Supplement of Atmos. Meas. Tech., 12, 2733–2743, 2019 https://doi.org/10.5194/amt-12-2733-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. ## Supplement of # A portable dual-smog-chamber system for atmospheric aerosol field studies Christos Kaltsonoudis et al. Correspondence to: Spyros N. Pandis (spyros@chemeng.upatras.gr) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Table S1: List of performed experiments | Exp. | Date | Туре | Added components | Initial
Concentrations | Comments | |------|----------|---------------------------------|---|---|---| | 1 | 11/5/14 | Blank/contamination | Clean air | | | | 2 | 5/11/14 | Blank/contamination | Clean air,
AS seeds | 15 μg m ⁻³ AS | Initial characterization
experiments.
Study of possible | | 3 | 13/11/14 | Blank/contamination | Clean air | | | | 4 | 19/11/14 | Blank/contamination | Clean air,
a-pinene,
O ₃ | 10 ppb APin
110 ppb O ₃ | | | 5 | 20/11/14 | Blank/contamination | Clean air | | contamination due to | | 6 | 28/1/15 | Blank/contamination | Clean air,
AS seeds | 10 μg m ⁻³ AS | leaks and/or due to components different than those added. | | 7 | 29/3/15 | Blank/contamination | Clean air,
AS seeds,
O ₃ ,
a-pinene | 10 μg m ⁻³ AS
60 ppb O ₃
10 ppb APin | | | 8 | 4/5/15 | Blank/contamination | Clean air | | | | 9 | 9/6/15 | $J_{ m NO2}$ measurement | NO, O_3 | 190 ppb NO ₂
66 ppb O ₃ | $J_{ m NO2}$ measurement | | 10 | 14/10/15 | Field test (Patras) | Ambient air | 1μg m ⁻³ PM ₁ | | | 11 | 15/10/15 | Field test (Patras) | Zero air, seeds | 15 μg m ⁻³ AS | Initial field deployment for system evaluation | | 12 | 16/10/15 | Field test (Patras) | Ambient air, a-pinene | 1 μg m ⁻³ PM ₁
20 ppb APin | | | 13 | 28/5/16 | Field test/FAME16 ^a | Zero air,
AS seeds | 10 μg m ⁻³ AS | Campaign deployment for system evaluation | | 14 | 30/5/16 | Field test/FAME16 ^a | Ambient air,
HONO, AS
seeds | 0.75 μg m ⁻³ PM ₁
11 μg m ⁻³ AS | | | 15 | 31/5/16 | Field test/FAME16 ^a | Ambient air,
HONO, AS
seeds | 0.9 μg m ⁻³ PM ₁
30 μg m ⁻³ AS | | | 16 | 1/6/16 | Field test/FAME 16 ^a | Ambient air,
HONO, AS
seeds | 0.4 μg m ⁻³ PM ₁
20 μg m ⁻³ AS | | | 17 | 24/2/17 | Particle wall loss | Clean air,
AS seeds | 15 μg m ⁻³ AS | | | 18 | 28/2/17 | Particle wall loss | Clean air,
AS seeds | 25 μg m ⁻³ AS | Wall loss tests | | 19 | 2/3/17 | Particle wall loss | Clean air,
AS seeds | 50 μg m ⁻³ AS | | | 20 | 13/3/17 | Particle wall loss | Clean air,
AS seeds | 150 μg m ⁻³ AS | | | 21 | 14/3/17 | Particle wall loss | Clean air, | 100 μg m ⁻³ AS | | | | | | AS seeds | | | |----|----------|--|--------------------------|--|---| | 22 | 15/3/17 | Particle wall loss | Clean air, AS seeds | 150 μg m ⁻³ AS | | | 23 | 28/3/17 | Particle wall loss | Clean air,
AS seeds | 1500 μg m ⁻³ AS | | | 24 | 31/3/17 | Particle wall loss | Clean air,
AS seeds | 1500 μg m ⁻³ AS | | | 25 | 11/4/17 | Ambient sampling efficiency | Ambient air | 1.2 μg m ⁻³ PM ₁ | | | 26 | 13/4/17 | Ambient sampling efficiency | Ambient air | 0.6 μg m ⁻³ PM ₁ | Sampling efficiency of pumps/tubing | | 27 | 14/4/17 | Ambient sampling efficiency | Ambient air | 1 μg m ⁻³ PM ₁ | | | 28 | 25/4/17 | Particle wall loss | Clean air,
AS seeds | 2000 μg m ⁻³ AS | | | 29 | 24/5/17 | Particle wall loss | Clean air,
AS seeds | 15 μg m ⁻³ AS | Wall loss tests | | 30 | 25/5/17 | Particle wall loss | Clean air,
AS seeds | 13 μg m ⁻³ AS | | | 31 | 1/6/17 | Ambient sampling efficiency | Ambient air | 1.4 μg m ⁻³ PM ₁ | Sampling efficiency | | 32 | 12/6/17 | Ambient sampling efficiency | Ambient air | 4 μg m ⁻³ PM ₁ | characterization | | 33 | 16/6/17 | Particle wall loss | Clean air,
AS seeds | 160 μg m ⁻³ AS | | | 34 | 21/6/17 | Particle wall loss | Clean air,
AS seeds | 70 μg m ⁻³ AS
RH= 35-85% | Wall losses under different RH conditions | | 35 | 22/6/17 | Particle wall loss | Clean air,
AS seeds | 350 μg m ⁻³ AS | | | 36 | 26/6/17 | Pump contamination test | Clean air | | Testing for potential VOC contamination | | 37 | 8/9/17 | Ambient sampling efficiency | Ambient air | 1.4 μg m ⁻³ PM ₁ | | | 38 | 2/9/17 | HONO blank | Clean air
HONO | ~100 ppb
HONO | | | 39 | 4/10/17 | J _{NO2} characterization | NO,
O ₃ | 470 ppb NO ₂
15 ppb O ₃ | $J_{\rm NO2} = 0.03~{\rm min}^{-1}$ | | 40 | 10/10/17 | HONO blank | Clean air
HONO | ~100 ppb
HONO | Testing for potential contamination during | | 41 | 16/10/17 | HONO blank | Clean air
HONO | ~100 ppb
HONO | HONO injection and photolysis | | 42 | 7/12/17 | Ambient test | Ambient air | 1.4 μg m ⁻³ PM | Chamber similarity | | 43 | 16/12/17 | RH increase blank | Clean air | | Testing for potential contamination during water vapor injection to increase RH | | 44 | 23/4/18 | Oxidation of ambient air, Pittsburgh, PA | Ambient air,
HONO, AS | 3.6 μg m ⁻³ PM ₁ | Pilot study for system evaluation | | | | | seeds | | | |----|---------|--|---|---------------------------------|---| | 45 | 15/219 | HONO, NO _x , O ₃ | Clean air,
O_3 ,
RH < 10%
$J_{NO2} = 0.03$
min^{-1} | 145 ppb O ₃ | | | 46 | 18/2/19 | HONO, NO _x , O ₃ | Clean air,
NO, d-
butanol,
RH<10%
J_{NO2} =0.03
min ⁻¹ | 15 ppb O ₃ | Interactions between NOx, O ₃ , and the walls | | 47 | 19/2/19 | HONO, NO _x , O ₃ | Clean air,
O_3 , RH 42%,
$J_{NO2}=0.03$
min ⁻¹ | 150 ppb O ₃ | | | 48 | 21/2/19 | HONO, NO _x , O ₃ | Clean air,
NO, d-
butanol,
RH=49%
J_{NO2} =0.03
min ⁻¹ | 12 ppb NO | | | 49 | 25/2/19 | HONO, NO _x , O ₃ | Clean air,
O_3 ,
RH<10%
J_{NO2} =0.11
min ⁻¹ | 60 ppb O ₃ | | | 50 | 26/2/19 | HONO, NO _x , O ₃ | Clean air,
NO, d-
butanol,
RH<10%
J_{NO2} =0.11
min ⁻¹ | 26 ppb NO | - | | 51 | 26/2/19 | $J_{ m NO2}$ characterization | NO, | 50 ppb NO ₂ | Low UV J_{NO2} 0.03 min ⁻¹
Hi UV J_{NO2} 0.11 min ⁻¹ | | 52 | 27/2/19 | HONO, NO _x , O ₃ | O ₃ Clean air, NO, d- butanol, RH 56% J_{NO2} =0.11 min ⁻¹ | 42 ppb O ₃ 46 ppb NO | | | 53 | 28/2/19 | HONO, NO _x , O ₃ | Clean air,
RH 46%
J_{NO2} =0.11
min ⁻¹ | | - Effects of RH and UV on HONO off-gassing and OH production | | 54 | 1/3/19 | HONO, NO _x , O ₃ | Clean air,
O ₃ , RH 47%
J_{NO2} =0.11
min ⁻¹ | 30 ppb O ₃ | | | 55 | 3/3/19 | VOC wall losses | Clean air, | 140 ppb Tol. | VOC losses | | | | | Toluene | | |----|---------------------------|------------------------|----------------|--------------| | 56 | 3/3/19 | VOC wall losses | Clean air, | 80 ppb Tol. | | | | | Toluene | | | 57 | 57 4/3/19 VOC wall losses | VOC well legge | Clean air, | 180 ppb APin | | 37 | | a-pinene | 160 ppo Ar III | | | 58 | 4/3/19 | /19 VOC wall losses | Clean air, | 150 ppb APin | | | | 4/3/19 VOC Wall losses | a-pinene | | ^a FAME 16: Finokalia Aerosol Measurement Experiment 2016, Finokalia, Greece. ## 1. Chamber Artificial Light Spectrum Figure S1. The artificial light spectrum of the dual smog chamber system. ## 2. Auxiliary mechanism for the dual smog chamber system ## $NO_x \rightarrow Wall (NO_x)$ • For dark chamber, low RH (<10%): Negligible (below detection limit) - For $J_{NO2}=0.03 \text{ min}^{-1}$, low RH (<10%): 2.8×10^{-6} $4 \times 10^{-6} \text{ s}^{-1}$ - For $J_{\text{NO2}}=0.1 \text{ min}^{-1}$, low RH (<10%): Negligible (below detection limit) - For dark chamber, medium RH (40-60%): Negligible (below detection limit) - For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, medium RH (40-60%): $0.8 \times 10^{-6} 7.4 \times 10^{-6} \text{ s}^{-1}$ - For $J_{NO2} = 0.1 \text{ min}^{-1}$, medium RH (40-60%): $4.1 \times 10^{-6} 6.5 \times 10^{-6} \text{ s}^{-1}$ #### $O_3 \rightarrow Wall (O_3)$ - For dark chamber, low RH (<10%): $3.1\times10^{-6} 3.9\times10^{-6} \text{ s}^{-1}$ - For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, low RH (<10%): $2.5 \times 10^{-6} 4.4 \times 10^{-6} \text{ s}^{-1}$ - For $J_{\text{NO2}}=0.1 \text{ min}^{-1}$, low RH (<10%): $3.2 \times 10^{-6} 9.6 \times 10^{-6} \text{ s}^{-1}$ - For dark chamber, medium RH (40-60%): $2.3 \times 10^{-6} 5.5 \times 10^{-6} \text{ s}^{-1}$ - For $J_{NO2} = 0.03 \text{ min}^{-1}$, medium RH (40-60%): $11 \times 10^{-6} 16 \times 10^{-6} \text{ s}^{-1}$ - For J_{NO2} =0.1 min⁻¹, medium RH (40-60%): $2.8 \times 10^{-6} 10 \times 10^{-6} \text{ s}^{-1}$ #### Walls → OH (based on d-butanol decay) - For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, low RH (<10%): Below detection limit - For J_{NO2} =0.1 min⁻¹, low RH (<10%): OH production=3.4x10³ 7.9x10³ molecules cm⁻³ s⁻¹ - For J_{NO2} =0.03 min⁻¹, medium RH (40-60%): OH production=1.9x10⁴ 2.2x10⁴ molecules cm⁻³ s⁻¹ - For J_{NO2} =0.1 min⁻¹, medium RH (40-60%): OH production= $8x10^3 5.5x10^4$ molecules cm⁻³ s⁻¹ **Toluene** → Wall (Toluene): Dark, Low RH (<10%): Below detection limit. **A-pinene**→ **Wall (A-pinene**): Dark, Low RH (<10%): Below detection limit.