
proposed that organic molecular mixtures can be conceptu-
alized as a collection of functionalized carbon atoms, from
which atomic composition for mass estimation can be de-
rived. While non-carbon atoms can be apportioned to each
FG uniquely, carbon atom estimation from FG measurement
is less straightforward. The carbon atoms are first separated
into detectable and undetectable fractions based on the FGs
associated with each carbon and the FG calibrations avail-
able. For instance, carbon atoms with aliphatic CH groups

if CH is included in the suite of calibrations while skeletal
carbon atoms bonded only to other carbon atoms are consid-
ered undetectable. While the combinatorial growth in poly-
functional carbon types possible from any set of FGs pre-
cludes estimation of specific carbon type abundances from
FG abundance, the detectable carbon abundance can be sta-
tistically estimated from the FGs. Building on the findings of
their work, we primarily restrict the scope of this article to
the first point in OM characterization from FGs (estimation
of molar abundance from measured absorbance).

The essential principle of the technique is to record chemi-
cally specific absorption bands resulting from dipole moment
transitions induced by interaction of molecular vibrations
with mid-IR radiation (Harris and Bertolucci, 1989). Quanti-
tative analysis of spectra is based on the Beer–Lambert law,
which ascribes a linear relationship between the abundance
of a substance and the mid-IR absorbance at wavenumbers
corresponding to the vibrational modes of discriminating
molecular bonds (Griffiths and Haseth, 2007). However, this
task is confronted with several challenges. Condensed-phase
spectra can have broad, overlapping absorption bands due not
only to irreducible decay of excited vibrational states (life-
time broadening), but also to the slight variations in resonant
frequencies of similar bonds interacting with local environ-
ments (heterogeneous broadening) (Kelley, 2013). Absorp-
tion intensities of the same FG can additionally vary accord-
ing to the neighboring substituents of each FG (Allen and
Palen, 1989; Maria et al., 2003). These issues are particularly
salient in environmental samples, which contain a large num-
ber of bonds of the same type in different configurations. Ad-
ditionally, inorganic salts such as ammonium nitrate and sul-
fate have absorption bands in the mid-IR (Cunningham et al.,
1974; McClenny et al., 1985; Pollard et al., 1990; Krost and
McClenny, 1994) and can interfere with organic FG analy-
sis. Furthermore, given that atmospheric aerosols are com-
plex mixtures containing thousands of different compound
types (Hamilton et al., 2004; Kroll et al., 2011), strategies
for characterization have been based on what we can inter-
pret from simpler laboratory mixtures.

To address these challenges, methods for quantification
of bonds from FTIR spectra fall into two broad categories
(Alsberg et al., 1997). The first is a physically based ap-
proach in which spectra are decomposed into their underly-
ing peak representations, and FG abundance is estimated by
relating absorption peaks with their molar absorption coeffi-
cients. Constraints for Lorentzian, Gaussian, Voigt, or fixed
absorption profiles for individual bonds are combined to rep-
resent each spectrum with the aim of faithfully reconstruct-
ing the signal in regions where absorbances from bonds are
assumed to be present. Gaussian peaks have been most com-
monly used for atmospheric aerosol analysis under the as-
sumption that the FG absorption peaks are the sum of many
peaks from individual compounds. Uncertainties in analysis
can arise from the prescription of peak constraints and their
combined fit in a high-dimensional mathematical space, and
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the selection of molar absorption coefficients to be applied to
each type of bond. While peak constraints and absorption co-
efficients are derived from laboratory standards, their values
can vary according to the specific compounds selected for
study. The second approach follows a more direct reliance
on data whereby a statistical calibration model is constructed
via multivariate analysis; partial least squares (PLS) regres-
sion is a common example from this category (Martens and
Næs, 1991). In this method, a model comprising a set of la-
tent variables is trained on laboratory standards comprising
individual compounds and mixtures of multiple substances;
the final set of calibration model parameters (i.e., regression
coefficients) is thought to embody some combination of ab-
sorption profiles, interferences, and absorption coefficients
necessary to make accurate predictions for samples similar
to the calibration set. This method requires fewer constraints
imposed by the operator (except the assumption of linearity
– or possibility for linearization – with PLS) than peak fitting
(PF). As with the PF approach, uncertainties arise in extrap-
olating calibration models to atmospheric samples, but the
lack of physical constraints can lead to a broader range of
predictions if model parameters (number of latent variables
for PLS) are not judiciously selected (Takahama and Dillner,
2015). However, faithful reconstruction of the spectrum by
model latent variables is not required as in PF; the target is
to extract features only as necessary for accurate quantifica-
tion. The accuracy of predictions is predicated on the com-
bination of laboratory standards used to construct an approx-
imate representation of this complex mixture space. While
several variants of PLS with different sets of constraints ex-
ist (e.g., non-negativity, smoothness) (Rosipal and Krämer,
2006), the most common version primarily imposes orthogo-
nality on a set of latent variables and estimates the regression
coefficients to maximize covariance with the response vec-
tor (FG abundance). Both PF and PLS have their own mer-
its along criteria such as interpretability, ease of calibration
sample preparation, and extensibility. For instance, new func-
tional groups can be incorporated into PF from single-peak
calibrations which are then fitted together with the existing
peaks, whereas PLS requires recalibration together with lab-
oratory standards that include potential interferences.

Additionally, when scattering interferences are present in
the sample, spectral preprocessing can extend applicability
of the Beer–Lambert law (Rinnan et al., 2009). The PTFE
filters prevalent in atmospheric sampling are one such sub-
strate with significant non-analyte contributions to the signal
that must be separated either explicitly (by background cor-
rection) or implicitly (by PLS) for successful analysis. PTFE
fibers exhibit a broad scattering contribution to the signal
(McClenny et al., 1985) upon which absorption of analytes
is superposed. Blank subtraction alone is often insufficient
to eliminate the contribution of scattering to the signal for
quantitative calibration because of variability in the PTFE
signal that can arise due to specific filter characteristics, dif-
ferent orientation within the FTIR beam, or deformation due

to sample collection (i.e., application of vacuum). However,
a blank subtraction step to remove peculiar signatures of the
PTFE spectrum followed by an additional adjustment by lin-
ear or polynomial curve fitting has been used successfully
in the past (Gilardoni et al., 2007; Takahama et al., 2013b).
Alternatively, a non-parametric model can be used to fit and
remove the scattering signal without prior subtraction of a
blank filter spectrum (Kuzmiakova et al., 2016). This pre-
processing is required for the current implementation of the
PF algorithm, while the latent variable modeling approach
of PLS has been shown to provide accurate quantification of
substances with and without an additional baseline correction
step (Ruthenburg et al., 2014; Takahama and Dillner, 2015;
Dillner and Takahama, 2015a, b). Additional baseline cor-
rection approaches for this task are surveyed by Kuzmiakova
et al. (2016).

Past evaluations of these algorithms have been per-
formed against functional group composition of laboratory-
generated samples with known composition, or aggregated
metrics such as OM or organic carbon (OC) in ambient sam-
ples where reference measurements of organic functional
groups have not been available. Evaluations of FG abundance
in laboratory-generated samples have fared well (Takahama
et al., 2013b; Ruthenburg et al., 2014; Takahama and Dill-
ner, 2015), but this is largely in part because the limited vari-
ability in absorption profiles and absorption coefficients of
these samples are anticipated in advance by the standards
used for calibration. The most extensive set of evaluations
of FTIR OM for submicron atmospheric PM collected onto
PTFE filters has been conducted with PF estimates against
collocated AMS measurements. FTIR OM mass amounted
to about 70 %–110 % AMS OM mass over a large number
of field campaigns (e.g., Russell et al., 2009b; Hawkins and
Russell, 2010; Liu et al., 2011; S. Liu et al., 2012; Corrigan
et al., 2013). Overall O/C ratios estimated by this technique
have been within range but typically span a lower dynamic
range than AMS (Russell et al., 2009b; Chhabra et al., 2011);
correspondence between individual functional group various
mass fragments has been found in a limited number of stud-
ies where this was explicitly studied (Russell et al., 2009a;
Liu et al., 2011; Faber et al., 2017). PLS on raw FTIR spec-
tra has only been applied to PM2.5 samples collected in the
Interagency Monitoring of PROtected Visual Environments
(IMPROVE) network, and estimates of OC agreed with col-
located thermal optical reflectance (TOR) estimates within
90 %, after anomalous samples with substantial discrepan-
cies were excluded (Ruthenburg et al., 2014). OM/OC was
generally found to be consistent with expected trends over
seasons and site types.

Given the possible decisions that can be made regarding
calibration sample selection, spectra manipulation, and fit-
ting algorithm for calibration model development, a criti-
cal need remains to evaluate the sensitivity of estimated FG
abundances to the calibration model used. Therefore, in this
work we use the same 794 ambient sample spectra from
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the IMPROVE network used by Ruthenburg et al. (2014) to
evaluate the role that spectral pre-processing (baseline cor-
rection), choice of laboratory standards, and algorithms for
quantification (PF or PLS) have on estimated abundances
of aliphatic CH, alcohol COH, carboxylic COH, and car-
bonyl CO FGs and the associated OM in ambient PM col-
lected onto PTFE filters. Given that no reference FG mea-
surements are available in the network, collocated measure-
ments of TOR OC are used to assess FG predictions. Kam-
ruzzaman et al. (2018) found that amine functional groups
in the IMPROVE network contribute on average 5 %–15 %
to OM mass, ubiquitously, and without strong spatial or sea-
sonal variations. For this reason, these values are accounted
for in the mass balance by fixing concentrations to those
reported by their work. Organonitrate peaks were not visi-
ble in most IMPROVE sample spectra and are therefore not
included in this study. Organonitrate FG contributions with
FTIR measurements are reported to be < 1 %–10 % (Day
et al., 2010; Russell et al., 2011; Corrigan et al., 2013; Taka-
hama et al., 2013a; Rollins et al., 2013); their overall con-
tribution to atmospheric OM during specific sub-diel periods
(Rollins et al., 2012; Fry et al., 2013; Ayres et al., 2015; Ng
et al., 2017) may be masked by hydrolysis and underestima-
tion by filter measurements (X. Liu et al., 2012). TOR OC
is still considered an upper bound to OC estimated by FG
composition, as carbon atoms bonded only to other carbon
atoms and to FGs that are not reported here can lead to an
underestimation of carbon by 10 %–20 % (Maria et al., 2003;
Takahama and Ruggeri, 2017). In addition, we also consider
our capability to quantify ammonium as an analyte explicitly
rather than treating it as an interferent (its NH stretching band
prominently overlaps with the organic FG bands considered
for this work). Ammonium values estimated using sulfate
and nitrate (assuming fully neutralized) quantified by anion
ion chromatography on collocated nylon filters are used as
independent reference values for comparison. As these esti-
mates do not account for the potential nitrate volatilization
artifact from PTFE filters, presence of acidic aerosols, and
association of nitrate with cations typically associated with
mineral dust, they are also considered an upper bound to
FTIR predictions obtained from PTFE filters. These topics
are revisited in the paper as pertinent to evaluation of our
calibration models. Findings which are robust with respect
to the method are presented, and recommendations for fu-
ture development are provided to reduce uncertainty in the
estimation of FG abundances. We furthermore report on the
nature of anomalous samples identified by Ruthenburg et al.
(2014) which face additional challenges for FG quantifica-
tion.

2 Methods

The basis for quantitative spectroscopy can be described
by the Bouguer–Lambert–Beer law (Griffiths and Haseth,

2007), which describes the attenuation of light as it travels
through a medium. While many conventions for its expres-
sion exist in different disciplines, we adopt the following no-
tation for our application:

xij =

K∑
k=1

εjkn
(a)
ik . (1)

x is the absorbance (negative of the decadic logarithm of
transmittance) specified for sample i and wavenumber j ;
due to the sum of contributions from substances k. n(a) is
the areal or surface density (molcm−2), used in relation with
suspended solids and thin samples (Duyckaerts, 1959; Nord-
lund, 2011), which draws parallels with PM mass measure-
ment by beta attenuation (Kulkarni et al., 2011). ε is the
(decadic) molar absorption coefficient (cm2 mol) which com-
pletes this relationship. The aim of a calibration model is to
solve the inverse problem of obtaining abundance of con-
stituent substances giving rise to the observed absorbance.

In the following sections, we first describe laboratory and
ambient measurements used for calibration and prediction
(Sect. 2.1), algorithms for preprocessing (Sect. 2.2), sample
clustering (Sect. 2.3), and calibration (Sect. 2.4 and 2.5). The
calibration models – specified through their training data,
preprocessing method, calibration algorithm, and model se-
lection – evaluated in this work are summarized in Table 1.
We note that reference concentrations and calibration results
are reported in units of micromoles per squared centimeter
(µmolcm−2) for FGs in accordance with Eq. (1) and mi-
crograms per squared centimeter (µgcm−2) for their related
mass-equivalent quantities.

2.1 Experimental data

We use 794 IMPROVE network PM2.5 samples and 238
laboratory standard samples reported by Ruthenburg et al.
(2014), and we focus on the quantification of four organic
functional groups and one additional inorganic group which
absorbs in the same region: alcohol COH (aCOH), car-
boxylic COH (COOH), alkane CH (aCH), total (carboxylic,
ketonic, and aldehydic) carbonyl (tCO), and inorganic am-
monium NH (iNH). We report the evaluation of predictions
for urban and rural sites separately. The urban sites consist of
two collocated measurement stations in Phoenix, AZ, while
the rural sites consist of five locations: Mesa Verde, CO;
Olympic, WA; Proctor Maple Research Facility, VT; Sac and
Fox, KS; St. Marks, FL; Trapper Creek, AK, spread through-
out the United States.

Ambient samples were collected every third day from mid-
night to midnight (local time) for 24 h. FTIR spectra are ob-
tained for PM collected on 25 mm PTFE filters (Teflon, Pall
Gelman – 3.53 cm2 sample area) of the same type that are
analyzed for gravimetric mass, elements and light absorp-
tion in the IMPROVE network. The nominal flow rate is
22.8 Lmin−1, which yields a volume of 32.8 m3 for 24 h.
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Table 1. Summary of models evaluated.

Label Calibration Baseline Algorithm Model selection
data corrections methodc

PLSr a none (raw spectra) PLS randomization test
PLSbc a spline PLS randomization test
PFo b spline peak fitting arithmetic mean
PFr a spline peak fitting weighted mean

a Ruthenburg et al. (2014). b Gilardoni et al. (2007), Russell et al. (2010), and Takahama et al. (2013b).
c For PLS, method for selecting number of LVs for each FG; for peak fitting, method for selecting an
absorption coefficient for each FG.

A Tensor 27 FT-IR spectrometer (Bruker Optics, Billerica,
MA) equipped with a liquid-nitrogen-cooled wide-band mer-
cury cadmium telluride detector is used to analyze the PTFE
samples in transmission mode, using the empty sample com-
partment as the background. The sample compartment is
continuously purged with air containing low levels of wa-
ter vapor and CO2. Further details are provided by Ruthen-
burg et al. (2014) and Dillner and Takahama (2015a). TOR
OC (and EC) mass is measured on quartz filters collected in
parallel to the PTFE samples using the IMPROVE_A pro-
tocol (Chow et al., 2007). The TOR OC values are also ad-
justed for positive artifacts due to organic vapor adsorption
onto quartz fiber by subtracting the monthly mean blank val-
ues. Sulfate and nitrate concentrations are measured on nylon
filters also collected in parallel and analyzed by ion chro-
matography. Elemental composition is measured by X-ray
fluorescence (XRF). The atmospheric concentrations of OC,
nitrate, sulfate, and elemental composition provided by these
techniques (obtained from the Federal Land Manager En-
vironmental Database, FED, http://views.cira.colostate.edu/
fed/Default.aspx, last access: 4 April 2019) are converted to
equivalent areal mass densities on the PTFE filters using the
filter collection area and actual sampled volume.

2.2 Spectral pretreatment

The baseline correction method of Kuzmiakova et al. (2016)
is applied to both ambient and standard spectra for PF and
PLS described below. This method uses smoothing splines
(Reinsch, 1967) to model the baseline by regressing onto
the background regions (where no analyte absorption is ex-
pected) as well as by interpolating through the analyte re-
gion. The calculated baseline is subtracted from the high-
frequency region (> 1500 cm−1) where stretching or bending
modes of aCOH, aCH, cCOH, carbonyl CO, and amine NH
are present (Shurvell, 2006). A single parameter effectively
controls the curvature of the fitted baseline, and we select
the value which minimizes the negative absorbance fraction
(NAF). NAF represents the contribution of negative analyte
absorbance ‖aA−‖1 to the total analyte absorbance ‖aA‖1:

NAF=
‖aA−‖1

‖aA‖1
× 100%, (2)

where ‖ · ‖1 denotes the one-norm magnitude of a vec-
tor (summation of all absolute values of vector elements).
NAF is calculated across the entire wavenumber range in
the analyte part of in a given segment, excluding the CO2
absorbance band. Raw and baseline-corrected spectra are
shown in Fig. 1.

2.3 Cluster analysis

Spectra similarities in baseline-corrected ambient sample
spectra are used to group samples into clusters, as originally
presented by Ruthenburg et al. (2014, appendix). We use
Ward’s hierarchical algorithm (Ward Jr., 1963), which has
demonstrated useful categorizations in previous studies with
FTIR spectra (e.g., Russell et al., 2009a; Takahama et al.,
2011). Essentially, each baseline-corrected spectrum is nor-
malized by its two-norm vector magnitude, and 20 clusters
are selected to reduce the risk of grouping dissimilar sam-
ples together. Seven samples were excluded prior to cluster
analysis and manually placed in three groups based on spec-
tral similarity to known source profiles (Russell et al., 2011)
(clusters 21 (n= 2) and 22 (n= 1)), or because the relative
contribution of noise in low concentration samples would
interfere with the clustering procedure (cluster 23 (n= 4)).
Clusters 19 (n= 21) and 20 (n= 19) were identified as be-
ing anomalous by Ruthenburg et al. (2014) when comparing
FTIR-estimated OC to TOR OC. In this work, we identify
two additional clusters which contain samples with anoma-
lous predictions of organic FGs or iNH: clusters 7 (n= 26)
and 16 (n= 12). Predictions and spectral characteristics for
these four clusters are discussed separately, while the rest of
the samples, classified as “rest” (n= 706), are used for gen-
eral evaluation.

2.4 Peak fitting

The method of PF constructs a physically based represen-
tation of absorbances based on Eq. (1), accounting for line
shapes of spectral profiles resulting from absorption broaden-
ing. The fitted line shapes are constrained to be non-negative
and within wavenumber limits derived from laboratory stan-
dards and ambient samples as described by Takahama et al.
(2013b). To represent the essence of the PF algorithm in dis-
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Figure 1. Laboratory and ambient sample spectra (raw and baseline corrected). Black lines denote mean absorbances, and dashed gray areas
denote 95 % confidence intervals.

cretized notation, let s denote a line-shape function defined
over wavenumbers ν̃, and an arbitrary set of peak parameters
θ for sample i and bond k. The parameters are collectively
estimated by nonlinear least squares fitting of overlapping
curves to x to minimize the residual e over specific regions
of interest. The areal density of bond n(a) is estimated as a
product of the molar absorption coefficient and the integrated
absorbance for each bond:

n
(a)
ik =

∞∫
ν̃=−∞

ε(̃ν)s(̃ν,θik)d̃ν ≈ εk1ν̃
M∑
j=1

qj s(̃νj ,θik) (3)

xij =

K∑
k=1

s(̃νj ,θik)+ eij . (4)

q denotes quadrature coefficients for numerical integration.
1ν̃ ≡1ν̃j for FTIR, so this term has been taken out of the
summation. ε corresponds to the integrated absorption co-
efficient (which we report in units of cm2 µmol−1

· cm−1
=

cmµmol−1), which better characterizes the intensity of a
dipole transition than ε when the absorption band spans a
range of wavenumbers (Atkins and de Paula, 2006). We note
that the use of these units marks a departure from previous
convention of incorporating the filter collection area into the
effective absorption coefficients (Maria et al., 2003; Gilar-
doni et al., 2007; Takahama et al., 2013b) (π/4× 1.02 cm2

in their work), but these units are preferred as they permit
generalization across different filter sizes (π/4× 2.122 cm2

for Ruthenburg et al., 2014). For Gaussian line shapes used
for both ambient and laboratory samples in this work, θik
corresponds to any number of relevant amplitude, location,

and width parameters for each bond, and an analytical solu-
tion exists for its integral. For fixed absorbance profiles (e.g.,
cCOH), the peak parameter corresponds to a scaling coeffi-
cient.

Typically, calibration parameters are obtained from single-
compound standards where attribution of absorption to in-
dividual functional groups is the least ambiguous. Predic-
tion in more complex mixtures is enabled by the concur-
rent fitting of multiple absorption peaks and invocation of
mixing rules to arrive at a representative absorption coeffi-
cient. In this work, we retain the algorithm for apportioning
the absorbance spectrum to various functional groups (Taka-
hama et al., 2013b) and re-evaluate absorption coefficients
using the calibration standards prepared by Ruthenburg et al.
(2014). The apportionment protocol is based on initial values
and constraints set out by analysis of a large number of labo-
ratory and ambient samples as described by Takahama et al.
(2013b). While peaks for FGs in laboratory standards only
include those present in the compound, all FGs are assumed
to be present in each sample, which is a convenient approx-
imation in atmospheric samples. Regressing integrated ab-
sorbance against areal density, we fit linear models without
intercept to each compound or mixture of compounds in ac-
cordance with the Beer–Lambert law (the value of the slope
is unaffected by the inclusion of an intercept in this data set).
We retain coefficients only for regressions which the coeffi-
cient of determination (R2) is greater than 0.9 and combine
values from each compound or mixture i into a single coeffi-
cient (to be applied to ambient samples) for each FG k using
the fractional number of samples as weights:
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εk =

N∑
i=1

wiεik, wi =
ni∑N
i=1ni

. (5)

These weights are selected to generate comparable models
to PLS, and for this reason we also include estimates of ab-
sorption coefficients in multicomponent mixtures in addition
to single-component standards when the fitting quality crite-
rion is met. The estimates using the original absorption co-
efficients (Russell et al., 2009a, 2010; Liu et al., 2009) will
be referred to as PFo, and estimates using the recalibrated
absorption coefficients will be referred to as PFr.

2.5 Multivariate calibration

Multivariate calibration is an alternative approach that is typ-
ically formulated as a linear regression problem, with the an-
alyte concentration as the regressand (response variable) and
absorbances used as regressors. In scalar notation, this rela-
tionship is written as

n
(a)
ik =

M∑
j=1

xijβjk + eik. (6)

n(a) is the areal density for sample i and functional group
k; x is the spectral absorbance, β is a wavenumber-specific
regression coefficient, and e is the residual term. The num-
ber of wavenumbers at which absorbances are available ex-
ceeds the number of samples available for calibration (sev-
eral thousand versus a few hundred), and the autocorrela-
tion in absorbances due to the broadening leads to an un-
derdetermined, collinear problem. Therefore, Eq. (6) must
be solved by techniques other than classical least squares
regression. PLS regression (Wold et al., 1984) is a general-
ization of multivariate multilinear regression and alleviates
these problems by orthogonal projection and rank reduction
(Geladi and Kowalski, 1986; Haaland and Thomas, 1988).
Latent variables that maximize covariance with the response
variable are found to model both the spectra matrix and re-
sponse variables (FG abundances):

n
(a)
ik =

L∑
`=1

ti`qk`+ fik

xij =

L∑
`=1

ti`pj`+ gij . (7)

` denotes the latent variable index, p and q are the loadings
of x and na, respectively, and f and g are their residuals.
The linear regression coefficients β in Eq. (6) are in turn de-
rived from the loadings. In contrast to PF, multi-component
reference standards that span the space of chemical com-
position are desired for PLS so that the ranges of compo-
sition – of both analytes and interferents – anticipated in
prediction samples are available to train the model (Massart

et al., 1988). As it is not possible to fully reproduce the high-
dimensional chemical space of ambient samples, the amal-
gam of aerosol mixtures prepared in the laboratory targets
the main features in this space.

A series of candidate models which satisfy Eqs. (6) and
(7) is obtained by varying L, the maximum number of latent
variables (LVs) or factors. The nonlinear iterative partial least
squares (NIPALS) algorithm (Wold et al., 1983) is used to
generate each model, and 10-fold Venetian blinds cross val-
idation (Hastie et al., 2009; Arlot and Celisse, 2010) on the
calibration set is applied to estimate corresponding root mean
square of cross validation (RMSECV) values for the models.
The minimum RMSECV solution is typically selected as the
preferred model (defined by the value of L), but Takahama
and Dillner (2015) found that this approach leads to overfit-
ting with unrealistic results (i.e., extremely negative values)
when extended to prediction of FGs in ambient samples. We
therefore use the randomization test approach proposed by
van der Voet (1994) to select the number of LVs. This method
selects a model with fewer LVs for which the squared predic-
tion error is not statistically greater than the reference (min-
imum RMSECV) model. This procedure is applied to each
functional group separately such that each model is indepen-
dent of one another (referred to as “PLS1” in chemometrics
nomenclature). The number of LVs selected for PLSr and
PLSbc are presented in Table S1 in the Supplement.

Though the interpretation of PLS models is less straight-
forward than PF, it is possible to examine how models are
weighting spectral variables (wavenumbers) and calibration
samples for making predictions. The regression coefficients
are difficult to interpret directly as their magnitudes must be
interpreted in combination with absorbances. In addition, the
value of the regression coefficients can also be either pos-
itive or negative; the latter are associated with interfering
species (Haaland and Thomas, 1988) or oscillations that in-
crease with the number of LVs used (Gowen et al., 2011).
Therefore, different approaches are used for estimating the
contribution of specific wavenumbers to predictions. Taka-
hama et al. (2016) used sparse calibration approaches that
eliminated uninformative wavenumbers and used importance
weighting to identify absorption bands used by PLS models.
Wavenumbers highlighted by FG calibration models were as-
sociated with absorption bands of the target FGs while re-
taining similar prediction capability to the full wavenumber
models presented here. The contribution of LVs to the ex-
plained variation and sum of squares of the spectra matrix
and response variable are discussed in Sect. S4. The relation-
ship between Eqs. (6) and (1) is illustrated in Sect. S1.

2.6 OC estimation from FG abundance

The constituent molar abundance na for atom a is calculated
from the moles nk of FG k through a coefficient λak such
that na = λaknk . From na estimated for {C, O, H} in this
work, the OC mass, OM/OC mass ratio, and O/C atomic
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ratios are obtained. While assignment of λak for non-carbon
atoms is unambiguous, λC·k depends on the assumed bond-
ing configuration of polyfunctional carbon atoms (Takahama
and Ruggeri, 2017). For instance, methylene (-CH2-) car-
bon has a value of λC·aCH = 0.5 (1 mol of carbon for two
aCH groups), while methyl carbon (-CH3) has a value of
λC·aCH = 0.33. It is also possible for the same carbon atoms
to be associated with both aCH and aCOH, or other FGs,
which makes the selection of λ less intuitive with increasing
number of combinations; several statistical approaches are
available for estimation in these instances. The only differ-
ence between Russell and coworkers (Russell, 2003; Taka-
hama et al., 2013b) and Ruthenburg et al. (2014) is the value
of λC·aCOH; the former authors define the value as 0.5 and
the latter authors define it as 0. Overall, the choice of this
value makes a ∼ 10 % difference in the carbon estimate for
this data set. For this work we adopt the value of 0.5, which is
also supported by a recent analysis of modeled α-pinene sec-
ondary organic aerosol (Ruggeri and Takahama, 2016; Taka-
hama and Ruggeri, 2017) according to the Master Chemical
Mechanism (Jenkin et al., 1997; Saunders et al., 2003). The
full set of coefficients is provided in Sect. S1. We refer to the
OC reconstructed through FG predictions as FG OC in this
paper.

2.7 Quantification of carboxylic acid and non-acid
carbonyl groups

While the carboxylic group comprises two molecular bonds,
the abundances of carboxylic hydroxyl and carbonyl bonds
are conventionally quantified separately with calibration
models developed for their respective absorption bands. The
carbonyl quantified in this way can include contributions
from ketonic and aldehydic carbonyl because of their prox-
imity in absorption bands that are difficult to resolve in en-
vironmental samples; the carboxylic hydroxyl cCOH and to-
tal carbonyl tCO are re-apportioned to estimate abundance of
carboxylic COOH groups along with non-acid (ketonic, alde-
hyde, and ester) carbonyl CO (written as naCO). Stoichio-
metrically, nCOOH and ncCOH are equivalent, while nnaCO is
simply the difference between ntCO and ncCOH (Eq. S1 in
the Supplement). In principle, the exact molar composition
in a mixture should meet the condition that the tCO is in ex-
cess of the cCOH (ntCO ≥ ncCOH), with naCO content indi-
cated by the tCO in excess of cCOH. To account for random
errors, Takahama et al. (2013b) recommend the averaging
of cCOH and tCO to estimate COOH when ntCO ∼ ncCOH.
The estimated cCOH can be greater than tCO ncCOH < ntCO
if the integrated absorption area or absorption coefficient is
misspecified for either FG. In the absence of additional in-
formation, Takahama et al. (2013b) assume that the tCO
is unmeasured due to shift in absorption frequency below
that used in PF, and they base the COOH estimate on the
cCOH. In such cases, an overall unmeasured fraction was as-
signed on a per-campaign basis to align tCO to cCOH abun-

dances in previous studies, but in this work we apply this
reasoning on a per-sample basis (i.e., nCOOH ≡ ncCOH and
nnaCO =max{0,ntCO− ncCOH}).

One strategy to avoid the apportionment of tCO to COOH
and naCO is to build an alternative PLS regression model to
predict naCO directly, rather than tCO. The known concen-
trations in laboratory standards are transformed according to
Eq. (S1) and provided as the response vectors to Eq. (6). In
this work, the contributions to naCO in calibration standards
are provided by 12-tricosanone and arachidyl dodecanoate,
and therefore correspond to ketone and ester CO (i.e., no
aldehyde CO). Previous studies atomizing dissolved alde-
hydic compounds found that they were transformed into al-
cohols by aldol condensation, which is also a possible but
not a necessary outcome in the atmosphere (Takahama et al.,
2013b) and depends on the presence of water and hydration
constant of the compound. Nonetheless, we will refer to our
new estimates as naCO under the assumption that aldehyde
CO, if present in ambient samples, has a similar spectro-
scopic response to ketone and ester CO to the extent that we
can quantify them. The COOH calibration remains identical
to that for cCOH since nCOOH ≡ ncCOH, and the stoichiomet-
ric consistencies for estimating OC, OM, OM/OC, and O/C
ratios using different estimates of carbonyl are summarized
in Sect. S1.

2.8 Evaluation metrics

Metrics such as mean error, mean bias, RMSE, and many
others exist for intercomparison among measured and esti-
mated values. In this work, to quantify overall bias we use
total least squares slope (obtained via major axis regression),
which accounts for uncertainties in both quantities being
compared (Ripley and Thompson, 1987), and the Pearson’s
correlation coefficient (r) to quantify the strength of linear re-
lationship between the two quantities. Values estimated with
slopes and r close to unity among different methods are con-
sidered more robust. All evaluation metrics provided are for
samples labeled as cluster “rest”, excluding clusters 7, 16,
19, and 20.

3 Results and discussion

We first report on differences among estimated absorption
coefficients (Sect. 3.1). In Sect. 3.2 and 3.3, we evaluate and
discuss the FG estimated using the PF (using original and re-
calibrated absorption coefficients) and PLS (using baseline-
corrected and raw spectra) methods.

3.1 Estimation of absorption coefficients

Calibration curves and predicted concentrations according to
the PF strategy outlined in Sect. 2 are shown in Fig. 2. The
top row refers to the calibration curves to compute the ab-
sorption coefficients (obtained using two-thirds of the 238
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laboratory standards), and the bottom row refers to the eval-
uation of derived absorption coefficients on predicted con-
centrations for test set compounds not used in the calibra-
tion. Regression parameters including the number of samples
used in each category, n, are included in Table 2. Absorp-
tion coefficients are estimated for cCOH by two mixtures
(italic values in Table 2): (1) 1-docosanol and suberic acid,
and (2) 1-docosanol, suberic acid, and adipic acid are not
included in the calibration because of their low R2 values.
Malonic acid samples are additionally excluded in the esti-
mation of aCH as its concentration range is far below the rest
of the laboratory standards (below typical loadings of atmo-
spheric samples) and the slope is twice greater than the next
highest value (italic values in Table 2). This difference bi-
ases the weighted absorption coefficient in a way that does
not reflect the weighting of the PLS regression (including
this value makes a 19.9 % difference in the absorption co-
efficient). Overall, we used 97 % of the laboratory standard
samples, of which two-thirds were reserved for the calibra-
tion (Figs. S1–S4 in Sect. S5). We can see that when the ab-
sorption coefficient for each respective category is applied to
corresponding test set samples not used in the calibration (the
remaining one-third of samples), predictions are within 6 %
of the reference values (Fig. 2, bottom row).

In Fig. 3, we compare the new absorption coefficients with
those summarized by Takahama et al. (2013b) (specific cita-
tions described in figure caption) adjusted for filter collection
area. aCOH for 1-docosanol is the only FG and organic com-
pound for which we have a direct comparison; the value esti-
mated for the absorption coefficient in this work is 3.6 times
greater. This is due to different baseline correction methods
and fitting procedures used by Gilardoni et al. (2007). When
the same spectra preparation (smoothing spline baseline cor-
rection) is applied, the difference is 2 times greater but oc-
curs in the same proportion for aCH absorption – i.e., both
aCOH and aCH absorption coefficients for 1-docosanol spec-
tra (n= 3) acquired by Ruthenburg et al. (2014) are twice
that for spectra acquired by Gilardoni et al. (2007) (n= 6)
when processed in the same way, but the ratio of aCOH to
aCH absorbances for each method is within 4 %. This bias
may partially be due to the fact that the slope of the cali-
bration curve is determined by a single influential point for
the few pure 1-docosanol samples collected by Ruthenburg
et al. (2014). However, the consistency of the single-point es-
timate with aCOH coefficients for other mixtures containing
1-docosanol (Fig. 3) may suggest other differences that need
to be investigated. For instance, the refractive index of the
substrate may also affect the apparent absorbance in the limit
of thin films (Hasegawa, 2017); similarity in optical proper-
ties of the filter type may have to be considered in future stud-
ies. Single measurements of fructose, glucose, as well as nine
other sugars, were combined to derive an overall absorption
coefficient for saccharides by Takahama et al. (2013b) (point
estimates for fructose are effectively the same as the com-
bined estimate, and glucose is 70 % smaller; Russell et al.,

2010, Table S2). We observe that the absorption coefficients
for individual compounds in this work are higher than the
previous collective estimate. While there was previously no
calibration performed for ammonium sulfate for its quantifi-
cation by PF, the single ammonium sulfate sample used for
removal of ammonium interference in the fitting procedure
(introduced by Russell et al., 2009a) carried a mass of 6.0 µg
over a a = π/4× 1.02 cm2 collection area (Takahama et al.,
2013b), so this value is used to calculate a point estimate for
its absorption coefficient. The recalibrated absorption coef-
ficient is greater by a factor of 1.7. This is likely due to the
combination of using a single-point value for estimating the
coefficient.

Absorption coefficients for aCH vary by a factor of 3.2
(between 1.0 and 3.2, over 10 compounds), for aCOH by a
factor of 1.9 (between 19.8 and 37.7, over seven compounds),
for cCOH by a factor of 1.6 (between 32.8 and 51.6, over
three compounds), and for tCO by a factor 1.6 (between 10.0
and 16.1, over seven standards; Fig. S11). Without informed
strategies for parameter selection, the range of valid possibil-
ities for these absorption coefficients imparts uncertainty in
FG calibration.

Shown on the right side of the Fig. 3 are averaged values
reported by Russell and coworkers (Gilardoni et al., 2007;
Russell et al., 2009a, 2010; Takahama et al., 2013b) and this
work. Both sets will be compared in the following sections.
The FG absorption coefficients for aCOH and aCH estimated
in this work are higher by a factor of 1.8 and 1.3 respec-
tively, which leads to lower estimates for FG abundances.
In contrast, the FG absorption coefficient for cCOH is lower
than that reported by Russell et al. (2009a) (factor of 0.8) and
comparable to the one reported by Takahama et al. (2013b).
The FG absorption coefficient for tCO is comparable with
the one of Russell et al. (2009a) and 1.4 times greater than
the one reported by Takahama et al. (2013b).

3.2 Comparison of estimated OC and ammonium to
external measurements

We first compare quantities for which we have an indepen-
dent estimate (TOR OC and ammonium) to place our pre-
dictions in context. Individual contributions of FGs used to
estimate OC are discussed in Sect. 3.3. Comparisons are
stated for regular samples not belonging to anomalous clus-
ters (Sect. 2) unless otherwise noted. Evaluation of anoma-
lous clusters is discussed separately in Sect. 3.6.

Figure 4 summarizes the comparison of predicted concen-
trations of OC using different sets of absorption coefficients
(for PF – PFo and PFr refer to PF using the original and the
recalibrated absorbance coefficients respectively) or differ-
ent spectra pretreatment (for PLS – PLSbc and PLSr refer
to PLS using the baseline-corrected and unprocessed spectra
respectively). In general, the correlation between TOR OC
and FG OC is high (r = 0.84–0.97) and typically greater for
urban sites than for rural ones. In the urban samples, OC esti-
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Figure 2. Top row: integrated absorption as a function of known molar abundance used to derive molar absorption coefficients. Bottom row:
evaluation of derived absorption coefficients on predicted concentrations for test set compounds not used in the fitting.

Table 2. Recalibrated absorption coefficients and fit statistics for each FG and compound. Italicized texts denote the compounds not used in
the computation of cCOH and aCH absorption coefficients averages.

(absorption coefficients±SE, R2)

Category n aCOH cCOH aCH CO NH

1-Docosanol 3 (37.7± 2.0, 0.99) – (3.0± 0.1, 1.00) – –
1-Docosanol, adipic acid 5 (36.1± 3.8, 0.96) (51.63± 4.88, 0.97) (3.1± 0.2, 0.99) (13.66± 0.26, 1.00) –
1-Docosanol, suberic acid 5 (29.8± 0.6, 1.00) (0.0± 0.0,0.74) (2.6± 0.1, 1.00) (16.1± 0.9, 0.99) –
1-Docosanol, adipic acid, suberic acid 4 (33.6± 1.5, 0.99) (0.0± 0.0,0.36) (2.7± 0.1, 1.00) (15.9± 1.4, 0.98) –
12-Tricosanone 26 – – (2.2± 0.0, 1.00) (11.0± 0.1, 1.00) –
Arachidyl dodecanoate 17 – – (1.8± 0.1, 0.99) (10.2± 0.5, 0.97) –
D-Glucose 5 (23.9± 0.6, 1.00) – (1.8± 0.1, 1.00) – –
Fructose 11 (21.4± 0.4, 1.00) – (1.6± 0.1, 0.98) – –
Levoglucosan 23 (19.8± 0.2, 1.00) – (0.8± 0.0, 0.98) – –
Malonic acid 8 – (32.8± 3.0, 0.95) (7.6± 0.4,0.98) (9.9± 0.9, 0.95) –
Suberic acid 17 – (41.3± 0.9, 0.99) (1.1± 0.0, 0.99) (13.7± 0.1, 1.00) –
Ammonium sulfate 32 – – – – (14.8± 0.1, 1.00)

mated by PLSr is closer to TOR OC with an underprediction
of 12 %, while the other methods underpredict TOR OC by
34 %–50 %. In the rural sites, the agreement with TOR OC
is more varied with three models underpredicting TOR OC
by 0 %–22 % and PLSbc by 40 %. In general, the consistent
underprediction is expected on account of the undetectable
carbon atoms by FTIR due to lack of functionalization or as-
sociation solely with bonds we do not measure.

The difference between PFo and PFr is due to the system-
atic increase in absorption coefficients used by PFr compared
with PFo, which decreases the molar abundance of FGs and,
consequently, the FG OC. This difference is particularly ar-
ticulated by the absorption coefficient for aCH (1.73 against
1.31) as its mole fraction is over 60 % regardless of estima-
tion method used.

The differences between PLSr and PLSbc are more dif-
ficult to understand, but some interpretations can be made.
First, systematic differences can occur in the way that labo-

ratory standard and ambient sample spectra are baseline cor-
rected as the absorbance regions are different. Also, base-
line correction used in the PLSbc does not include fre-
quency lower than 1500 cm−1, thus excluding the alkane
peak around 1450 cm−1 that is likely being used for aCH
estimation by the PLSr model (Takahama et al., 2016). As
FG abundances in laboratory samples are reproduced with
minimal error, we anticipate that PTFE interferences to pre-
dictions are minimal with PLSr. However, PLSr may be erro-
neously incorporating some information regarding the scat-
tering by supermicron particles in its prediction (Sect. 3.6).
Notably, the samples labeled as anomalous by Ruthenburg
et al. (2014) (clusters 19 and 20) are predicted more con-
sistently in relation to TOR OC with PLSbc than PLSr, sug-
gesting the baseline correction has partially removed spectral
features from the raw spectra that lead to unexpected devia-
tions in predictions. For the remaining samples, it is gener-
ally possible to find models – using raw or baseline-corrected
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Figure 3. Summary of molar absorption coefficients reported in the literature. The single star for 1-docosanol aCOH indicates that there are
only three points – one of which is an influential point – so this is effectively a single-point estimate. The single star for ammonium sulfate
indicates that it based on a single value. The double star is used to indicate that the absorption coefficient for malonic acid cCOH is estimated
for a concentration range order of magnitude lower than the rest. Previous studies are summarized by Takahama et al. (2013b), which also
compiled coefficients from Gilardoni et al. (2007) and Russell et al. (2010). The error bars represent plus/minus one standard error of the
molar absorption coefficients.

spectra – with different parameters (e.g., a different number
of LVs) that produce similar predictions and also models in
which FG OC agrees better with TOR OC. While we do not
explore all possible combinations of parameters exhaustively
in this paper, an example of how comparisons of FG OC
predictions vary with number of LVs of aCH for PLS with
baseline corrected is given in Fig. S16. The solution that best
matches TOR OC (referred to as PLSbc*) from this evalua-
tion is shown in Fig. 5.

The solutions in the neighborhood (±3 LVs) of the PLSbc
models for each FG are highly correlated, but they vary
in their slope by a factor of approximately 1.5 (Sect. S8).
PLSbc* varies from PLSbc for aCH by only 2 LVs.

PLSbc* is only one of many possible models that show
improved agreement with TOR OC to be explored in future
work; for this paper we restrict our evaluation of results pri-
marily to those obtained by the protocols described in Sect. 2.

Figure 6 summarizes the comparison of ammonium con-
centrations predicted by FTIR with the value estimated as
the cation counterpart of sulfate and nitrate. The correlation
in comparisons is strong for rural sites (r > 0.89) and mod-
erately strong (r = 0.47–0.71) in urban sites for all models.

Part of this difference may be that the dynamic range of am-
monium in rural sites is twice the value of urban sites. While
our estimated reference values are thought to be the upper
bound of ammonium concentrations (on account of our as-
sumptions that (i) there is neither evaporation loss of ammo-
nium nitrate from PTFE nor (ii) nitrate association with dust
instead of ammonium), the reference ammonium is overpre-
dicted by the PSLr model at urban sites and by the PFo model
at both urban and rural sites. The PFo overpredictions can
be explained by the uncertainty on the absorption coefficient
estimated using a single value. The overprediction in urban
sites only by PLSr is less simple to interpret. One possibil-
ity is the scattering contribution to the FTIR spectra by large
particles may be more significant for these samples, and this
effect is reduced by baseline correction.

While ammonium quantification by FTIR has been the fo-
cus of past researchers (Johnson et al., 1981; McClenny et al.,
1985; Allen et al., 1994; Krost and McClenny, 1994; Reff
et al., 2007), the recent work of Russell, Dillner, and co-
workers focused on organic FG quantification, and an exten-
sive evaluation for ammonium has not been performed. How-
ever, as the absorption bands of iNH overlap with aCOH,
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Figure 4. Comparison of estimated OC (FG OC) against OC mea-
sured by TOR method (TOR OC). PFo refers to peak fitting us-
ing the original parameters. PLSr refers to partial least square using
raw spectra. PFr refers to peak fitting using the recalibrated absorp-
tion coefficients. PLSbc refers to partial least square using baseline-
corrected spectra.

Figure 5. Comparison of estimated OC (FG OC) gainst OC mea-
sured by TOR method (TOR OC). PLSbc* refers to partial least
square using baseline-corrected spectra and a heuristic choice for
the aCH LVs number (13) based on agreement between FG OC and
TOR OC (Fig. S16).

Figure 6. Comparison of estimated ammonium (FG ammonium)
against ammonium measured using ion chromatography (IC ammo-
nium). PFo refers to peak fitting using the original parameters. PLSr
refers to partial least square using raw spectra. PFr refers to peak fit-
ting using the recalibrated absorption coefficients. PLSbc refers to
partial least square using baseline-corrected spectra.

cCOH, and aCH, it is useful to know whether the fitted am-
monium scales with an external measurement. Such a simul-
taneous evaluation of bonds is important for PF, since the
IR absorption in each spectrum is apportioned to contribu-
tions from various bonds; overapportionment for one bond
can lead to underapportionment for another. Based on the
assessment with PFr using a better-characterized absorption
coefficient, comparisons with the reference ammonium val-
ues suggest that neither gross overestimation nor underesti-
mation of the fitting is likely. Calibration models for PLSr
and PLSbc used in this work are developed independently of
one another (the “PLS1” approach); therefore, the predictive
capability of one species is not strongly tied to another as
with PF. In summary, the LVs in the ammonium calibration
model are not necessarily the same as the organic FGs; the
over- or underprediction of ammonium is less consequential
to how we interpret the FG quantifications. An alternative,
multimodel formulation (“PLS2”) can provide estimates of
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both analyte and interferents using the same set of LVs. The
current decision to use PLS1 is based on the knowledge that
PLS1 typically outperforms PLS2 as it is optimized for each
target analyte (Martens and Næs, 1991), but in extrapola-
tion (as in our use case) the physically consistency offered
by PLS2 may confer benefits not conventionally recognized
with such models.

3.3 Variations in estimated FGs

Figure 7 summarizes pairwise correlation coefficients and re-
gression slopes (excluding anomalous clusters 7, 16, 19, and
20) of FG abundances estimated using the methods discussed
in Sect. 3.2. Individual scatter plots can be found in the Sup-
plement (Figs. S5–S9). Overall, aCH, iNH, and tCO, agree
with fairly high correlation r > 0.75, but the agreement of
aCOH and cCOH – two FGs with broad absorption regions
on account of the OH stretch – varies more significantly. The
strong agreement of iNH predicted by PLS and PF is par-
ticularly notable. While the calibration models for PLSr and
PLSbc are formulated to predict ammonium iNH, they are
technically equivalent to a calibration model for ammonium
sulfate as this is the only substance with this bond in the cal-
ibration set. However, the comparison of predictions against
PF, which only uses the NH stretching peak – which are spec-
troscopically similar between ammonium nitrate and sulfate
– suggests that the PLS models are likely using features that
are specific to this absorption band that is common to both
ammonium salts.

First, we focus on the comparison between PFo and PLSr.
In urban samples, aCH presents the highest correlation (r =
0.96) of all FGs, presumably, because the aCH absorption
is unambiguous on account of the high abundance of hydro-
carbon compounds in urban areas. However, the slope (0.68)
reveals a systematic difference between the two. For the rest
of the organic FGs in both urban and rural sites, PFo esti-
mates are higher than PLSr; the regression slopes vary be-
tween 1.39 (aCOH in rural samples) and 2.57 (cCOH in rural
samples).

Correlation coefficients in the PFr–PLSr comparison for
any organic FG are similar to the PFo–PLSr comparison;
the only notable difference is the larger regression slope for
cCOH (1.94 and 3.25 for urban and rural samples against
1.53 and 2.57 respectively), due to the lower absorption coef-
ficient applied to PFr than PFo (Table 2). The cCOH and tCO
estimated by PFr are still higher than PLSr (by 1.78 to 3.25).
However, the underprediction of FG OC relative to TOR OC
(Sect. 3.2) can be explained by the lower concentrations of
aCH and aCOH estimated with the recalibrated absorption
coefficients as they compose more than 70 % of the organic
aerosol mass according to PF analysis (Sect. 3.5).

PFo and PFr predictions agree closely with PLSbc, likely
because they use the same portion of the spectra. The organic
FG correlations vary between 0.7 (aCOH – rural samples)
and 0.99 (tCO – rural sample). PFr predictions are closer to

Figure 7. FG comparison summary. Pearson correlation coefficient
PFo refers to peak fitting using the original parameters. PLSr refers
to partial least square using raw spectra. PFr refers to peak fitting
using the recalibrated absorption coefficients. PLSbc refers to par-
tial least square using baseline-corrected spectra.

PLSbc than PFo, with the exception of cCOH, since they use
the same laboratory standard compounds.

The correlation for iNH is greater than 0.97 with slope
close to one in the case of PFr and greater than 1.8 in the
case of PFo, which indicates a systematic bias due to the dif-
ferent absorption coefficients used (14.84 and 8.89 for PFr
and PFo respectively).

The correlations in tCO between PF and PLS are high (r >
0.81), potentially because of the narrow absorption band of
the carbonyl FG. PF estimates of tCO for urban samples in-
crease in correlation with PLS estimates from 0.82 to 0.96
(with the slope approaching unity) when baseline-corrected
spectra are used for PLS, suggesting that signal contributions
(presumably from PTFE) interfering from the quantification
are effectively removed.

Within the broader scope of assessing uncertainty for each
FG, we can consider that the estimated slopes can vary ac-
cording to the selection of absorption coefficient value for
PF and the number of LVs for PLS. The range of absorption
coefficients is given in Sect. 3.1, with aCH having the largest
range. If we examine the set of PLSbc solutions (varying only
in number of LVs) with a correlation coefficient greater than
0.95 with the selected solutions presented here, we find that
the largest variability is also in the aCH (ranges are shown in
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Fig. S11 and differences among models in Fig. S12). Models
with different number of LVs reflect different weighting of
calibration samples and their responses, so it is not surpris-
ing to find that the magnitude of uncertainties (reported in
Sect. 3.1) is similar between PLS and PF for the same set of
calibration standards.

3.4 Quantification of carboxylic acid and non-acid
carbonyl

Figure 8 compares the abundance of tCO and cCOH pre-
dicted by the four methods. Both PLSr and PLSbc predict
similar abundances of tCO as cCOH, suggesting that most of
the carbonyl is associated with carboxylic acid groups, and
the non-acid fraction is small to negligible. While it is pos-
sible for both models to use the carbonyl absorption band,
Takahama et al. (2016) suggest that the wavenumbers are
weighted differently by the two models.

There is noticeably more scatter in the relationship be-
tween tCO and cCOH from the PF predictions, with the pres-
ence of naCO difficult to identify in these samples. Further-
more, tCO abundance is systematically lower than cCOH
for many samples (discernable beyond the extent of scat-
ter). Takahama et al. (2013b) hypothesized that this discrep-
ancy could be due to underestimation of carbonyl in samples
where the absorption band is shifted to lower frequencies.
However, given that (1) the constraint ntCO ≥ ncCOH is met
for the PLS estimates, and (2) the relative overprediction by
PF in comparison to PLS is greater for cCOH than tCO in
these samples, it is likely that it is cCOH that is overesti-
mated by PF for these samples. This may be due to the peak
profile for cCOH or baseline correction artifacts. For clus-
ters 19 and 20 in which the overestimation is more severe,
the baseline correction artifact is the most probable reason as
discussed in Sect. 3.6.

Figure 9 compares the estimated naCO for two methods of
calibration: one estimated through the difference of tCO and
COOH (the canonical approach) and by direct calibration (al-
ternate approach). We find that, on average, the naCO is close
to zero using both estimates (and within the differences of
cCOH and tCO). For predictions with raw spectra, the range
of predictions is smaller for naCO estimated directly than as
a difference of cCOH and tCO. naCO estimates from PLS
with baseline-corrected spectra are notably less variable than
for those using raw spectra. Moreover, the canonical and al-
ternate estimates are strongly correlated (r = 0.99 for urban
and r = 0.95 for rural samples) even for these low concen-
trations, despite the fact that the two models use wavenum-
bers and latent variables differently (Fig. S13). These results
suggest that baseline correction can reduce interferences that
may impart uncertainties in the estimation of FGs in this re-
gion for most samples, including clusters 7, 16, and 20.

High abundances of naCO have been reported in biomass
burning and biogenic secondary OM in past studies (using
PF), either due to ketones present in photochemical reaction

Figure 8. Comparison of quantified abundance of tCO and cCOH.
PFo refers to peak fitting using the original parameters. PLSr refers
to partial least square using raw spectra. PFr refers to peak fitting
using the recalibrated absorption coefficients. PLSbc refers to par-
tial least square using baseline-corrected spectra.

products (Schwartz et al., 2010) or esterification in the con-
densed phase (Russell et al., 2011). Therefore, it is surpris-
ing to find such low abundances of naCO especially in ru-
ral sites with biogenic influences and samples influenced by
residential wood burning (Kuzmiakova, 2019). This finding
may point to a differences in sample types between this and
previous work, as well as possible artifacts due to long PM
collection times, storage, and transport protocols in monitor-
ing network samples. For instance, more opportunities for
conversion of naCO to aCOH by aldol condensation in the
condensed phase may be possible in these samples.

3.5 Evaluation of estimated OM, OM/OC, and O/C

Figure 10 (left column) summarizes estimates of OM,
OM/OC, and O/C obtained by FTIR (distributions are
shown in Fig. S14). On average, concentrations of OM are
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Figure 9. Comparison of estimated CO according to canonical cali-
bration (as difference between molar abundance of cCOH and tCO),
and alternate calibration (direct calibration to non-acid CO). PLSr
refers to partial least square using raw spectra. PLSbc refers to par-
tial least square using baseline-corrected spectra.

higher in urban samples than rural ones, while the OM/OC
ratio and O/C ratio shows the opposite pattern, as expected
from previous studies. These trends are in agreement with
measurements by GC-MS and AMS (Turpin and Lim, 2001;
Aiken et al., 2008), and they are in accordance with our un-
derstanding of atmospheric processes by which condensation
of functionalized molecules (Ziemann, 2005; Kroll and Sein-
feld, 2008) and heterogeneous reactions (Smith et al., 2009;
Lim et al., 2010) lead to chemical aging.

The absolute magnitudes, however, require further con-
sideration. The mean OM/OC values estimated by PLSr
(Ruthenburg et al., 2014) of 1.5 and 1.6 for urban and
rural sites, respectively, are within range of values previ-
ously reported by GC-MS and AMS (Turpin and Lim, 2001;
Aiken et al., 2008). However, the mean O/C ratio of 0.25
for rural sites is particularly low and corresponds to values
for hydrocarbon-like components derived from AMS PMF
analysis (e.g., Aiken et al., 2008; de Gouw et al., 2009;
Canagaratna et al., 2015). These results suggest that PLSr
may be underestimating the oxygenated FGs (COOH and
aCOH), especially for rural sites. The mean OM/OC ratios
for PLSbc, PFo and PFr are higher than PLSr and range from
2.0 (urban) up to 2.1 (rural), with O/C ratios from 0.5 (ur-
ban) and 0.7 (rural). The surprisingly high values of OM/OC
and O/C for urban samples can be attributed to an underes-
timation of FG OC, which inflates the OM/OC estimates.
However, the mass fractions of FGs (shown as conventional
pie graphs in Fig. S10 in the Supplement) suggest relative
proportions estimated by PFo, PFr, and PLSbc are similar
to urban aerosol composition previously reported by Rus-

sell and co-workers (Russell et al., 2011; Takahama et al.,
2013a). The proportion of aCH mass is estimated above 40 %
and COOH and aCOH approximately one-quarter each; pri-
mary amine and carbonyl comprise the rest of the average
OM mass for the urban samples (between 3 % and 6 %). In
contrast, PLSr estimates the aCH fraction to be 71 % for ur-
ban samples and 64 % for rural (whereas the other models
estimate between 35 % and 40 % for rural sites).

To improve these carbon-normalized metrics, the unde-
tected carbon moieties can be corrected by incorporating an
assumed carbon mass recovery fraction (Takahama and Rug-
geri, 2017). Alternatively, an available OC reference mea-
surement can instead be used for normalization – this can
be TOR OC, which we use here, or TOR-equivalent OC es-
timated from FTIR spectra (Dillner and Takahama, 2015a;
Reggente et al., 2016). This latter procedure leaves FTIR FG
measurements to provide only the non-carbon atom content,
which can be estimated with less uncertainty than the carbon
content by using FG analysis (Sect. 2.6). The uncertainty in
aCH abundance plays a critical role in estimation of carbon
and OM mass, as nearly half of the total carbon is attributed
to that associated with aCH. When using FG OC for normal-
ization, contribution of this FG to the non-carbon portion of
OM/OC is 0.17 at most (Sect. S2), but this belies the sub-
stantial role in governing the overall magnitude of the ratio
through its contribution to the OC estimate. However, if an
external OC value is provided, the non-carbon contribution
of aCH to OM is due to only hydrogen and the OM/OC (and
O/C) is primarily dependent on estimates of the oxygenated
fraction.

Figure 10 (right column) summarizes estimates of OM,
OM/OC, and O/C obtained by using FTIR estimates for
non-carbon atom abundance, and TOR OC for carbon con-
tent. The adjustments reflect the extent of underestimation of
TOR OC by each of the models, and, predictably, the PLSr
mean rural OM/OC is reduced with respect to its urban coun-
terpart while the mean urban OM/OC is reduced with re-
spect to the rural counterparts for the rest of the models. In
the case of urban samples, the mean OM/OC varies between
1.5 (PLSr) and 1.8 (PFo), and the mean O/C varies between
0.20 (PLSr) and 0.48 (PFo). In the case of rural samples, the
mean OM/OC varies between 1.5 (PLSr) and 2.0 (PFo), and
the mean O/C varies between 0.21 (PLSr) and 0.61 (PFr).

When we heuristically adjust the PLSbc aCH model pa-
rameters to match TOR OC concentrations within 10 % on
average (PLSbc* introduced in Sect. 3.2), estimated OM,
OM/OC, and O/C values fall within the extremes spanned
by the various models. While laboratory calibrations can
generate models that give reasonable predictions for ambi-
ent samples (to the extent that they can be evaluated), this
comparison underscores the challenge in selecting the most
appropriate model for ambient samples based on laboratory
data. More experience in evaluating different model selection
criterion on extrapolation is necessary to improve the calibra-
tion strategy for FG estimation.
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Figure 10. (a, b) bar plots of OM mass fractions from quantified FGs. (c, d) bar plots of OM/OC ratio and associated non-carbon atoms. (e,
f) O/C. In the left panels (a), (c), and (e) OM, OM/OC and O/C ratios use OC estimated by FG calibrations (FG OC). In the right panels
(b), (d), and (f) the OM, OM/OC and O/C ratios use OC measured by TOR. PLSr and PLSbc refer to partial least square using raw and
baseline-corrected spectra respectively. PFo and PFr refers to peak fitting using the original recalibrated absorption coefficients. PLSbc* is
the same as PLSbc except that the number of LVs for aCH has been selected heuristically (Sect. 3.2).

3.6 Anomalous samples

We examine and summarize in Fig. 11 a few of the anoma-
lous clusters. Cluster 7 (first row in Fig. 11) samples have
significant overprediction in both OC and ammonium for the
calibration model using raw spectra (PLSr) but less in the
baseline-corrected models. These samples are found in al-
most all sites and are primarily influenced by dust (Kuzmi-
akova, 2019). This conclusion is evidenced by the FTIR
spectra having two sharp peaks above 3000 cm−1 and a
broader peak between 950 and 1100 cm−1 indicative of Si–O
bonds; resemblance of spectral features to hydroxyl groups
from organic compounds or bound water in hydrates asso-
ciated with dust is also observed. Accompanying XRF mea-
surements also indicate high abundance of mineral dust el-
ements in these samples. Larger atmospheric particles are
likely to scatter infrared radiation, with increasing contribu-
tions above ∼ 200 nm (Signorell and Reid, 2010), and non-
negligible contributions above 1 µm (Allen and Palen, 1989).
While the primary purpose of the baseline correction is to re-
move the scattering from the PTFE fibers, it is also likely that
there is a scattering contribution from the particles, which
confers a positive artifact to the estimate of OC in the raw
spectra calibration model. Baseline correction appears to re-

duce these artifacts through the removal of the particle scat-
tering contribution to the observed absorbance.

Cluster 16 (second row in Fig. 11) consists of wintertime
Phoenix, AZ, samples which are associated with residen-
tial wood burning (Kuzmiakova, 2019). The consistent dis-
agreement of the reference ammonium concentrations with
all models suggests that the error may be attributed to the
estimation of reference values rather than the calibrations.
We expect gas–particle partitioning to favor the condensed
phase for ammonium nitrate for wintertime temperatures in
Phoenix, so an evaporation artifact from Teflon is not antic-
ipated to be the most significant factor. However, potassium
nitrate is a well-known product of biomass burning, and the
offset in ammonium equivalently formulated in the magni-
tude of potassium matches the reported concentrations by
XRF.

The atypical predictions for clusters 19 and 20 (third and
fourth row in Fig. 11) are likely due to the abundance of
large ammonium sulfate (cluster 19) and ammonium nitrate
(cluster 20) particles in the samples, leading to anomalous
transmission of infrared radiation (Christiansen peak effect)
(Christiansen, 1885; Barnes and Bonner, 1936; Henry, 1948;
Prost, 1973) through the sample (Fig. S15). The Christiansen
peak effect occurs under two limiting conditions: the refrac-
tive index approaches that of the surrounding medium (air
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Figure 11. Left column shows scaled baseline-corrected spectra between 4000 and 1500 cm−1; middle column shows scaled raw spectra
below 1500 cm−1, and concentrations of PM constituents measured in the IMPROVE network: trace elements from X-ray fluorescence,
inorganic ions (sulfate and nitrate) from ion chromatography, and elemental carbon from TOR analysis.

in this case), and the size of the particle(s) approaches the
wavelength of the incident radiation. The refractive indices
of ammonium sulfate and ammonium nitrate both exhibit a
local minimum below 1.3 at 3.0 µm (3300 cm−1) (Jarzem-
bski et al., 2003). PM2.5 can include some particles above
2.5 µm as the cut point corresponds to the median diam-
eter of any particle efficiency curve of a size-selective in-
let (cyclone for IMPROVE samples). However, another rea-
son that the Christiansen effect plays a role in these sam-
ples is that its magnitude can still be significant for parti-
cles smaller than this diameter (Carlon, 1979). The result of
this phenomenon is that the transmittance increases near this
wavelength, though never approaching 100 % on account of
co-absorbing substances and inhomogeneities in atmospheric
particles (Shelyubskii, 1993; Pollard et al., 2007). The corre-
sponding absorbance spectrum displays a sharp decrease at
the Christiansen wavelength relative to its neighboring ab-
sorbances and spectral distortions in its vicinity. This optical
artifact can affect both baseline correction and direct cali-
bration (without baseline correction) if these effects are not
taken into account, and our unexpected predictions can most
certainly be attributed to this phenomenon. Remedies for this
artifact may entail explicit modeling of the anomalous trans-
mittance peak in the baseline correction or inclusion of sam-
ples which have this effect in the calibration samples. As
both of these effects are nonlinear to absorbance, their treat-
ment by a linear model may lead to a suboptimal represen-
tation of their contributions across multiple latent variables
(including cross-over with contributions to the signal such
as instrument noise; Zupan and Gasteiger, 1991). Nonethe-
less, the demonstrated performance of calibration models for
TOR-equivalent OC prepared from the regression of FTIR
spectra to collocated TOR OC measurements (Dillner and

Takahama, 2015a) suggests that PLS can handle these irreg-
ularities (scattering, Christiansen effect) as long as samples
which exhibit them are included in the calibration samples,
with or without baseline correction.

4 Conclusions

In this work, we explore the diversity in FG predictions that
can result from calibration models built with mid-IR spec-
tra. In particular, we compare two prominent methods for
estimation of functional groups (FGs) from mid-IR spectra
used in atmospheric PM analysis: peak fitting (PF) and par-
tial least squares (PLS) regression. PF is an approach us-
ing physically based absorption profiles to model spectral
signals, and PLS is a statistical approach which is trained
on relevant features from reference spectra. Using PF, we
evaluated FG estimates using molar absorbance coefficients
(model parameters) from previous studies (PFo) and calcu-
lated (PFr) using 238 laboratory standards from Ruthenburg
et al. (2014). Using PLS, we evaluated FG estimations using
raw spectra (PLSr, in which substrate PTFE interferences are
present) and baseline-corrected spectra (PLSbc).

PFo and PFr require some assumptions: (i) structure of the
PTFE signal; (ii) value of the molar absorbance coefficients;
and (iii) apportionment rule to apportion carbonyl to car-
boxylic and non-acid contributions. Underestimation of OC
in comparison to TOR (by as much as 50 %) and surprisingly
high values of OM/OC (greater than 1.8) for the urban site,
Phoenix, is likely due to the underestimation of aCH. Using
a different value of the absorption coefficient, particularly for
aCH, within uncertainty bounds presented in this study can
mitigate this discrepancy.
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PLSr requires the least prior knowledge – e.g., how to
model the baseline – and therefore brings an appealing ap-
proach to calibration. However, scattering contributions from
larger ambient particles can lead to overprediction of organic
FGs and ammonium in ambient samples with considerable
dust impacts. As reported in previous studies (Ruthenburg
et al., 2014; Takahama and Dillner, 2015) PLSr shows good
agreement (correlation coefficients above 0.85 and regres-
sion slope close to 0.9) with external TOR OC measure-
ments, especially for urban samples, and the OM/OC values
are also within range of expected values (1.4–1.8). However,
the higher values of OM/OC at the rural sites may be due
to an underestimation of the oxygenated FGs, which leads
to a lower estimate of carbon content and an artificial in-
crease the OM/OC. This bias is apparent when normalizing
by TOR OC, as the OM/OC ratios of rural sites become sim-
ilar to the urban values. PLSbc reveals the most consistent
estimates against PFr, and this is sensible as the two use the
closest correspondence of laboratory standards and spectral
preparation (baseline correction).

Both PLSbc and PLSr can quantify carboxylic acid and
non-acid carbonyl groups directly by designating the target
variable to COOH and naCO, and the models are trained on
wavenumbers and LVs relevant for the two species. From this
analysis, we conclude that almost all of the carbonyl for sam-
ples in the seven 2011 IMPROVE sites is associated with car-
boxylic rather than ketone or ester CO. In principle, it is also
possible to define a fixed relationship between carboxylic
cCOH and carbonyl CO such that COOH and the residual
naCO can be determined in PF, but this requires additional
assumptions to implement.

In summary, models built with laboratory standards and
algorithms are able to extract relevant information from am-
bient FTIR sample spectra. Evaluation against external ref-
erence values (TOR OC and ammonium estimated from an-
ion chromatography analysis) suggests moderately strong to
strong correlation for this IMPROVE monitoring data set,
and it is generally consistent with past studies that have
also found high correlation with collocated measurements
of TOR OC and AMS OM (e.g., Russell et al., 2009a; Gi-
lardoni et al., 2009; Takahama and Russell, 2011; Corrigan
et al., 2013). However, the overall magnitude of bias can vary
substantially depending on the choice of models and param-
eters. While we should also not expect perfect agreement as
each of the external measurements has its own artifacts, the
sensitivity and resulting uncertainty in FG estimation due to
available selection of parameters is apparent. Many param-
eters give validated predictions for laboratory standards, but
each can give different results when applied to ambient sam-
ples (i.e., estimating concentrations in ambient samples is an
ill-posed problem). Use of different absorption coefficients
for PF and number of LVs for PLS that are still consistent
within limits of the calibration standards in this work can off-
set apparent biases, but there are many parameters and their
selection criteria are presently not sufficiently constrained.

An example was shown where the overall magnitude in esti-
mated FTIR OC can vary by 40 % (and effectively eliminat-
ing bias with respect to TOR OC) by adjusting the number of
LVs for aCH used by the PLSbc model.

Reducing uncertainty in predictions derived from FTIR
spectra can be envisioned by two means: further advancing
our study of laboratory standards that mimic ambient sam-
ples more closely and by exploring mathematical solutions
possible within a stricter set of constraints. Regarding the
first point, Takahama et al. (2016) note that predictions from
statistical calibration models (PLS and its variants) become
less sensitive to model parameters as the samples in the cal-
ibration and prediction sets become more similar, and pre-
sumably this conclusion can be extended to the PF approach
in its use of absorption profiles (both in intensity and shape).

Given that some differences will remain between key fea-
tures in laboratory standards and ambient samples, the sec-
ond point on algorithmic improvements can be formulated
in several ways. One strategy is to explore the subset of so-
lutions that are consistent with available external measure-
ments (e.g., TOR OC, AMS OM, and other chemical infor-
mation) to revise model selection criteria. While an example
varying the number of LVs for aCH is shown in this work,
a more formal approach to multi-parameter optimization is
preferable for approaching this task. Targeting means to es-
tablish different relationships between spectra and FGs than
considered in this work is also possible. For instance, the full
range of available calibration samples or absorption coeffi-
cients are likely not the most appropriate for every sample.
Diversity in sample composition – e.g., between urban and
rural samples – can be incorporated in a multilevel model-
ing approach, whereby different model or model parameters
can be used based on spectral shape or identified source con-
tributions (e.g., using positive matrix factorization; Paatero
and Tapper, 1994). Furthermore, models can be constrained
to share a common representation to follow actual structure–
spectra correlations more closely than when models for each
FG are constructed independently – i.e., constraints on the
internal representation of interferences toward organic FG
quantification can be improved by concurrently developing
our capability to model ammonium nitrate and ammonium
sulfate using their discriminating bands. The same parame-
ters (either absorption profiles in PF or LVs in PLS) that are
able to accurately predict concentrations of these inorganic
compounds would likely be able to model their interferences
to organic FG absorption more correctly over a broader range
of instances.

Finally, anticipating the mass fraction of OC that can be
explained by FGs will continue to play an important role in
estimating the overall OM, particularly for the OM/OC ra-
tio. There are few classes of carbon atoms in molecules that
are not expected to be detected by FTIR (i.e., they are not
associated with FGs for which calibrations are not built), and
understanding the expected extent of underestimation of OC
by FG reconstruction will provide better perspective on eval-
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uation of FG OC by TOR OC and model selection methods.
While the specific molecules in the aerosol mixture need not
be enumerated for this purpose, the knowledge of the func-
tionalized carbon types that are present in different sample
types – which can be obtained through measurements and
simulation (Takahama and Ruggeri, 2017) – is useful in this
regard. In the meantime, continuing improvement in estima-
tion of TOR-equivalent OC from direct calibration to collo-
cated measurements (Dillner and Takahama, 2015a; Weakley
et al., 2016) can enable estimation of carbon content from the
same FTIR spectrum without imposing uncertainty from FG
calibrations or requiring collocated TOR measurements.

FTIR spectroscopy remains a promising analytical tech-
nique to provide independent estimates of OM, OM/OC, and
O/C based on molecular structure. Presently, a large number
of calibration models can be generated based on selection of
laboratory standards and algorithms, but further research is
needed to develop a robust model selection process to reduce
uncertainty in prediction when applied to ambient samples.
Users should therefore note the existence of potential biases
in current FTIR calibration models due to model or parame-
ter sensitivity when performing comparisons against external
measurements. However, further progress is being made to-
ward development of calibration strategies.

Code availability. Baseline correction (Kuzmiakova et al., 2016),
Peak fitting (Takahama et al., 2013b) and multivariate calibra-
tion (Dillner and Takahama, 2015a, b) are implemented in an open
platform with browser interface, accessible at http://airspec.epfl.ch
(last access: 4 April 2019). Access to the software and their reposi-
tories are described in the companion paper (Reggente et al., 2019).

Data availability. The IMPROVE network spectra will be made
publicly available. TOR OC and PM2.5 can be downloaded from
the US Federal Land Manager Environmental Database at http:
//views.cira.colostate.edu/fed/QueryWizard/Default.aspx (last ac-
cess: 4 April 2019).
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Appendix A: Abbreviations

Table A1 includes pervasive abbreviations used in multiple
sections.

Table A1. List of abbreviations and their definitions.

Type Abbreviation Definition

Functional groups (FGs) aCH alkane CH
aCOH alcohol COH
COOH carboxylic COH
cCOH carboxylic hydroxyl COH
naCO non-acid carbonyl CO (ketonic, aldehyde, and ester)
tCO total carbonyl CO (carboxylic, ketonic, aldehyde, and ester)
iNH inorganic ammonium N-H

Measurements EC elemental carbon
FT-IR Fourier transform infrared
IMPROVE Interagency Monitoring of PROtected Visual Environments
OC organic carbon
OM organic matter
PM particulate matter
PTFE polytetrafluoroethylene (Teflon)
TOR thermal optical reflectance

Chemometrics LV latent variable
NAF negative absorbance fraction
NIPALS nonlinear iterative partial least squares
PF peak fitting
PFo peak fitting using original absorption coefficients
PFr peak fitting using recalibrated absorption coefficients
PLS partial least squares
PLSbc partial least squares using baseline-corrected spectra
PLSr partial least squares using uncorrected (raw) spectra
RMSE root mean square error
RMSECV root mean square error of cross validation
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