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Abstract. Visible–shortwave infrared imaging spectroscopy
provides valuable remote measurements of Earth’s surface
and atmospheric properties. These measurements gener-
ally rely on inversions of computationally intensive radia-
tive transfer models (RTMs). RTMs’ computational expense
makes them difficult to use with high-volume imaging spec-
trometers, and forces approximations such as lookup table in-
terpolation and surface–atmosphere decoupling. These com-
promises limit the accuracy and flexibility of the remote
retrieval; dramatic speed improvements in radiative trans-
fer models could significantly improve the utility and inter-
pretability of remote spectroscopy for Earth science. This
study demonstrates that nonparametric function approxima-
tion with neural networks can replicate radiative transfer cal-
culations and generate accurate radiance spectra at multiple
wavelengths over a diverse range of surface and atmosphere
state parameters. We also demonstrate such models can act
as surrogate forward models for atmospheric correction pro-
cedures. Incorporating physical knowledge into the network
structure provides improved interpretability and model effi-
ciency. We evaluate the approach in atmospheric correction
of data from the PRISM airborne imaging spectrometer, and
demonstrate accurate emulation of radiative transfer calcula-
tions, which run several orders of magnitude faster than first-
principles models. These results are particularly amenable
to iterative spectrum fitting approaches, providing analytical
benefits including statistically rigorous treatment of uncer-
tainty and the potential to recover information on spectrally
broad signals.

Copyright statement. The author’s copyright for this publication is
transferred to the Jet Propulsion Laboratory, California Institute of
Technology.

1 Introduction

Remote visible–shortwave infrared (VSWIR) imaging spec-
troscopy, also known as hyperspectral imaging, is a power-
ful approach to map the composition, health, and biodiver-
sity of Earth’s ecosystems (ESAS, 2018). Remote sensing
of the solar-reflected spectrum from 380 to 2500 nm reveals
physics and chemistry of many processes in Earth’s surface–
atmosphere system (Schaepman et al., 2009), including ter-
restrial plant health and traits (Asner et al., 2017; Ustin et al.,
2004); biodiversity (Jetz et al., 2016); the condition and com-
position of aquatic, benthic, and nearshore ecosystems (Fi-
chot et al., 2015; Hochberg, 2011); geology (Swayze et al.,
2014); and trace greenhouse gases (Frankenberg et al., 2016).
While Earth scientists aim to measure these geophysical vari-
ables, remote sensors can only measure the incident light at
the sensor. Inferring geophysical properties requires invert-
ing the measurement with a physical model – typically one
that accounts for both absorption and scattering by the atmo-
sphere, and the fraction of light reflected from the surface at
each wavelength (Schaepman-Strub et al., 2006).

Radiative transfer models (RTMs) such as DISORT
(Stamnes et al., 1988) are a critical component of such mod-
els, and form the core of common spectroscopy analysis
codes including ACORN (Kruse, 2004), ATCOR (Richter
and Schlapfer, 2002), FLAASH (Perkins et al., 2012),
ATREM (Gao et al., 1993), and others (Gao et al., 2000,
2007; Thompson et al., 2015). The RTM posits a strati-
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fied atmosphere populated by atmospheric gases at appropri-
ate concentrations and temperatures, and solves the general
equations of radiative transport based on a known solar input
and presumed surface. This is an intensive computation, re-
quiring special care for modern high-volume imaging spec-
trometers that acquire thousands or millions of spectra per
second.

Because imaging spectrometers produce too much data to
analyze each measurement with an independent RTM, inves-
tigators use RTMs to pre-calculate lookup tables of atmo-
spheric optical properties such as scattered path radiance or
transmission for atmospheric states appropriate to the condi-
tions observed at image acquisition. At runtime, the model
inversion estimates the actual state from the radiance spec-
trum and interpolates within the lookup table to find the as-
sociated optical properties. This informs parametric approxi-
mations of atmospheric transport, such as the formulation by
Vermote et al. (1997), permitting algebraic solutions for the
remaining unknowns like surface reflectance. The sequen-
tial retrieval of atmospheric and surface properties, a process
known as atmospheric correction, obtains a self-consistent
but approximate explanation for the surface and atmosphere
system.

The lookup table solution is adequate for many needs,
but imposes several limitations. First, lookup tables can only
model a few degrees of freedom in an atmospheric state due
to the “curse of dimensionality;” the number of samples nec-
essary to adequately represent the state space increases expo-
nentially with the number of input variables. To increase the
fidelity of grid samples in high dimensions, designers can
leverage representative sampling or hyperparameter search
strategies such as Snoek et al. (2012) within the state space,
or space-filling sampling methods like Latin hypercube sam-
pling (Stein, 1987) or lattice regression methods (Gupta
et al., 2015). However, such techniques are restricted by pro-
hibitive computation and storage requirements for highly di-
mensional state spaces, and incur increased risks of interpo-
lation inaccuracy. Also, because the contents of precalculated
lookup tables capture atmospheric optical properties inde-
pendently from the surface, lookup-table-based approaches
preclude strong coupling between the two. Speeding RTMs
to the point at which they could run many times faster for
each spectrum would obviate the lookup table compromise
and enable more flexible, accurate, and statistically rigorous
inversion algorithms such as the optimal estimation approach
used in many atmospheric sounding missions (Thompson
et al., 2018c; Rodgers, 2000).

Recent work suggested the use of nonparametric function
approximators such as neural networks (Verrelst et al., 2016,
2017; Thompson et al., 2018a) or Gaussian processes (Mar-
tino et al., 2017) for this purpose. Investigators can train
such models using prior runs of radiative transfer models
over relevant ranges of surface and atmospheric conditions.
After learning the underlying function with sufficient accu-
racy, the trained model could act as an instrument-specific

RTM that would not have to solve the underlying differen-
tial equations. Alternative formulations such as Jamet et al.
(2005) and Brajard et al. (2006) provide empirical valida-
tion of RTM assumptions by evaluating atmospheric, trans-
mittance, and surface interactions captured in separate mod-
els, while other methods (e.g., Jamet et al., 2012; Kox et al.,
2014; Loyola et al., 2018) permit retrieval of atmospheric or
radiometric parameters based on models constructed using
outputs generated by first-principles RTMs that span multi-
ple wavelengths. However, to date, techniques designed to re-
trieve surface reflectance using learned RTM emulators have
only been demonstrated on a small number of cases with lim-
ited surfaces and atmospheres (Verrelst et al., 2017; Martino
et al., 2017; Brajard et al., 2006), and not across the VSWIR
range with state vector flexibilities that would permit a func-
tionally useful alternative for existing atmospheric correc-
tion routines (e.g., as a surrogate forward model). To our
knowledge, this work represents the first demonstration on
real imaging spectrometer data using a nonparametric func-
tion approximation to emulate the radiative transfer function
F(x) such that the resulting emulator can act as a forward
model in an atmospheric correction procedure, permitting
surface reflectance retrievals over the entire VSWIR range
under diverse imaging conditions.

This study demonstrates an accurate neural network model
deployed as part of an iterative model inversion, showing
that emulation is a practical solution for operational atmo-
spheric correction of imaging spectroscopy data. This opens
new possible avenues of research, for both the inversion
algorithm itself (to explore further expansions of the state
vector beyond the traditional retrieved variables) and down-
stream analyses (to exploit the benefits of new retrieval meth-
ods that do not require lookup tables). We begin by de-
scribing the neural network architecture and RTM emulation
methodology, including several novel advances: an analyt-
ical decomposition of the radiative transfer function F(x)
into quantities that are individually easier to model, channel-
wise, monochromatic subnetworks to simplify training and
prediction, and weight propagation to account for correla-
tion between adjacent channels and to reduce training time.
We also describe an approach to partition the state space in
a manner that guides each subnetwork to generate accurate
predictions for states within the bounds of the state space.
We evaluate our approach in a case study focusing on atmo-
spheric correction for the PRISM imaging spectrometer, and
demonstrate high-quality surface reflectance retrievals using
the optimal estimation approach of Thompson et al. (2018c)
equipped with our neural RTM as the forward model. The
retrievals capture subtle atmospheric variability such as view
dependence of Rayleigh scattering not typically handled in
conventional atmospheric correction codes. Finally, we de-
scribe paths for future development of neural network RTM
emulation technology.
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2 Neural networks for radiative transfer modeling

Our goal is to construct a model that emulates a first-
principles RTM using precalculated outputs generated by
that RTM for a representative set of atmospheric, geometric,
and surface states. More formally, we aim to model the RTM
function F(x)→ y that maps a set ofm distinct state param-
eters {pj }mj=1 with values captured in a state vector x ∈ Rm to
a vector y ∈ Rn of observed at-sensor radiances for k chan-
nels centered at wavelengths λ= {λ1, . . .,λk}. We use italics
to signify scalar values, boldface italics to signify vectors,
and boldface capital letters to signify matrices.

We exploit two features of the problem to simplify F(x).
First, we leverage the fact that the observed radiance at any
given channel is fully specified by the observation geom-
etry, atmospheric state, and the surface reflectance in that
channel. In statistical terms, absent any prior distribution
that couples neighboring wavelengths, the channelwise radi-
ances become conditionally independent of each other given
the atmosphere and observation geometry. This permits an
exact decomposition of F(x) into monochromatic functions
F(x)= {fi(x)}

k
i=1, where each fi(x)→ yi represents the

RTM function for the channel centered at wavelength λi .
Given this decomposition, we construct a neural RTM em-
ulator using a set of k channelwise subnetworks, where each
subnetwork is trained to model a single fi . Figure 1 shows
the topology of one of the channelwise subnetworks in the
neural RTM. A side benefit of this approach is that the partial
derivatives of radiance channels with respect to their surface
reflectances are independent of each other, which simplifies
calculations of analytical Jacobians during iterative gradient
descent inversions (Thompson et al., 2018c).

Second, we reduce the radiance spectrum analytically to
the top-of-atmosphere reflectance, written ρobs, and solar il-
lumination components. The top of atmosphere reflectance
is defined as ρobs = yπ/φoeo, where φo is the cosine of the
solar zenith angle and eo the extraterrestrial solar irradiance.
ρobs is normalized for solar illumination and, absent extreme
glint, resides conveniently in the [0,1] interval, making it an
easier target for function approximation. For any given ob-
serving geometry, the known values of φo and eo can be used
to infer the corresponding radiances.

Constructing a robust neural RTM emulator from precom-
puted RTM outputs faces two fundamental modeling chal-
lenges. First, the precomputed RTM outputs must provide
sufficient coverage of the state space to represent the dis-
tribution of spectral responses in each channel. Second, the
subnetworks must accurately predict RTM outputs for inter-
mediate state parameter values within the bounds of the state
space for all channels. Intuitively, modeling channels whose
spectral responses vary substantially with respect to small
changes in state is more challenging than modeling more sta-
ble channels. For instance, small variations in the concentra-
tion of atmospheric water vapor can produce complex, non-
linear changes in spectral responses in the water absorption

Figure 1. Illustration of a single subnetwork in the neural RTM em-
ulator. Each subnetwork predicts the top-of-atmosphere reflectance
ρobs(λi) for a single channel centered at wavelength λi provided
state parameters x and surface reflectance ρs(λi). Collecting the
predictions generated by k subnetworks, each modeling distinct
channels, and converting those predictions from ρobs to radiance
emulates the RTM function F(x)→ y for the selected channels.

bands, while other wavelengths remain relatively unchanged.
Accurately modeling unstable channels may require generat-
ing additional RTM outputs at increased sampling density to
highlight distinct responses that are poorly represented in the
existing precomputed outputs, and additional computational
resources may be required to fine-tune the appropriate sub-
networks to capture those distinctions.

To ensure each subnetwork reliably models its correspond-
ing channel, we measure prediction accuracy on a test set
of precalculated RTM outputs excluded from the training
process. In our initial experiments, we used both traditional
randomized cross-validation and bootstrap sampling to con-
struct the training and test sets, but after we observed that the
main sources of variability in the state space emerged from
interactions among a small number of state parameter values,
we concluded that randomized sampling of the state space
without an informed sample stratification yields optimistic
or inconsistent estimates of test accuracy and/or convergence
time in cross-validation. Ultimately, we concluded that vali-
dation using a fixed and bounded subset of the state param-
eter values would provide a more informative assessment of
model performance. Using a bounded subset also permitted
direct comparison to lookup-table-based approaches, as they
require upper and lower bounds on each variable to generate
intermediate values via interpolation. We describe this ap-
proach in more detail later in this work.

We can also improve model accuracy and reduce compu-
tational demands by exploiting characteristics of the state
space in tandem with RTM modeling assumptions. One
means we use to achieve this is through a process of weight
propagation. Rather than initializing the weights for each
subnetwork from scratch, we use the converged weights of
the subnetwork modeling the previous channel to initialize
the weights for the subnetwork modeling the current chan-
nel, which are then fine-tuned to minimize the prediction er-
ror for that channel. Using weight propagation often yields a
substantial reduction in training time in comparison to train-
ing each subnetwork from scratch, and can also improve pre-
diction accuracy for channels whose RTM outputs are rel-
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atively stable with respect to the state space. An additional
side benefit is that weight propagation provides an approxi-
mate means to account for channelwise coupling for instru-
ments whose spectral response functions partially overlap for
adjacent channels.

Algorithm 1 describes the procedure to train the neural
RTM emulator provided n samples from the m-dimensional
state space and their corresponding ρobs outputs, each span-
ning k channels. The output of the algorithm is a trained neu-
ral RTM that takes a state vector x of m parameters as input
and outputs a k-dimensional prediction vector y, which we
convert to radiance with respect to φo and eo. The prediction
vector is the concatenated output of the trained subnetworks
{fi}

k
i=1 for each of the k channels.

Our goal is to train each subnetwork fi to generate accu-
rate predictions for states explicitly included in X and more
importantly for intermediate states not explicitly included in
X but within the bounds of the state space. To achieve this,
we employ a sampling strategy that partitions the state space
in a manner that helps to guide each subnetwork to accu-
rately predict intermediate states. Specifically, we partition
X and Y into disjoint training (X,Y)tr and test (X,Y)te sets
such that Xtr contains all state vectors containing the bound-
ary values {min(pj ),max(pj )} of all state parameters. This
partitioning ensures the training set contains the convex hull
of the Euclidean subspace of Rm defined by the state param-
eters and also that all test states in Xte represent intermedi-
ate states within the hull. To capture the internal structure of
the state space within the hull, the training set should also
contain one or more intermediate state vectors for each pj
satisfying min(pj ) < xtr

j <max(pj ). Given the training and
test partitions, we train each subnetwork to model the func-
tion fi by minimizing theL2-regularized mean-squared error
(MSE) between the predicted and the observed values of the
ntr training samples (X,yi)tr representing the ρobs responses
for the ith channel.

Each subnetwork uses a feed-forward architecture with
two hidden layers. The hidden layers use rectifying linear ac-
tivation functions, which have been shown to be more robust
than the sigmoid or tanh activations used in traditional neu-
ral networks (Nair and Hinton, 2010), and the output layer
uses a linear activation function. We use the method proposed
by Glorot and Bengio (2010) to initialize any subnetwork
weights that are not initialized via weight propagation, and
use the widely used error back propagation algorithm (Wer-
bos, 1982) with adaptive moment estimation (Kingma and
Ba, 2014) to optimize the weights via gradient descent. We
train each subnetwork until we reach the maximum number
of epochs nepoch, stopping early if the mean absolute error
(MAE) between the true and predicted outputs for each chan-
nel converges to within 0.1 %. This level of accuracy is suf-
ficient to make the approximation error a smaller contributor
to total uncertainty than other unknowns in the measurement
system. For example, it is generally a similar magnitude to
relative calibration error of different focal plane array ele-

Table 1. State parameters values used in libRadtran model runs to
generate ρobs spectra to train and validate the neural RTM. State
vectors containing the median value of each auxiliary parameter
(indicated by bold text) are held out for testing, while the remaining
state vectors are used for training the channelwise subnetworks.

State parameter State values

Solar azimuth (φr) 0, π8 , . . . , π2 , . . . 7π
8 , π

Observer zenith angle (cos(θv)) 0.94, 0.95, 0.96, 0.97, 0.98,
0.99, 1.0

Aerosol optical depth (τ ) 0.05, 0.1, 0.2, 0.3
Water vapor (H2O) 0, 0.5, 1.0, 1.5, 2.0, 2.5
Surface reflectance (ρs) 0.05, 0.1, 0.25, 0.5, 1.0

ments, which can vary slightly due to drift between calibra-
tions (Thompson et al., 2018a).

3 Neural RTM emulation for PRISM

We define a case study to demonstrate the capabilities of our
RTM emulator using data acquired by the PRISM imaging
spectrometer (Mouroulis et al., 2008, 2014). PRISM uses a
push-broom design and observes a cross-track angular field
of view spanning approximately 30◦, and is designed to ob-
serve coastal ocean environments in the 350–1050 nm spec-
tral range at approximately 3 nm spectral sampling. The in-
strument was mounted onboard a high-altitude ER-2 aircraft
which overflew Santa Monica, USA, in October 2015 at
20 km above sea level (Thompson et al., 2018b; Trinh et al.,
2017). At this altitude, the instrument measured the scene
through nearly all of Earth’s atmospheric scattering and ab-
sorption, providing a challenging test case with relevance to
future orbital instruments.

We consider a state space consisting of a single free pa-
rameter per instrument channel for the surface reflectance
ρs, along with four m= 4 state parameters that vary inde-
pendently for every spectrum in a given flight line, which in-
clude the atmospheric aerosol optical depth at the surface, τ ;
the atmospheric water vapor content of the column in grams
per square centimeter, H2O; the cosine of the observer zenith
angle, cos(θv); and the relative azimuth angle between the
observer and the Sun, written φr. Each of these free parame-
ters varies independently for every spectrum in a given flight
line. Naturally, alternative parameterizations are possible, in-
cluding mixture models, continuum-absorption models, and
others. However, these could be mapped to our representa-
tion without loss of generality.

We identified a set of values for each state parameter that
covered the conditions anticipated during the flight cam-
paign, and provided those values in Table 1. We generated
RTM outputs using the libRadtran radiative transfer code
(Emde et al., 2016; Mayer and Kylling, 2005) for a midlat-
itude summer atmosphere appropriate to the PRISM flight
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Figure 2. ρobs spectra for ρs = 0.25 spanning the range of the φr (a), cos(θv) (b), τ (c), and H2O (d) parameters with respect to the validation
grid values.
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line we considered1. Generating ρobs spectra for every com-
bination of state parameter values yielded n= 9072 total
ρobs output spectra, each of k = 7101 dimensions spanning
the range of the PRISM instrument wavelengths with 0.1 nm
spacing. Our test data consist of all state vectors containing
the median value of each state parameter (shown in bold text
in Table 1) and the ρobs spectra associated with those states.
The remaining states and their corresponding ρobs spectra
form our training set.

Figure 2 depicts the changes in the ρobs spectra with re-
spect to parameters φr (panel a), cos(θv) (panel b), τ (panel
c), and H2O (panel d), while holding the other parameters
fixed at their median values. Unsurprisingly, the most vis-
ibly dramatic changes occur as absorption features appear
with increased H2O vapor concentrations. Of the remaining
parameters, only aerosol optical depth τ has an observable
effect on spectral shape across the visible and near-infrared
wavelengths. Changes induced by varying φr and θv are com-
paratively small and predominantly observable in the visible
range.

For this case study, we focused on modeling F(x) based
on libRadtran outputs resampled to the PRISM instrument
channels. This dramatically reduced the computation re-
quired to construct the neural RTM, as we only needed to
train a total of 245 subnetworks representing each of the
PRISM channels with 2.83 nm spacing, rather than the 7101
channels at 0.1 nm spacing generated by libRadtran. We note
that convolving the libRadtran spectra to the lower-resolution
PRISM spectral response function (SRF) means the ρobs val-
ues are no longer strictly monochromatic. However, channel-
wise coupling is not a significant concern as the instrument
channels are well-separated. In future work, we plan to con-
struct a more general neural RTM that generates ρobs pre-
dictions at 0.1 nm spacing, can be subsequently convolved
to the spectral response function associated with a particular
sensor.

We observed experimentally that subnetworks consisting
of two hidden layers with 50 units each and a training cy-
cle of at most 500 epochs (where one epoch consists of a
full pass of gradient updates over the training set) with batch
sizes ranging from 100 to 200 training samples was suffi-
cient for each subnetwork to converge to our error require-
ments for the state space parametrized by values in Table 1.
Single-layer subnetworks were typically inadequate to model
channels whose ρobs responses changed in a highly variable
and/or nonlinear manner with respect to small changes in the
state parameters (for instance, the water absorption bands).
We set the initial learning rate to 0.001 with the follow-
ing adaptive moment estimation parameters {β1 = 0.9,β2 =

0.999,ε = 10−10
} and set the L2 regularization penalty term

α to 10−4 for each subnetwork. A longer training cycle or

1We provide the template libRadtran config file in the Sup-
plement (prm20151026t173148_libradtran_config) (Kurucz, 1994;
Buehler et al., 2009; Bodhaine et al., 1999)

additional hidden units can be used to match the RTM output
more precisely and would likely be necessary to model more
complex state parameter spaces.

As a baseline comparison, we used the channelwise train-
ing samples ((X,yi)tr in Algorithm 1) to train a least-squares
linear regressor on the ρobs responses for each channel, and
applied each regressor to generate predictions on the associ-
ated test samples ((X,yi)te in Algorithm 1). The channelwise
test errors of the linear regressors provide an upper bound
on the piecewise, locally linear interpolation error incurred
using lookup tables to infer ρobs responses for intermediate
states. Figure 3 compares the ρobs test prediction error using
the channelwise linear regressors (panel a, black line) to the
error produced by the channelwise subnetworks trained from
scratch (NN, blue line) versus channelwise subnetworks ini-
tialized with weight propagation (NNWP, red line). The chan-
nelwise subnetworks yield an order of magnitude reduction
in prediction error on all channels in comparison to the lin-
ear regressors, and demonstrates potentially significant is-
sues with lookup-table-based approaches. Weight propaga-
tion provides an average reduction of 64 % in channelwise
error, but also yields systematically higher errors in the H2O
absorption range between 890 and 1000 nm where the ρobs
responses vary rapidly for adjacent channels.

Figure 4 compares the number of epochs required to con-
verge for channelwise subnetworks trained from scratch ver-
sus subnetworks initialized with weight propagation. Over
the set of all PRISM instrument channels, weight propaga-
tion permits convergence in ≈ 70 % fewer epochs over sub-
networks not leveraging weight propagation. In terms of raw
compute time, our scikit-learn (Pedregosa et al., 2011) imple-
mentation requires 2–3 min to train a single monochromatic
subnetwork from scratch on a single processor core, while
subnetworks initialized with weight propagation typically re-
quire less than 30 s to converge. However, we note that the
channelwise subnetworks trained with weight propagation
converge as quickly in the 925–975 nm range – where their
most significant prediction errors occur – as in the remaining
channels. While it is unsurprising that the H2O absorption
wavelengths are challenging to model, the fact that the two
weight initialization schemes yield distinct error distributions
suggests that the subnetworks modeling those channels may
not have converged.

Investigating further, we measured the average root-mean-
square error (RMSE) on the test set with respect to the pair-
wise interactions between ρs and the four state parameters,
and show the resulting error surfaces in Fig. 5. Relatively
small errors for the majority of the parameter space indi-
cate that the ρobs spectra vary smoothly with respect to most
state parameter values, with the most significant variability
emerging from a small range of values in the ρs ∈ [0.4,0.8]
and H2O ∈ [1.0,2.0] regions of the state space. The relatively
high error in this regime is consistent with our earlier obser-
vation that small changes in the atmospheric water vapor pa-
rameter yield considerably different ρobs spectra, as shown
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Figure 3. (a) ρobs test prediction error per channel using channelwise linear regressors (black line). (b) Neural network test prediction error
per channel using subnetworks trained from scratch (NN, red line) versus subnetworks trained with weight propagation (NNWP, blue line).

Figure 4. Difference in training epochs to converge to 0.1 % validation error. Negative values (blue bars) show channelwise subnetworks that
converged faster using weight propagation, while positive values (red bars) indicate channels whose subnetworks converged more quickly
when trained from scratch.

in Fig. 2, and the comparatively high prediction errors for
the H2O absorption bands shown in Fig. 3.

4 Atmospheric correction with the neural RTM
emulator

We now evaluate the neural RTM emulator in the context
of a surface–atmosphere retrieval problem, retrieving surface
reflectance for comparison to known surface materials. To
that end, we fused the optimal estimation (OE) formalism of
Rodgers (2000), following the specific approach of Thomp-
son et al. (2018c) for application to imaging spectroscopy.
The OE method estimates the atmosphere and surface state
vector by an iterative least-squares optimization of the for-
ward model’s match to the measured radiances. Cost terms
related to observation error and prior probabilities of state
vector elements ensure rigorous propagation of uncertainties
in the retrieval.

Continuing our case study, we begin by computing radio-
metric calibration factors for the PRISM flight line via vi-
carious calibration. This procedure, similar to standard prac-
tice calibration for imaging spectrometers (Thompson et al.,
2018a), projects the residual error in retrieved surface re-
flectance back into radiance space where it becomes a mul-
tiplicative correction factor applied independently to each
channel. We generate a “standardized” surface reflectance
target by performing a first-principles retrieval for a beach
sand radiance spectrum manually selected from the target

PRISM image. We smooth the resulting surface reflectance
spectrum to suppress significant atmospheric features, and
use the smoothed spectrum to generate radiometric correc-
tion factors appropriate to our flight line. Applying the re-
sulting factors fine tunes the calibration for optimal results
and suppresses residual errors caused by uncertainty in spec-
tral response or RTM inaccuracy. For reference, the beach
sand radiance spectrum and the resulting smoothed surface
reflectance spectrum are shown in Fig. 6.

We applied the atmospheric correction procedure to a set
of radiance spectra from the PRISM flight line representing
a diverse range of surface materials including grass, rooftop
materials, soil, and seafoam. Figure 7 shows a successful re-
trieval result for a radiance spectrum representing grass on
a golf course fairway. The inversion (orange line) perfectly
matches the measured radiance (black dashed line) in Fig. 7a.
In Fig. 7b, the estimated surface reflectance (blue line) is
an extremely smooth and faithful estimate of a dark veg-
etation spectrum. Figure 8 shows additional radiance spec-
tra (panel a) and their corresponding surface reflectance re-
trievals (panel b). The high-quality surface reflectance esti-
mates – evidenced by the lack of residual bumps caused by
atmospheric absorption and the flat, low surface reflectance
profiles in the aerosol-dominated interval from 400 to 450 nm
– provide additional confidence in the network’s value for
atmospheric correction. Our neural RTM emulator runs in
less than 5 ms per PRISM spectrum (about 0.02 ms per chan-
nel). This represents a reduction of several orders of magni-
tude in runtime in comparison to analogous first-principles
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Figure 5. Pairwise contour plots showing the ρobs test prediction error (RMSE) surfaces with respect to the state parameter values specified
in Table 1. Contour labels on the off-diagonal subplots give the error levels associated with each contour. Diagonal subplots show the average
RMSE in 10 uniformly spaced bins spanning the (x axis) range of each parameter. Vertical labels on the diagonal subplots indicate the
minimum and maximum error values for each parameter and their corresponding bins.

Figure 6. PRISM radiance spectrum (a) and the resulting smoothed
reflectance (b) spectrum for the beach sand target used in the vicar-
ious calibration procedure.

RTMs (i.e., monochromatic RTMs that solve the coupled
scattering–absorption problem in a computationally exact
manner, such as DISORT), which typically required over
10 min to generate a spectrum at 0.1 nm spacing (about 0.15 s
per channel).

5 Conclusions

Neural network RTM emulation offers a path to reduce both
interpolation inaccuracy and simultaneously runtime by sev-
eral orders of magnitude. A well-parametrized neural RTM
is capable of modeling state parameter spaces with signifi-
cantly higher accuracy than conventional lookup-table-based
approaches. Such high-capacity statistical models have po-
tential for modeling state parameter spaces with much higher
dimensionality than current methods.
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Figure 7. Example surface reflectance retrieval for a PRISM vegetation spectrum. Panel (a) shows the measured (black dashed spectrum)
versus predicted (orange spectrum) radiance spectra. Panel (b) shows the retrieved surface reflectance spectrum (blue spectrum).

Figure 8. Selected radiance spectra (a) and corresponding surface reflectance retrievals (b) using the ATREM-based atmospheric correction
approach of Thompson et al. (2015) (ATR15, green spectra) versus optimal estimation equipped with our neural network RTM emulator as
the forward model (OENN, blue spectra).

The computational and theoretical advantages provided
by fast and accurate RTM emulators are particularly use-
ful for iterative approaches that must rerun the entire for-
ward model many times for each spectrum. Equipping iter-
ative formalisms such as optimal estimation with the neural
RTM forward model also enables new retrieval approaches
that jointly estimate surface and atmospheric parameters.
Joint retrieval of surface and atmospheric parameters car-
ries several advantages. It becomes possible to estimate ar-
bitrary parameters of the atmospheric state simply by adjust-
ing the RTM dynamically during the fitting process. A joint
retrieval can represent strong coupling between surface and
atmosphere, including bidirectional reflectance distribution
function (BRDF) effects, and obviates parametric approx-
imations. The ability to model strong coupling is particu-

larly important for conditions with off-nadir views or haze.
Finally, a combined model enables a rigorous, unified, and
quantitative treatment of uncertainty, respecting uncertain-
ties in all measurement processes and modeled variables and
propagating posterior uncertainties for downstream analysis.

Our results also demonstrate the advantages of informed
sampling of the state space. Finer grid sampling in rapidly
varying regions of the state space is advantageous to cap-
ture complex and often nonlinear interactions among state
parameters, while coarse sampling is beneficial in regions
of the state space that vary smoothly to reduce redundancy
and computational overhead. Uninformed sampling of the
state space may not only lead to inaccurate models, but
can also yield overly optimistic or inconsistent results when
measuring test accuracy or convergence time during cross-
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validation. For example, as Figs. 2 and 5 indicate, much
of the state space is relatively smooth. Traditional cross-
validation strategies that randomly partition the state space
into training and test sets will indicate the subnetworks gen-
eralize well due to sampling bias in regions of the state space
that are easy to model. Sample stratification approaches dur-
ing cross-validation can help to ensure each subnetwork ac-
curately captures the parameters that are more difficult to
model. However, leveraging an informed sample of the state
space would not only eliminate the need for sample stratifica-
tion during cross-validation, but would also ultimately yield
more accurate models with reduced computational overhead.

Future work will investigate Bayesian optimization and
smart sampling approaches (e.g., Loyola R et al., 2016) that
may help to provide a more informed sampling the state pa-
rameter space. We will also construct a more “universal” neu-
ral RTM designed to generate ρobs predictions for a more
comprehensive set of state parameters including aerosol op-
tical properties at 0.1 nm spectral resolution. We also aim to
reduce approximation error still further in order to keep the
fractional contribution small for very dark and/or noisy tar-
gets.

Code availability. The Python source code used to train and apply
the neural RTM for optimal-estimation-based atmospheric correc-
tion is available at https://github.com/dsmbgu8/isofit (last access:
April 2019). The data used to train the RTM emulator, including
the input state vectors and corresponding ρobs spectra resampled
to PRISM instrument wavelengths, are also available in the exam-
ples/20151026_SantaMonica subdirectory at the above URL.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/amt-12-2567-2019-supplement.
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