Supplement of Atmos. Meas. Tech., 12, 2733–2743, 2019 https://doi.org/10.5194/amt-12-2733-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

A portable dual-smog-chamber system for atmospheric aerosol field studies

Christos Kaltsonoudis et al.

Correspondence to: Spyros N. Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1: List of performed experiments

Exp.	Date	Туре	Added components	Initial Concentrations	Comments
1	11/5/14	Blank/contamination	Clean air		
2	5/11/14	Blank/contamination	Clean air, AS seeds	15 μg m ⁻³ AS	Initial characterization experiments. Study of possible
3	13/11/14	Blank/contamination	Clean air		
4	19/11/14	Blank/contamination	Clean air, a-pinene, O ₃	10 ppb APin 110 ppb O ₃	
5	20/11/14	Blank/contamination	Clean air		contamination due to
6	28/1/15	Blank/contamination	Clean air, AS seeds	10 μg m ⁻³ AS	leaks and/or due to components different than those added.
7	29/3/15	Blank/contamination	Clean air, AS seeds, O ₃ , a-pinene	10 μg m ⁻³ AS 60 ppb O ₃ 10 ppb APin	
8	4/5/15	Blank/contamination	Clean air		
9	9/6/15	$J_{ m NO2}$ measurement	NO, O_3	190 ppb NO ₂ 66 ppb O ₃	$J_{ m NO2}$ measurement
10	14/10/15	Field test (Patras)	Ambient air	1μg m ⁻³ PM ₁	
11	15/10/15	Field test (Patras)	Zero air, seeds	15 μg m ⁻³ AS	Initial field deployment for system evaluation
12	16/10/15	Field test (Patras)	Ambient air, a-pinene	1 μg m ⁻³ PM ₁ 20 ppb APin	
13	28/5/16	Field test/FAME16 ^a	Zero air, AS seeds	10 μg m ⁻³ AS	Campaign deployment for system evaluation
14	30/5/16	Field test/FAME16 ^a	Ambient air, HONO, AS seeds	0.75 μg m ⁻³ PM ₁ 11 μg m ⁻³ AS	
15	31/5/16	Field test/FAME16 ^a	Ambient air, HONO, AS seeds	0.9 μg m ⁻³ PM ₁ 30 μg m ⁻³ AS	
16	1/6/16	Field test/FAME 16 ^a	Ambient air, HONO, AS seeds	0.4 μg m ⁻³ PM ₁ 20 μg m ⁻³ AS	
17	24/2/17	Particle wall loss	Clean air, AS seeds	15 μg m ⁻³ AS	
18	28/2/17	Particle wall loss	Clean air, AS seeds	25 μg m ⁻³ AS	Wall loss tests
19	2/3/17	Particle wall loss	Clean air, AS seeds	50 μg m ⁻³ AS	
20	13/3/17	Particle wall loss	Clean air, AS seeds	150 μg m ⁻³ AS	
21	14/3/17	Particle wall loss	Clean air,	100 μg m ⁻³ AS	

			AS seeds		
22	15/3/17	Particle wall loss	Clean air, AS seeds	150 μg m ⁻³ AS	
23	28/3/17	Particle wall loss	Clean air, AS seeds	1500 μg m ⁻³ AS	
24	31/3/17	Particle wall loss	Clean air, AS seeds	1500 μg m ⁻³ AS	
25	11/4/17	Ambient sampling efficiency	Ambient air	1.2 μg m ⁻³ PM ₁	
26	13/4/17	Ambient sampling efficiency	Ambient air	0.6 μg m ⁻³ PM ₁	Sampling efficiency of pumps/tubing
27	14/4/17	Ambient sampling efficiency	Ambient air	1 μg m ⁻³ PM ₁	
28	25/4/17	Particle wall loss	Clean air, AS seeds	2000 μg m ⁻³ AS	
29	24/5/17	Particle wall loss	Clean air, AS seeds	15 μg m ⁻³ AS	Wall loss tests
30	25/5/17	Particle wall loss	Clean air, AS seeds	13 μg m ⁻³ AS	
31	1/6/17	Ambient sampling efficiency	Ambient air	1.4 μg m ⁻³ PM ₁	Sampling efficiency
32	12/6/17	Ambient sampling efficiency	Ambient air	4 μg m ⁻³ PM ₁	characterization
33	16/6/17	Particle wall loss	Clean air, AS seeds	160 μg m ⁻³ AS	
34	21/6/17	Particle wall loss	Clean air, AS seeds	70 μg m ⁻³ AS RH= 35-85%	Wall losses under different RH conditions
35	22/6/17	Particle wall loss	Clean air, AS seeds	350 μg m ⁻³ AS	
36	26/6/17	Pump contamination test	Clean air		Testing for potential VOC contamination
37	8/9/17	Ambient sampling efficiency	Ambient air	1.4 μg m ⁻³ PM ₁	
38	2/9/17	HONO blank	Clean air HONO	~100 ppb HONO	
39	4/10/17	J _{NO2} characterization	NO, O ₃	470 ppb NO ₂ 15 ppb O ₃	$J_{\rm NO2} = 0.03~{\rm min}^{-1}$
40	10/10/17	HONO blank	Clean air HONO	~100 ppb HONO	Testing for potential contamination during
41	16/10/17	HONO blank	Clean air HONO	~100 ppb HONO	HONO injection and photolysis
42	7/12/17	Ambient test	Ambient air	1.4 μg m ⁻³ PM	Chamber similarity
43	16/12/17	RH increase blank	Clean air		Testing for potential contamination during water vapor injection to increase RH
44	23/4/18	Oxidation of ambient air, Pittsburgh, PA	Ambient air, HONO, AS	3.6 μg m ⁻³ PM ₁	Pilot study for system evaluation

			seeds		
45	15/219	HONO, NO _x , O ₃	Clean air, O_3 , RH < 10% $J_{NO2} = 0.03$ min^{-1}	145 ppb O ₃	
46	18/2/19	HONO, NO _x , O ₃	Clean air, NO, d- butanol, RH<10% J_{NO2} =0.03 min ⁻¹	15 ppb O ₃	Interactions between NOx, O ₃ , and the walls
47	19/2/19	HONO, NO _x , O ₃	Clean air, O_3 , RH 42%, $J_{NO2}=0.03$ min ⁻¹	150 ppb O ₃	
48	21/2/19	HONO, NO _x , O ₃	Clean air, NO, d- butanol, RH=49% J_{NO2} =0.03 min ⁻¹	12 ppb NO	
49	25/2/19	HONO, NO _x , O ₃	Clean air, O_3 , RH<10% J_{NO2} =0.11 min ⁻¹	60 ppb O ₃	
50	26/2/19	HONO, NO _x , O ₃	Clean air, NO, d- butanol, RH<10% J_{NO2} =0.11 min ⁻¹	26 ppb NO	-
51	26/2/19	$J_{ m NO2}$ characterization	NO,	50 ppb NO ₂	Low UV J_{NO2} 0.03 min ⁻¹ Hi UV J_{NO2} 0.11 min ⁻¹
52	27/2/19	HONO, NO _x , O ₃	O ₃ Clean air, NO, d- butanol, RH 56% J_{NO2} =0.11 min ⁻¹	42 ppb O ₃ 46 ppb NO	
53	28/2/19	HONO, NO _x , O ₃	Clean air, RH 46% J_{NO2} =0.11 min ⁻¹		- Effects of RH and UV on HONO off-gassing and OH production
54	1/3/19	HONO, NO _x , O ₃	Clean air, O ₃ , RH 47% J_{NO2} =0.11 min ⁻¹	30 ppb O ₃	
55	3/3/19	VOC wall losses	Clean air,	140 ppb Tol.	VOC losses

			Toluene	
56	3/3/19	VOC wall losses	Clean air,	80 ppb Tol.
			Toluene	
57	57 4/3/19 VOC wall losses	VOC well legge	Clean air,	180 ppb APin
37		a-pinene	160 ppo Ar III	
58	4/3/19	/19 VOC wall losses	Clean air,	150 ppb APin
		4/3/19 VOC Wall losses	a-pinene	

^a FAME 16: Finokalia Aerosol Measurement Experiment 2016, Finokalia, Greece.

1. Chamber Artificial Light Spectrum

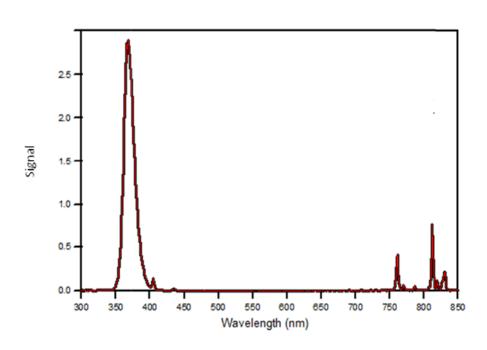


Figure S1. The artificial light spectrum of the dual smog chamber system.

2. Auxiliary mechanism for the dual smog chamber system

$NO_x \rightarrow Wall (NO_x)$

• For dark chamber, low RH (<10%): Negligible (below detection limit)

- For $J_{NO2}=0.03 \text{ min}^{-1}$, low RH (<10%): 2.8×10^{-6} $4 \times 10^{-6} \text{ s}^{-1}$
- For $J_{\text{NO2}}=0.1 \text{ min}^{-1}$, low RH (<10%): Negligible (below detection limit)
- For dark chamber, medium RH (40-60%): Negligible (below detection limit)
- For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, medium RH (40-60%): $0.8 \times 10^{-6} 7.4 \times 10^{-6} \text{ s}^{-1}$
- For $J_{NO2} = 0.1 \text{ min}^{-1}$, medium RH (40-60%): $4.1 \times 10^{-6} 6.5 \times 10^{-6} \text{ s}^{-1}$

$O_3 \rightarrow Wall (O_3)$

- For dark chamber, low RH (<10%): $3.1\times10^{-6} 3.9\times10^{-6} \text{ s}^{-1}$
- For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, low RH (<10%): $2.5 \times 10^{-6} 4.4 \times 10^{-6} \text{ s}^{-1}$
- For $J_{\text{NO2}}=0.1 \text{ min}^{-1}$, low RH (<10%): $3.2 \times 10^{-6} 9.6 \times 10^{-6} \text{ s}^{-1}$
- For dark chamber, medium RH (40-60%): $2.3 \times 10^{-6} 5.5 \times 10^{-6} \text{ s}^{-1}$
- For $J_{NO2} = 0.03 \text{ min}^{-1}$, medium RH (40-60%): $11 \times 10^{-6} 16 \times 10^{-6} \text{ s}^{-1}$
- For J_{NO2} =0.1 min⁻¹, medium RH (40-60%): $2.8 \times 10^{-6} 10 \times 10^{-6} \text{ s}^{-1}$

Walls → OH (based on d-butanol decay)

- For $J_{\text{NO2}}=0.03 \text{ min}^{-1}$, low RH (<10%): Below detection limit
- For J_{NO2} =0.1 min⁻¹, low RH (<10%): OH production=3.4x10³ 7.9x10³ molecules cm⁻³ s⁻¹
- For J_{NO2} =0.03 min⁻¹, medium RH (40-60%): OH production=1.9x10⁴ 2.2x10⁴ molecules cm⁻³ s⁻¹
- For J_{NO2} =0.1 min⁻¹, medium RH (40-60%): OH production= $8x10^3 5.5x10^4$ molecules cm⁻³ s⁻¹

Toluene → Wall (Toluene): Dark, Low RH (<10%): Below detection limit.

A-pinene→ **Wall (A-pinene**): Dark, Low RH (<10%): Below detection limit.