

Supplement of

Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases

Bastian Stieger et al.

Correspondence to: Hartmut Herrmann (herrmann@tropos.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

- 1 Electronic Supplementary Material
- 2

- 4 Figure S1. Switch modes of the external 6-way-valve. (1) Sample loop is filled with the
- sample solutions. In (2) and (3) valve is switched to "fill mode" to pre-concentrate the sample.
 During the "injection mode" in (4), the eluent dissolved the trapped ions and flows to the
- burning the injection mode in (4), the entent dissolved the trapped ions and nows to the
 separation columns. (https://www.metrohm.com/de-de/produkte/ionenchromatographie/ionen
- chromatographie-inline-probenvorbereitung/, 10th August 2018)

Figure S2. (a) Chromatogram of a standard solution with aqueous concentrations of 150 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 75 μ g l⁻¹ for NO₂⁻, 15 μ g l⁻¹ for F⁻, Br⁻ and 3 μ g l⁻¹ for all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of (a).

Figure S3. (a) Chromatogram of a standard solution with aqueous concentrations of $10 \ \mu g \ l^{-1}$ for Cl⁻, NO₃⁻, SO₄²⁻, $5 \mu g l^{-1}$ for NO₂⁻ and $1 \mu g l^{-1}$ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. $T = 65 \text{ }^{\circ}\text{C}$ and eluent flow of 0.6 ml min^{-1} . (b) Zoom in of chromatogram in (a).

Figure S4. (a) Chromatogram of a standard solution with aqueous concentrations of $10 \ \mu g \ l^{-1}$ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. $T = 65 \text{ }^{\circ}\text{C}$ and eluent flow of 0.7 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S5. (a) Chromatogram of a standard solution with aqueous concentrations of $10 \ \mu g \ l^{-1}$ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. $T = 65 \text{ }^{\circ}\text{C}$ and eluent flow of 0.9 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S6. (a) Chromatogram of a standard solution with aqueous concentrations of $10 \ \mu g \ l^{-1}$ for Cl⁻, NO₃⁻, SO₄²⁻, $5 \mu g l^{-1}$ for NO₂⁻ and $1 \mu g l^{-1}$ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. $T = 65 \text{ }^{\circ}\text{C}$ and eluent flow of 1.0 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S7. (a) Different eluent concentration of 6 mM Na₂CO₃ and 0.75 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S8. (a) Different eluent concentration of 6.5 mM Na₂CO₃ and 0.75 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S9. (a) Different eluent concentration of 7.5 mM Na₂CO₃ and 0.75 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in

75 of chromatogram in (a).

Figure S10. (a) Different eluent concentration of 8 mM Na₂CO₃ and 0.75 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S11. (a) Different eluent concentration of 7 mM Na₂CO₃ and 0.65 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S12. (a) Different eluent concentration of 7 mM Na₂CO₃ and 0.7 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S13. (a) Different eluent concentration of 7 mM Na₂CO₃ and 0.8 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S14. (a) Different eluent concentration of 7 mM Na₂CO₃ and 0.85 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of 10 μ g l⁻¹ for Cl⁻, NO₃⁻, SO₄²⁻, 5 μ g l⁻¹ for NO₂⁻ and 1 μ g l⁻¹ for F⁻, Br⁻ as well as all organic acids. Numbers in front of the ion names are the retention times. T = 65 °C and eluent flow of 0.8 ml min⁻¹. (b) Zoom in of chromatogram in (a).

Figure S15. Temperature variation of the column oven for 55 $^{\circ}$ C (black) and 65 $^{\circ}$ C (red).

Eluent A concentration is 1 mM Na₂CO₃ / 0.75 mM NaOH and eluent B is 14 mM Na₂CO₃ / 0.75 mM NaOH. Chromatogram of a standard solution with aqueous concentrations of

127 $50 \ \mu g \ l^{-1}$ for Cl⁻, NO₃⁻, SO₄²⁻, 25 $\ \mu g \ l^{-1}$ for NO₂⁻ and 3 $\ \mu g \ l^{-1}$ for F⁻, Br⁻ as well as all organic 128 acids. Eluent flow of 1.0 ml min⁻¹.

Figure S16. Calibration functions of (a) F^- , (b) Cl^- , (c) NO_3^- , (d) Br^- , (e) $SO_4^{2^-}$, (f) methanesulfonate, (g) formate, (h) acetate, (i) glycolate, (j) propionate, (k) butyrate, (l) oxalate, (m) malonate, (n) malate, (o) succinate and (p) glutarate.

Figure S17. Scatter plots of (a) HCl, (b) HONO, (c) HNO₃ and (d) SO₂ for the MARGA and
Compact-IC measurements in Melpitz during the one year long measurement campaign.

Figure S18. Scatter plots of (a) Cl^{-} , (b) NO_{3}^{-} and (c) SO_{4}^{2-} for the MARGA and Compact-IC measurements in Melpitz during the one year long measurement campaign.

Figure S19. Meteorological parameters during the example application from 1st May until
 14th May 2017.

Ion	TV	Linearity	
F	56.9	quadratic	
Cl-	0.2	linear	
NO ₂ ⁻	2.4	linear	
Br⁻	16.4	quadratic	
NO ₃ -	2.6	linear	
SO4 ²⁻	26.4	quadratic	
Methanesulfonate	36.8	quadratic	
Formate	1.6	linear	
Acetate	24.6	quadratic	
Glycolate	34.9	quadratic	
Propionate	0.3	linear	
Butyrate	9.1	linear	
Pyruvate	267.8	quadratic	
Oxalate	2.8	linear	
Malonate	10.7	linear	
Malate	23.7	quadratic	
Succinate	88.8	quadratic	
Glutarate	16.8	quadratic	

Table S1. Linearity test for the calibration and resulting test values (TV) for each ion.

157	WRD efficiency		
158			
159	d_i	-	inner diameter (4.2 cm)
160	$d_{\rm o}$	-	outer diameter (4.5 cm)
161	d	-	hydrodynamic equivalent diameter ($d_o - d_i = 0.3$ cm)
162	L	-	length of the denuder (30 cm)
163	D	-	diffusion coefficient (calculated according to Fuller et al. (1966))
164	u	-	flow velocity (16.7 l min ⁻¹)
165	Е	-	denuder efficiency
166			

Table S2. Equations for the calculations of the efficiencies (E) for annular denuders.

	Winiwarter (1989)	Possanzini et al.	De Santis (1994)	Berg et al. (2010)
		(1983)		
X	$\frac{2LD}{d^2u}$	$\frac{\pi LD(d_i + d_o)}{4ud}$	$\frac{\pi LD(d_i + d_o)}{ud}$	Efficiencies were calculated with their
E	$1 - 9.11 \cdot e^{-3.884^2 X}$	$1 - 0.82 \cdot e^{-22.53X}$	$1 - 0.91 \cdot e^{-7.54X}$	calculator

168

169

Berg, J. M., James, D. L., Berg, C. F., Toda, K., and Dasgupta, P. K.: Gas collection
efficiency of annular denuders: A spreadsheet-based calculator, Anal Chim Acta, 664, 56-61,
10.1016/j.aca.2010.02.006, 2010.

- De Santis, F.: Comment on Wet Effluent Denuder Coupled Liquid/Ion Chromatography
 Systems: Annular and Parallel Plate Denuders, Anal Chem, 66, 3503-3504, DOI
 10.1021/ac00092a032, 1994.
- Fuller, E. N., Schettle, P. D., and Giddings, J. C.: A New Method for Prediction of Binary
 Gas-Phase Diffusion Coeffecients, Ind Eng Chem, 58, 19-+, 1966.
- Possanzini, M., Febo, A., and Liberti, A.: New Design of a High-Performance Denuder for
 the Sampling of Atmospheric Pollutants, Atmos Environ, 17, 2605-2610, Doi 10.1016/00046981(83)90089-6, 1983.

- 181 Winiwarter, W.: A Calculation Procedure for the Determination of the Collection Efficiency
- 182 in Annular Denuders, Atmos Environ, 23, 1997-2002, Doi 10.1016/0004-6981(89)90526-X,
- 183 1989.