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Abstract. Oceans cover over 70 % of the Earth’s surface.
Ship-based measurements are an important component in
developing an understanding of atmosphere of this vast re-
gion. A common problem that impacts the quality of atmo-
spheric data collected from marine research vessels is ex-
haust from both diesel combustion and waste incineration
from the ship itself. Described here is an algorithm, devel-
oped for the recently commissioned Australian blue-water
research vessel (RV) Investigator, that identifies exhaust pe-
riods in sampled air. The RV Investigator, with two dedi-
cated atmospheric laboratories, represents an unprecedented
opportunity for high-quality measurements of the marine at-
mosphere. The algorithm avoids using ancillary data such as
wind speed and direction, and instead utilises components of
the exhaust itself – aerosol number concentration, black car-
bon concentration, and carbon monoxide and carbon diox-
ide mixing ratios. The exhaust signal is identified within
each of these parameters individually before they are com-
bined and an additional window filter is applied. The algo-
rithm relies heavily on statistical methods, rather than setting
thresholds that are too rigid to accommodate potential tempo-
ral changes. The algorithm is more effective than traditional
wind-based filters in removing exhaust data without remov-
ing exhaust-free data, which commonly occurs with tradi-
tional filters. In application to the current dataset, the algo-
rithm identifies 26 % of the wind filter’s “clean” data as ex-
haust, and recovers 5 % of data falsely removed by the wind
filter. With suitable testing, the algorithm has the potential
to be applied to other ship-based atmospheric measurements
where suitable measurements exist.

1 Introduction

When undertaking atmospheric composition and chemistry
measurements, a common issue that impacts data quality is
the ability to effectively identify and potentially filter out
sources of contamination. The most common local contami-
nation source is often emissions from power generation. Typ-
ically, power generation burns hydrocarbon fuels (such as
diesel) and emits a range of combustion products that are
often the target species being measured in the background
atmosphere.

Identification of periods of contamination is performed via
a variety of methods depending on the contamination source
and the target research question. A commonly used and
reasonably reliable method for identification of local point
source contaminants is by simple wind direction and speed
criteria (e.g. Molloy and Galbally, 2014; Steele et al., 2003;
Chambers et al., 2017, and references therein). This method
aims to capture the exhaust plume diffusion processes using
the two wind measurements as proxies. It is a robust method
in environments where background composition is similar to
the contamination source, such as in urban areas. However,
because of the oversimplified parameterisation, very conser-
vative bounds are often required, which results in the removal
of often significant numbers of contaminant-free data. In ad-
dition, this method assumes relatively uniform flow charac-
teristics and will fail when atmospheric recirculation results
in measurements of contaminated air from directions outside
the specified range. Figure 1 exemplifies this issue, where
cloud condensation nuclei (CCN) number concentrations are
found to be unreasonably high for the marine dataset used
here, even after a wind speed and direction filter is utilised.
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Figure 1. CCN plotted against wind direction (relative to the plat-
form) from the RV Investigator voyage IN2016_V03. Red: all raw
data. Blue: after data are removed when wind speed is less than
5 ms−1 or relative wind directions between 90 and 270◦. Uncon-
taminated data are usually less than 1000 cm−3 – see Fig. A1. Data
filtered with just wind measurements still show clear signs of con-
tamination.

Depending on the environment, a combination of wind
criteria and in situ composition measurements can be used
to help overcome the recirculation issue. For example, high
concentrations of nitrogen oxides (NOx) produced from
combustion processes will react rapidly with background
ozone (O3), resulting in O3-depleted air, which will only
regenerate hours downwind through NOx chemistry and
photolysis processes (World Meteorological Organization,
1985). The use of O3 can improve wind-based filters to help
identify recirculation, depending on the timescale of interest
(e.g. Humphries et al., 2015). However, the problem of false-
positive identification remains as long as measurements of
ancillary data are used for identification. Ideally, identifica-
tion of contaminated air would use only measurements of
species emitted directly by the source itself in order to min-
imise false-positive contaminant identification and maximise
the usable data from a dataset.

In the current study, an exhaust identification algorithm
is developed for application to data collected on board Aus-
tralia’s new marine research vessel (RV) Investigator utilis-
ing measurements of species emitted directly by combustion
processes occurring on the ship – namely diesel combustion
and waste incineration. Both combustion processes (here-
after referred to as “exhaust”) have similar emissions rela-
tive to the background atmosphere (Reşitoğlu et al., 2015;
Johnke, 1999; Jones and Harrison, 2016, and references
therein). Emitted species include carbon dioxide (CO2), car-
bon monoxide (CO), NOx , hydrocarbons and high concen-
trations of aerosols (condensation nuclei, CN), which include
those whose composition is primarily black carbon (BC) as

well as those that can act as CCN. Measurements of CO,
CO2, BC and CN are utilised for the development of this
exhaust identification algorithm as they have clear signals
above the background atmosphere and are measured rou-
tinely on the vessel.

Figure 2 shows an example period of data from the vessel
that illustrates the different signals resulting from exhaust in-
fluence that must be characterised in the algorithm. Exhaust
influence in CN, CO and CO2 data is obvious with striking
enhancements above variable background signals throughout
the sample period. BC data are generally close to zero, with
exhaust influence obvious when a signal appears out of the
noise. Strong perturbations over extended periods, such as
those observed on 18 May, are indicative of direct exhaust in-
fluence. Smaller signals, such as those observed in CN data
on 19 May, or in BC data on 20 May, indicate a more di-
lute influence, with sampling likely occurring on the waver-
ing edge of the exhaust plume.

Not all measured parameters respond to the exhaust to the
same extent, or necessarily at all. A few examples of this
are shown when looking at the time series of the parameters
(Fig. 2). Generally when this occurs, a signal is observed in
CN data, but is absent in the other species. This is likely a
result of the magnitude of differences in exhaust signal in
each parameter, as well as sensitivity of the measurement
techniques of the different species. Figure A1 clearly shows
the magnitude differences of the various instruments with ex-
haust strikes. Exhaust strikes in CN are observed as pertur-
bations of almost 4 orders of magnitude, while those in BC,
CO and CO2 are factors of 10, 0.2 and 0.01, respectively. Be-
ing a simple counting instrument, the condensation particle
counter (CPC) is sensitive to particle concentrations down to
1 cm−3. For the CO and CO2 measurements, although preci-
sion is high, the flow-through-cell technique utilised results
in physical integration of the sample over a minute, thereby
smoothing out any perturbations. For BC measurements, the
detection limit of the instrument is 0.05 µgm−3 over a 10 min
average. At 1 Hz time resolution, we are still able to get a
useful signal (for the current purpose) at 0.01 µgm−3 mass
resolution; however the instrument is clearly missing signifi-
cant exhaust influence.

The RV Investigator is a blue-water research vessel ca-
pable of traversing from the ice edge to the Equator. The
types of atmospheres it encounters range from pristine back-
ground, to continental (e.g. while sampling near the coast),
to urban environments (e.g. while in port). An important ob-
jective of this algorithm is the ability to distinguish the local
ship exhaust from the atmosphere of interest – a task which
becomes particularly difficult in the more polluted environ-
ments such as those downwind of large urban centres. In
this study, the dataset utilised for development contains influ-
ences from urban and background marine regions (as shown
in Figs. A2 and A3) by which differentiation from ship ex-
haust can be achieved. The ship track of the utilised voyage
is shown in Fig. A4.
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In this study, an algorithm is developed that produces
an exhaust identification product that is published alongside
other publicly available datasets from this platform. The al-
gorithm aims to accurately identify exhaust from the ship it-
self, distinct from other polluted atmospheres such as urban
centres, and minimise false-positive identification in order to
retain as much valuable data from this mobile platform as
possible. The exhaust product is developed utilising a dataset
exemplifying the range of atmospheres that are sampled and
is validated by applying it to measurements of CCN that were
measured simultaneously.

2 Instrumentation

The RV Investigator (schematic shown in Fig. A5) is a state-
of-the-art research platform commissioned in 2015 by the
Australian government. The vessel is designed for blue-water
research and is capable of spending up to 300 d per year at
sea, with a single voyage up to 60 d and over 10 000 nauti-
cal miles. Propulsion and power are provided by two diesel–
electric engines together with three 3000 kW, nine-cylinder
diesel engines. Exhaust from diesel combustion, together
with waste incineration, which is emitted from a separate but
co-located flue, provides the largest source of contamination
to atmospheric measurements aboard the platform.

The vessel has been purpose built with two dedicated
atmospheric laboratories along with a custom-designed air
sampling inlet located above the ship’s bow, approximately
18.4 m above sea level. The aerosol laboratory is situated di-
rectly underneath the air sampling inlet fore of the anchor
well, such that the distance between sampling and instrumen-
tation, and thus sample losses, is minimised (total distance to
the aerosol laboratory’s sampling manifold is ∼ 8 m). The
aerosol laboratory houses instrumentation for the measure-
ment of aerosols and the reactive gas ozone. The air chem-
istry laboratory is situated further aft in the vessel at the
fore of the superstructure (total distance from main sample
inlet to the air chemistry laboratory’s sampling manifold is
∼ 38 m), and houses instrumentation for the measurement of
less reactive atmospheric species such as greenhouse gases
and volatile organic compounds.

The RV Investigator houses a range of permanent instru-
mentation. These instruments are run continuously through-
out every voyage of the RV Investigator (except for when
instruments are removed for maintenance or faults) and af-
ter data have been calibrated, and quality assurance and con-
trol procedures have been performed, data are made publicly
available. Of particular relevance to this study is the mea-
surement of CO, CO2, BC, CN and meteorological measure-
ments. Each of these parameters will be described in detail in
future publications documenting the ongoing measurements
of the vessel; however a brief overview of these measure-
ments is given here. For this analysis, CCN data are utilised
as an independent parameter by which the exhaust identifier

is tested. The dataset considered in this paper utilised CN and
CCN data captured by instrumentation deployed specifically
for this voyage, and thus will be described separately. It is
worth noting that both CN and CCN instrumentation have
more recently become part of the permanent ongoing instru-
ment suite and will be described in a future publication and
made publicly available alongside other aerosol data from the
platform.

An important outcome of the current work is to make
publicly available an exhaust identification data product that
will be published alongside other atmospheric datasets from
the vessel in order to assist data users in their analyses.
For the present paper, the exhaust identification product has
been developed using data from the RV Investigator voyage
IN2016_V03 (see Marine National Facility, 2016, for voy-
age track), and data utilised and produced in this paper are
available from Humphries et al. (2018).

2.1 Carbon monoxide, CO

Mixing ratios of carbon monoxide (CO) were measured con-
tinuously at 1 Hz using a mid-infrared (IR) quantum cas-
cade laser spectrometer (Aerodyne Research Inc, Billerica,
MA, USA). A high-vacuum dry scroll pump (model SH-110,
Varian, Lexington, MA, USA) draws air through the 0.5 L
optical cell maintained at a constant pressure of 6 kPa, and
flushed at a rate of approximately 0.5 Lmin−1. Mid-IR laser
light enters the astigmatic multi-pass cell, traversing it 238
times, giving an effective path length of 76 m. Upon exit from
the optical cell, the light impinges on a thermoelectrically
cooled IR detector, allowing a mixing ratio to be determined
via Beer’s law. The nominal precision of the CO measure-
ment is 60 ppt in 1 s (owing to the long-path length and strong
transition of the CO molecule in the mid-IR). Water vapour
is also measured, allowing for the CO mixing ratio to be cor-
rected to a dry air mixing ratio, without the need to pre-dry
the sample.

2.2 Carbon dioxide, CO2

Atmospheric mixing ratios of carbon dioxide (CO2) are mea-
sured continuously at 1 Hz on board the RV Investigator us-
ing a Picarro cavity ring-down spectrometer (model G2301,
unit CFADS2315, Picarro Inc., Santa Clara, CA, USA) that
concurrently measures methane (CH4) and water vapour. Air
is drawn through the 35 sccm optical cell held at constant
temperature and pressure (45 ◦C and 19 kPa), at a rate of
approximately 0.15 Lmin−1. The ends of the cell comprise
highly reflective mirrors that recirculate the light supplied by
a near-infrared (NIR) laser through the cavity, resulting in
an effective path length of around 20 km. Light leaks out of
the mirrors, impinging on a photodetector with a character-
istic ring-down time. Carbon dioxide molecules within the
cell also absorb a fraction of the light, modulating the ring-
down time in proportion to their concentration. By scanning
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the laser off the absorption peak and remeasuring the ring-
down time, the technique becomes insensitive to fluctuations
in laser power. The precision of the CO2 measurement is bet-
ter than 0.05 ppm at a minute average. Data used in this paper
are raw CO2 dry air mixing ratios (by an empirical correc-
tion using the native water vapour measurement). CO2 data
are also available as minute and hourly mean dry air mixing
ratios that have been calibrated and drift corrected through
the daily measurement of a reference tank.

2.3 Black carbon, BC

Black carbon measurements are made using a multiangle ab-
sorption photometer (MAAP model 5012, Thermo Fisher
Scientific, Air Quality Instruments, Franklin, MA, USA).
The MAAP collects aerosol on a glass fibre tape that gets ir-
radiated with 670 nm light. Photodetectors measure the light
transmission and reflection in the forward and back hemi-
spheres, respectively, and after inversion, report black car-
bon concentrations in real time. The inversion algorithm
takes into account multiple-scattering processes inside the
aerosol sample and between the sample and the filter ma-
trix and utilises a carbon mass absorption coefficient of
6.6 m2 g−1. The detection limit of the instrument was calcu-
lated by choosing an exhaust-free period (midnight 23 April
to 18:00 UTC (for all times) 25 April) in the deep Southern
Ocean, where sources of BC are absent other than the plat-
form exhaust. At 1 Hz, the detection limit was calculated to
be 0.05 µgm−3. The choice of an appropriate threshold must
be performed carefully with this detection limit in mind, and
is discussed further in Sect. 3.1.

2.4 Aerosol number concentration, CN

Number concentrations of condensation nuclei larger than
3 nm (CN) were measured continuously at 1 Hz using a
condensation particle counter (CPC model 3776, TSI Inc.,
Shoreview, MN, USA). The CPC works by drawing the
aerosol sample continuously through a chamber of super-
saturated 1-butanol, which condenses onto particles larger
than 3 nm, growing them to sizes (above 1 µm) which
can be counted individually by a simple optical particle
counter. Sample flow rate is regulated by a critical orifice
at 1.5 Lmin−1. This flow rate was checked every few days
at the instrument inlet using an external flowmeter (Sensi-
dyne Gilibrator, St. Petersburg, FL, USA) and flow rates were
found not to deviate beyond 1 %. Although flow calibrations
were not necessary for this algorithm, the software used for
filtering the data simultaneously performs flow calibrations,
so calibrated data are used here. Data are also filtered for
periods of instrument zeros and the disconnection of the in-
strument from the sampling line. Note that for voyages after
September 2016, a permanent CPC (model 3772, TSI, Shore-
view, MN, USA), measuring CN larger than 10 nm, was in-

stalled on the platform (described in detail in future publica-
tions) and is used as the CN data stream.

2.5 Cloud condensation nuclei, CCN

Number concentrations of cloud condensation nuclei (CCN)
were measured continuously at 1 Hz using a continuous-flow
streamwise thermal-gradient CCN counter (CCNC, model
CCN-100, Droplet Measurement Technologies, Longmont,
CO, USA). The instrument was situated at approximately
the same distance from the inlet as the CPC, connected to
the manifold using a combination of stainless-steel and flexi-
ble conductive tubing. The instrument was configured to run
continuously at 0.5 % supersaturation, which after pressure
calibrations, was found to equate to 0.5504 % supersatura-
tion. The flow rate of the instrument was set to the standard
0.5 Lmin−1. Flows were checked weekly using an external
flowmeter (Sensidyne Gilibrator, St. Petersburg, FL, USA)
and concentrations were corrected in post-processing proce-
dures based on actual flow rates (maximum of 2 % flow de-
viation). Data were quality controlled by removal of periods
during which maintenance was performed and calibrated for
pressure and flow rates.

2.6 Meteorological data

Meteorological data were measured continuously whilst the
ship was underway. Meteorological measurements include
air temperature, relative humidity, barometric pressure, solar
radiation, precipitation, sea surface temperature, wind speed
and direction. Of particular interest to the exhaust filtering
algorithm are measurements of wind speed and direction.
Dual wind monitors (Marine Wind Monitor, model 05106,
R.M. Young Company, Traverse City, Michigan, USA) are
affixed to the vessel’s foremast at a height of 24 m from the
water line, each offset from the ship’s centreline by ∼ 2.5 m,
one to starboard and the other to port. The measurable wind
speed range of the wind monitors is 0–100 ms−1 (±1 %),
with an azimuth range of 0–355◦ (±3◦; relative to ship cen-
tre line; the 5◦ dead zone of which is directed aft). An ultra-
sonic two-axis anemometer (WindObserver II, Gill Instru-
ments, Lymington, Hampshire, UK) is also affixed to the
foremast 21 m from the water line and ∼ 2.5 m to port from
the ship’s centreline. The ultrasonic anemometer measures
wind speed in the range 0–65 ms−1 (0.01 ms−1 resolution
and ±2 % at 12 ms−1) and azimuth range of 0–359◦ (1◦ res-
olution and ±2 % at 12 ms−1). Wind sensors are calibrated
annually by Ecotech Australia to the reference standard ISO
17713-1:2007.

3 Exhaust identification

The primary task of the algorithm is that of distinguishing
between two distinctly different signals in our data. Because
of the magnitude of the difference, a first pass of the exhaust

Atmos. Meas. Tech., 12, 3019–3038, 2019 www.atmos-meas-tech.net/12/3019/2019/



R. S. Humphries et al.: Identification of platform exhaust on the RV Investigator 3023

identification is simply an application of outlier detection al-
gorithms. However, on closer inspection, the variability of
the exhaust signal due to variations in source strength, dilu-
tion and plume location sampling, as well as the shear length
of time that the exhaust can influence measurements (from
seconds to days), makes many of the more well-known detec-
tion algorithms unsuitable to this problem. This is discussed
more in Appendix Sect. A where a number of algorithms, in-
cluding fast Fourier transform, z score and modified z score,
double exponential smoothing, and histogram methods, were
tested and found to be unsuitable. Hence this complicates the
goal of the algorithm to differentiate between these two dis-
tinct but varying signals (i.e. exhaust and ambient in a range
of environments).

Exhaust identification is performed primarily utilising the
intersection between four parameters commonly emitted in
fossil fuel combustion processes, namely CO, CO2, BC and
CN. Figure 2 shows the variability of these species during pe-
riods of exhaust influence and within background air (defined
here as not influenced by exhaust from the measurement plat-
form, the RV Investigator). Distinct signals are observed in
all four variables; however it is important to note that not all
signals respond simultaneously. This concept is discussed in
detail later in the paper.

Because of the differences in their exhaust responses, iden-
tification is performed on each of the parameters separately
at 1 Hz, after which they are combined (aligned by time) and
an additional window filter is applied to remove neighbour-
ing values that are not captured completely by the parameters
themselves. Each instrument connected to the Investigator’s
sampling system will also exhibit temporal variations in their
responses to exhaust strikes due to differences in residence
and detector response times. Because of this, it is impossi-
ble to create a single exhaust identification product that can
be applied to every instrument that collects data on this plat-
form. To effectively achieve a perfectly exhaust-free dataset
for each instrument without removing substantial data that
are free from exhaust, identification should ideally be per-
formed on each dataset individually. Nevertheless, the cre-
ation of this exhaust identifier product is useful in that it cre-
ates a first-pass filter that identifies the vast majority of the
exhaust influence. With this in mind, a relatively conserva-
tive approach is adopted in order to strike a balance between
not identifying periods of exhaust influence, and the false-
positive identification of background data as exhaust. Since
the product is not used to filter published datasets, but instead
is published alongside other data, it is left to the end user to
determine whether more stringent criteria should be applied
to specific datasets than the relatively conservative approach
adopted here.

3.1 BC threshold filter

In the background atmosphere, BC is generated from com-
bustion sources such as fossil fuel burning and biomass burn-

ing (Seinfeld, and Pandis, 2016). Moreover, the lifetime of
BC is on the order of days (Cape et al., 2012) and com-
bined with transport dilution, seeing elevated values beyond
the instrument sensitivity is rare. This is illustrated in Fig. A3
where the baseline trend observed in CN during a period of
urban influence (26 May) is absent in the BC data. Conse-
quently, a set threshold value can be utilised for BC, whereby
any data above this threshold are identified as exhaust.

The threshold for exhaust was determined by selecting nu-
merous periods when background air was being measured
without exhaust influence, and selecting the maximum value
during these periods. For the dataset being utilised for this
paper, a value of 0.07 µgm−3 was chosen, which is suitable
for remote locations and above the detection limit. Figure 2
shows one such period when the ship was located south-
east of New Zealand in the deep Southern Ocean. For most
voyages undertaken by this vessel this BC limit is suitable;
however when the scientific questions are concerned with air
masses downwind of major pollution sources, such as ur-
ban centres or significant biomass burning events, this limit
should be increased. This is illustrated in Fig. A3 where the
first week of June shows increased baseline values of CN and
also BC due to the vessel coming into and out of the port in
Wellington, New Zealand. If these periods were of particular
interest, and the data loss from the standard limit was unac-
ceptable, a new increased limit would need to be determined
by choosing a period representative of the scientific outcome.
Alternate statistical methods, such as choosing a limit based
on the 95th percentile or similar scheme, are not generally
suitable for the choice of the limit since these generally rely
on “outlier”-type data, rather than what is observed here.

3.2 Variance filter for CO, CO2 and CN

In contrast to BC, CO, CO2 and CN all have persistent, non-
zero background signals in the atmosphere and consequently
a simple threshold filter cannot be utilised. For these datasets,
the variability is characterised on each dataset and outliers in
the positive direction are identified as exhaust. As discussed
by Leys et al. (2013), the robust statistical parameters of me-
dian and median absolute deviation (MAD) are useful in the
detection of outliers since they are relatively insensitive to
outliers compared to the mean and standard deviation (SD)
that are commonly utilised.

For a univariate dataset x1,x2, . . .,xn, the MAD is defined
as the median of the absolute deviations from the data’s me-
dian:

MAD=median(|xi −median(x)|). (1)

It is well established that for normally distributed data (such
as is being explored here for data without exhaust), the me-
dian and mean are equivalent. The same can be said for
the MAD and the SD provided a standard factor is applied
(Rousseeuw and Croux, 1993, and references therein) such
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that

SD= 1.4826×MAD. (2)

To identify the exhaust, the data point in question must be
assessed to determine if it is within an acceptable range that
represents the background atmosphere. Defining this accept-
able range deserves thoughtful consideration. Given the vari-
ability of CO, CO2 and CN in the background atmosphere,
a predefined range would not be fit for purpose. This cir-
cumstance lends itself naturally to the use of a rolling win-
dow. For this algorithm, numerous statistical parameters (me-
dian, MAD and SD) are calculated on a detrended, centred
rolling 5 min window. Although variable, the 5 min width of
this rolling window is chosen here so that there are enough
data for statistical robustness, yet short enough to capture real
changes in atmospheric state.

It is important to note that when the fraction of outliers
dominates (> 50 %) a sample (or window), median-based
statistics also become sensitive to outliers. This will happen
when, for example, the rolling window is sampling during
an exhaust period that persists longer than half the window
period. To get a statistical dataset that represents the back-
ground atmosphere to which raw data can be compared, al-
ternative values must be sought during these periods when all
calculated statistics are affected.

The first step in this process is to identify periods when
median-based statistics are affected in the rolling window.
Comparing the rolling SD (SDi) and MAD (MADi) could
be effective for identifying these periods since one is sensi-
tive to outliers while the other is not, respectively. However,
since the exhaust could represent up to 100 % of the sam-
ple window, the rolling MAD (MADi) and SD (SDi) could
be similar, ruling out comparing these two parameters as a
method for identification. To overcome this, a single MAD
value (MADB) that is representative of the background at-
mosphere is sought to which we can compare SDi .

Analysis of CN, CO and CO2 data shows that MADi are
generally tightly grouped, but have a small fraction of large
outliers, as shown in Figs. A6, A7 and A8. Choosing the me-
dian of this MADi dataset, MADB, yields the value repre-
sentative of the background atmosphere to which SDi can be
compared and exhaust-affected median statistics can be re-
placed. Time periods with SDi larger than 3 times MADB
are then flagged and values during these periods are replaced
with values obtained by linear interpolation with neighbour-
ing values, yielding new datasets, MB

i and MADB
i , that rep-

resent the rolling median and MAD without influence from
exhaust. Having obtained statistical datasets reasonably free
from exhaust influence, exhaust can be identified in the raw
data such that

x > MB
i + 3MADB

i , (3)

where x is the raw CO, CO2 or CN data.
The algorithm only identifies positive deviations as ex-

haust, ignoring negative outliers. This is done because the

exhaust can only add signal to the background for these three
parameters at this range and at this high frequency. Inclusion
of the lower limit could erroneously identify exhaust time pe-
riods which are simply instrument zeros or calibrations that
may not have been removed from the datasets prior to their
use in the algorithm.

The use of uncalibrated and uncorrected CO, CO2 and CN
data is acceptable within the algorithm so long as periods of
instrument calibrations in the positive direction are removed
from the datasets prior to use (only positive since the exhaust
influence on these parameters are all in this direction). This is
because the algorithm is sensitive to high-frequency changes
like exhaust strikes or instrument zeros, rather than lower-
frequency variations, such as instrument drifts, and takes no
account for the absolute value of the signal.

3.3 Window filter

Once identified by either CO, CO2, BC or CN, separate data
streams are aligned on the time dimension and a combined
exhaust identifier is created such that exhaust is present if
detected by any of the four parameters. To this dataset, a
window filter is applied. This rolling filter sums the num-
ber of exhaust points in the window. If this sum is larger than
10 % of the number of points in the window, then all data
points within that window are labelled as exhaust. The 10 %
threshold is important because variations in one of the three
parameters (arising from the use of raw data streams) could
mistakenly identify a time period as exhaust without verifi-
cation from either sustained exhaust identification or other
parameters. Additionally, this 10 % threshold, together with
the choice of the window width (here set to 20 min), creates
a buffer that accounts for differences in residence times of
atmospheric samples in the sample lines and in the instru-
ments themselves (the greenhouse gas measurements are ap-
proximately 40 m downstream of the aerosol measurements,
resulting in time differences on the order of seconds, com-
pared to the window width, which is several orders of mag-
nitude larger).

4 Results and discussion

Figure 2 shows a subset of data to illustrate the exhaust filter
when applied to the CCN dataset. CCN are used here as an
independent dataset to test the exhaust filter algorithm and
ensure its applicability beyond the parameters used in the al-
gorithm itself. In addition, exhaust strikes are easily visible
in the CCN dataset, making it useful for this purpose.

Although not 100 % effective, the algorithm removes the
vast majority of exhaust influence and its effectiveness, par-
ticularly compared to other methods, is clearly apparent
(Fig. 2). It is clear from Fig. 3, where each parameter of the
filter is applied separately, that none of the parameters are
capable of entirely capturing the exhaust influence individu-
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Figure 2. A 4 d subset of the data from the 2016 voyage used to
illustrate the algorithm, with filtered data (black) shown atop the
raw data (red). Panel (a) shows the unfiltered CCN data along with
data after the full filter is applied. Panels (b) to (e) show the filter
parameters as both raw and with their individual filters applied. The
green line in (d) represents the BC limit of 0.07 µgm−3 utilised. All
data are raw instrument output without calibrations to aid in rapid
dissemination of the exhaust identification product. Timestamps are
UTC. Note that y axes are limited in range to reveal baseline val-
ues (full data shown in Figs. A2 and A3). Exhaust signal for CO,
CO2, BC and CN extends up to 800 ppb, 490 ppm, 10 µgm−3 and
106 cm−3, respectively.

ally. The CN filter is the most effective, presumably because
the exhaust signal is orders of magnitude higher than back-
ground values and the response time is rapid. Nevertheless,
a significant fraction of exhaust periods make it through the
CN filter. When all parameters are used together, the exhaust
filter improves dramatically, although a small fraction of ex-
haust values remain. The application of the window removes
most of the remaining exhaust-affected data, resulting in a
dataset that can be confidently used in subsequent analyses
of the background atmosphere.

Figure A9 shows different combinations of the individual
filters to demonstrate the effectiveness of each filter. Combin-
ing both Figs. 3 and A9 indicates that CN is the most effec-
tive parameter, followed by BC, CO and CO2. By itself, CN
removes the vast majority of the exhaust influence, but alone

is incomplete. While this suggests that a simple filter utilis-
ing CN and only one of the other three parameters could be
used to produce a similarly effective filter, in practice, hav-
ing all three measurements (i.e. BC, CO and CO2) provides
important redundancy. Currently, if problems occur with the
CN measurements, the effectiveness of the exhaust filter is
significantly reduced, as shown by Fig. A9h. Given the im-
portance of the CN data to being able to effectively identify
exhaust, instrumental redundancy for CN measurements is
an important feature of the platform that is currently being
implemented.

Interestingly, there are some periods which still show short
periods of exhaust in the filtered CCN data, as shown in
Fig. A10. Here, the exhaust is easily identified by the CN
filter algorithm; however after applying the exhaust to the
time-synchronised CCN data, the exhaust signal is delayed
in the CCN data by about 10 s, presumably due to the longer
residence time of the CCN instrument. It is possible to alter
the algorithm in such a way that the 20 min window applies
to any period identified as exhaust (rather than having the
threshold described in Sect. 3.3); however this has the im-
mediate ramification of large losses of data that would other-
wise be classified as background, which would be unaccept-
able for this purpose. Instead, this exhaust identifier has been
designed to be used as an initial step, and if more stringent
bounds are required by the end user, a more strict window fil-
ter can be applied at that time. In addition, individual datasets
should be analysed for any remaining exhaust to account for
differences in residence time and sampling regimes.

Application of the algorithm to other atmospheric datasets
is an important verification step beyond that of CCN, which
is a very similar measurement to that of CN measure-
ments. In Fig. A11, aerosol size distributions, measured us-
ing a scanning mobility particle sizer (GRIMM SMPS model
5.420 with M-DMA installed, GRIMM Aerosol Technik,
Ainring, Germany), are shown as raw data, as well as with
both the wind-based filter and the exhaust algorithm applied.
Both filter methods are effective at removing much of the
exhaust influence; however the exhaust algorithm shows dis-
tinct advantages for more accurate exhaust identification, re-
covering more exhaust-free data and removing exhaust-laden
data compared with the wind filter.

Comparison of the algorithm to the traditional wind-based
filter shows significant advantages. When applied to this
dataset, the algorithm is able to recover 5 % (1 h) of data that
the wind filter identified as exhaust, and removes 26 % (37 h)
of data that the wind filter identified as clean. This is shown
most clearly in Fig. 4 (also apparent in Figs. A12 and A13).
Data recovery is obvious in this figure from data present be-
tween relative wind directions of 90 and 270◦, while the high
concentrations observed outside these ranges, which are ex-
haust signal, is removed by the algorithm. From the time se-
ries case study of Fig. A12, it can be seen that many of the
exhaust signals missed by the wind filter are those on the
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Figure 3. CCN data (linear scale) with the different steps of the al-
gorithm applied separately: panel (a) shows unfiltered data, panels
(b) to (e) show single-parameter filters, panel (f) shows the com-
bination of the four parameters, and panel (g) shows the full filter,
which includes all parameters and the application of a window re-
moval. Note the change in scale of the y axis in the final panel.

Figure 4. As in Fig. 1, but with the addition of CCN data filtered
using the algorithm described in this paper. The algorithm is signif-
icantly more effective than the traditional wind-based filter.

edges of a large exhaust period, or simply just small exhaust
strikes that might occur when the ship is turning.

5 Conclusions

A ship exhaust identification algorithm is described that
utilises only components of the combustion exhaust, rather
than commonly utilised ancillary data such as wind speed
and direction. CO, CO2, BC and CN data are used as ex-
haust indicators and together with surrounding time-window
removal, a robust exhaust identification method results. Sta-
tistical methods feature heavily in the algorithm in order to
avoid, as much as possible, cut-off thresholds that can be sub-
jective. The algorithm exhibits significantly improved perfor-
mance compared to more traditional filters, identifying all of
the exhaust periods (26 % of data identified as clean by wind
filters were identified as exhaust by this algorithm), as well
as recovering data falsely identified by other overzealous or
indiscriminate methods (the algorithm recovered 5 % of data
that wind-based filters removed), thereby optimising usable
data. The algorithm is applied directly to data from the RV
Investigator for which it was specifically developed and the
resulting data product will be made available alongside other
publicly available data from the research platform.

Code and data availability. Input data and the exhaust product cal-
culated for the sample data utilised in this paper are available
at https://doi.org/10.4225/08/5b39a08a00bb5 (Humphries et al.,
2018). Please contact the author for access to code.
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Appendix A: Outlier detection algorithms

Due to the magnitude of differences between the exhaust air
and ambient air, exhaust can in the first instance be treated as
outliers to the ambient data. The caveat to this is that not in-
frequently, the exhaust is itself the dominant influence in the
data, making the ambient data itself the outlier. This makes
the application of traditional outlier detection algorithms dif-
ficult, and is ultimately the reason why a specialised al-
gorithm was developed for operational deployment. During
the development stages though, a number of methods were
tested.

Outlier detection methods are classified into six broad
groups (Aggarwal, 2013), which include extreme value anal-
ysis, probabilistic and statistical models, linear models,
proximity-based models, information theoretic models and
highly dimensional outlier detection. Not all of these groups
apply to the time series data being considered here.

Fast Fourier transform (FFT) is a method commonly used
to filter outliers from the frequency domain. This is com-
monly utilised in data that have some level of periodicity or
seasonality. Unfortunately, at the short timescales and spatial
locations being considered for this application, ambient data
do not contain enough periodicity to be able to utilise this
method effectively. Nevertheless, an algorithm was tested
which utilised standard FFT functions in Python’s NumPy
library. Figure A14b shows the effectiveness of the FFT al-
gorithm, which was found to be useful for removing some
spikes in data caused by exhaust, but struggled during peri-
ods of extended exhaust influence.

Generally speaking, environmental data are normally dis-
tributed. The distributions of the data can be used to iden-
tify an exhaust population, and all the major exhaust influ-
ence can be confidently removed using a simple threshold
filter. The threshold here becomes very clear when measur-
ing in pristine background conditions, but can become dif-
ficult to establish in urban or continental air masses where
ambient and exhaust air compositions converge. Figure A14c
shows the data resulting from applying this informed thresh-
old followed by a window filter that identifies data periods
within 20 min of an exhaust period as exhaust. Reasonable
exhaust removal is achieved compared to other outlier detec-
tion methods; however significant exhaust influence remains.

The z-score method is a way of describing data relative
to its statistical parameters. In the standard implementation,
the z score of a particular data point is calculated relative to
its mean and standard deviation. This obviously has issues
if outliers are a dominant feature in a dataset since the out-
liers significantly affect the mean and standard deviation. To
improve robustness, the modified z score compares data to
medians and median absolute deviations. In both cases, once
the z score is calculated for each data point, a simple thresh-
old is utilised – that is, if the z score is outside ±3 (±3.5
for modified z score), the data point is treated as an outlier.
In application to this dataset, as shown in Fig. A14d, this

method functions simply as a threshold filter, removing any
data above a certain point, depending on the actual chosen
z-score threshold. Applying this method to a rolling window,
rather than the full dataset, should improve its performance;
however because the rolling z-score calculation tends to sim-
ply follow the median of the dataset, its performance actually
is not improved.

Double exponential smoothing is a method that creates a
model of the data based on exponentially weighted moving
averages and linear regression, after which the difference be-
tween model and measurements is calculated and compared
to a predefined threshold. The method was first described
by Holt (2004) in 1957, but with recent advances which in-
cluded seasonality became popular in 2000 (Brutlag, 2000)
because of its application in time series data for network
monitoring. The application of this method here is ineffec-
tive in the first instance since it relies on an outlier-sensitive
method. However, when the model is calculated iteratively
on a rolling window, each measurement is determined to be
an outlier or not in real time and replaced, thus substantially
increasing the performance of the algorithm (Fig. A14e). De-
spite its impressive performance, a significant influence from
exhaust persists in the filtered dataset.
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Figure A1. Time series showing that periods of CCN elevated above background values (typically less than 1000 cm−3) are associated with
elevated concentrations of the other parameters, or wind directions in the exhaust sector. (a) CCN, (b) CN (left axis) and BC (right axis),
(c) CO (left axis) and CO2 (right axis), and (d) relative wind direction with the coloured region signifying those directions in which exhaust
is expected.
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Figure A2. Time series (log scale) of CO, CO2, BC and CN for 45 d of voyage IN2016_V03, which traversed from the ice edge to the Equator
along the 170◦W meridian with a short personnel exchange port period in Wellington, New Zealand, on 26 May 2016. The green line in
panel (c) represents the BC limit of 0.07 µgm−3 utilised. This dataset was utilised for the algorithm development as it exhibits influences
from urban and background marine regions, by which differentiation from ship exhaust must be achieved.
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Figure A3. As in Fig. A2 but with a linear y scale to reveal the baseline changes.
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Figure A4. Voyage track of the data utilised in this voyage. Starting in Hobart, Australia, the voyage’s primary goal was to perform ocean
sampling along the 170◦W longitudinal line, with a brief personnel changeover in Wellington, New Zealand. This dataset was chosen as
it contained clean marine background, as well as periods when it had increasing urban influence (as it travelled towards and arrived in
Wellington), enabling fine tuning of the algorithm to only remove platform exhaust.
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Figure A5. A schematic of the ship, with the two exhaust pipes marked – the main engine and the incinerator, along with the location of the
main sampling inlets and met instruments on the foremast. Measurements of aerosol parameters (CN, BC and CCN) are carried out in the
aerosol lab, while greenhouse gas measurements (CO and CO2) are carried out in the air chemistry lab. The compass on the bird’s eye view
is oriented to show the wind direction as measured relative to the ship.
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Figure A6. Distribution of the MADs calculated from rolling
through CN number concentrations. (a) Box-and-whisker plot with
quartiles drawn. Whiskers represent the quartiles±1.5 times the in-
terquartile range. (b) Histogram. Note the split axis, which changes
from linear to logarithmic scaling.

Figure A7. As in Fig. A6 but for CO mixing ratios.

Figure A8. As in Fig. A6 but for CO2 mixing ratios.
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Figure A9. CCN data (log scale) with the different combinations of the algorithm applied separately: panels (a)–(f) show all two-parameter
combinations, panels (g)–(j) show three-parameter combinations, panel (k) shows the filter using all four parameters and panel (l) shows
unfiltered data for comparison. Note that the window filter is not applied to any of these plots.
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Figure A10. Time series of 1 min of time-synchronised aerosol data. Unfiltered data in red, with black markers showing exhaust-filtered
data. The exhaust is clearly identified in the CN data but due to differences in instrument residence time, the exhaust signal shows up 10 s
later in the CCN data, in this case, after the exhaust signal has ceased in the CN. While it is possible to align the underlying datasets based on
an exhaust event, rather than by time, application of this method is unsuitable for this context because of the range of instrumentation where
this exhaust product would be utilised (and thus the range of responses), and because the window filter applied after identification would
result in a negligible improvement.

Figure A11. Aerosol size distributions measured using a GRIMM SMPS with M-DMA installed. Panel (a) shows all raw data recorded, while
the wind-based filter and the exhaust algorithm are applied to the two subsequent graphs (b, c) respectively, removing periods identified as
sampling exhaust.
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Figure A12. As in Fig. 2 but with the filtered dataset (blue) being
the wind-based method. Unfiltered data are shown in red. Figure A13. As in Fig. 2 but plotted against relative wind direction.

Unfiltered data are shown in red, while data with the respective ex-
haust filter are shown in black.
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Figure A14. A subset of CN during the voyage with a range of out-
lier detection methods applied. (a) Raw CN data. (b) Fast Fourier
transform (FFT). (c) Normal distribution filter. (d) Z scores: in
red the standard method is applied to the whole population (S.P.);
in black, the modified z score is applied to the whole population
(M.P.); in blue, the modified z score is applied to a rolling window.
(e) Double exponential smoothing. (f) The median-based method
developed in this paper.
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