Corrigendum to Atmos. Meas. Tech., 12, 2403–2421, 2019 https://doi.org/10.5194/amt-12-2403-2019-corrigendum © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to

"Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species" published in Atmos. Meas. Tech., 12, 2403–2421, 2019

 $\label{eq:matchieu} \begin{subarray}{ll} Matthieu Riva1,2, Pekka Rantala1, Jordan E. Krechmer3, Otso Peräkylä1, Yanjun Zhang1, Liine Heikkinen1, Olga Garmash1, Chao Yan1, Markku Kulmala1,4, Douglas Worsnop1,3, and Mikael Ehn1 \\ \end{subarray}$

Correspondence: Matthieu Riva (matthieu.riva@ircelyon.univ-lyon1.fr) and Mikael Ehn (mikael.ehn@helsinki.fi)

Published: 5 July 2019

The mass resolution of the Vocus reported in Table 1 is incorrect, it is listed as 12 0000, whereas it should be listed as 12 000. Therefore, it is important that potential readers and/or users do not expect this mass spectrometer to reach such a high mass resolving power.

¹Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00140, Finland

²Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France

³Aerodyne Research Inc., Billerica, MA, USA

⁴Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology (BUCT), Beijing, China