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Abstract. Cloud radars are unique instruments for observ-
ing cloud processes, but uncertainties in radar calibration
have frequently limited data quality. Thus far, no single ro-
bust method exists for assessing the calibration of past cloud
radar data sets. Here, we investigate whether observations of
microphysical processes in liquid clouds such as the transi-
tion of cloud droplets to drizzle drops can be used to cal-
ibrate cloud radars. Specifically, we study the relationships
between the radar reflectivity factor and three variables not
affected by absolute radar calibration: the skewness of the
radar Doppler spectrum (γ ), the radar mean Doppler veloc-
ity (W ), and the liquid water path (LWP). For each relation,
we evaluate the potential for radar calibration. For γ and W ,
we use box model simulations to determine typical radar re-
flectivity values for reference points. We apply the new meth-
ods to observations at the Atmospheric Radiation Measure-
ment (ARM) sites North Slope of Alaska (NSA) and Oliktok
Point (OLI) in 2016 using two 35 GHzKa-band ARM Zenith
Radars (KAZR). For periods with a sufficient number of liq-
uid cloud observations, we find that liquid cloud processes
are robust enough for cloud radar calibration, with the LWP-
based method performing best. We estimate that, in 2016, the
radar reflectivity at NSA was about 1± 1 dB too low but sta-
ble. For OLI, we identify serious problems with maintaining
an accurate calibration including a sudden decrease of 5 to
7 dB in June 2016.

1 Introduction

Due to their profiling capabilities, millimeter wavelength
cloud radars are one of the most important tools for cloud re-
mote sensing. Their measurements are used for process stud-
ies as well as for long-term monitoring of hydrometeor prop-
erties. Although maintaining an accurate radar calibration is
absolutely crucial to avoid biases and false trends in observa-
tional data sets, calibrating cloud radars accurately is a chal-
lenging and long-standing problem. In this study, we investi-
gate the potential for using observations of liquid cloud mi-
crophysical processes for radar calibration.

Radar calibration is quantified by the “radar calibration
constant”. Despite the name constant, the constant can ac-
tually change due to the aging of components, temperature
fluctuations, or hardware defects. Therefore, we have to not
only determine the initial calibration constant of a system
but also monitor the calibration constant for changes. For ex-
ample, waveguide corrosion of the MilliMeter wavelength
Cloud Radar (MMCR) of the US Department Of Energy
(DOE) Atmospheric Radiation Measurement (ARM) pro-
gram at the North Slope of Alaska (NSA) site in Utqiaġvik
(Barrow), Alaska, caused a 9.8 dB calibration offset in 2008
(Protat et al., 2011). Also, a liquid film on the radome or radar
antenna caused by precipitation can temporarily lead to up to
4 dB of additional two-way attenuation (Frech, 2009). From
an engineering perspective, radar calibration is complicated
by the fact that radar returns span several orders of magni-
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tude in power and – particularly for pulsed radars – the span
between the transmitted and received power is even larger.

The community has multiple approaches for calibrating
cloud radars but none are applicable to all situations. Most
commonly, a budget calibration is done wherein all compo-
nents are calibrated separately and the individual calibration
constants are summed (Chandrasekar et al., 2015). A budget
calibration can also be combined with a receiver calibration
by observing a reference target emitting microwave radia-
tion. For example, Whiton et al. (1977) proposed pointing a
scanning radar into the sun and Küchler et al. (2017) used
liquid nitrogen – similar to the standard calibration method
of microwave radiometers. Yet, the errors of the individual
budget calibrations sum up, and there is a risk of overlook-
ing error sources, e.g., due to an interaction between radar
components. Therefore, it is advantageous to calibrate the
full radar system end-to-end. Atlas (2002) provided an ex-
tensive overview of different end-to-end radar calibration
techniques, most of them relying on observing objects with
known radar cross sections. These reference targets included
corner reflectors and various metallic or metallized spherical
objects such as ping pong balls, ball projectiles from air guns,
and Christmas ornaments. However, observations of refer-
ence targets require dedicated field operations and cannot be
used to calibrate past data sets. Also, the observation of a
reference target with radar can be challenging for a number
of reasons. First, most reference targets do not move, and
hence do not cause a Doppler shift; thus, the target’s return
cannot be distinguished from ground clutter unless the target
is positioned far away from the surface. For lifting the target
from the surface, past studies proposed using fiberglass poles
(Kollias et al., 2016), tethered balloons (Atlas and Mossop,
1960), or unmanned aerial vehicles (Küchler et al., 2017).
Second, the exact location of the target with respect to the
radar needs to be known for calibration because reference
targets are point targets. Instead, atmospheric hydrometeors
are volume distributed targets. Third, the antenna properties
are not well defined unless the target is in the antenna’s far-
field, i.e., at least a couple of hundred meters away from the
radar. Lastly, receiver saturation must be avoided, which re-
quires the use of an attenuator or a sufficient distance be-
tween the calibration target and the radar. Because of these
reasons, calibration by reference targets is only feasible for
scanning cloud radars but not for vertically pointing cloud
radars, which are most commonly used.

Several studies have suggested calibrating radars by com-
paring their measurements of rainfall with integrated drop
size distributions from ground-based disdrometers (Joss
et al., 1968; Ulbrich and Lee, 1999; Frech et al., 2017). Tri-
don et al. (2017) proposed using self-consistency checks of
retrievals from simultaneous radar observations at multiple
frequencies to identify calibration problems. However, dis-
drometers and regular liquid precipitation are required for
monitoring calibration continuously and the challenge of
radome or antenna attenuation during precipitation events

needs to be considered, particularly for vertically pointing
systems.

If multiple radars are available, it is easier to achieve a rel-
ative calibration by cross-calibration. Cross-calibration also
works when the radars have different frequencies, as long as
the hydrometeors are small enough to assume Rayleigh scat-
tering and differential attenuation is accounted for (Hogan
et al., 2000; Kneifel et al., 2015; Ewald et al., 2019). If the
radars are not collocated, the cross-calibration can also be
done statistically by comparing long-term data sets. But such
comparisons can be biased by different radar sensitivities
and it is important to degrade both radars to the same sen-
sitivity. Protat et al. (2011) compared observations statisti-
cally from the CloudSat satellite W-band radar with ground-
based observations for relative calibration. Because Cloud-
Sat’s calibration is well established (Tanelli et al., 2008), Pro-
tat et al. (2011) and Louf et al. (2019) proposed using Cloud-
Sat as a reference for absolute calibration of ground-based
radars. However, long time series of at least several months
are required (Kollias et al., 2019) and the method cannot be
used to monitor radar calibration at higher temporal resolu-
tions. Merker et al. (2015) proposed another method for ab-
solute radar calibration of radars by intercomparisons, but
their method requires a very specific setup with three small
radars.

We can also avoid the problem of absolute radar calibra-
tion by using variables not affected by absolute calibration,
such as the higher moments of the radar Doppler spectrum
(Maahn et al., 2015), attenuation (Matrosov, 2005) and some
polarimetric variables such as depolarization ratio (Matrosov
et al., 2017), differential reflectivity, and differential phase
shift (Oue et al., 2018). Yet, excluding variables reduces the
information content of the observations significantly (Maahn
and Löhnert, 2017) depending on the application.

In summary, no method for obtaining an absolute calibra-
tion is available that works in all situations. Either dedicated
field campaigns or in situ observations of drop size distri-
butions are required. Budget calibrations are not end-to-end,
and relative calibrations require trusting the calibration of a
reference radar. To close this gap, we investigate whether liq-
uid cloud microphysical processes can be used for radar cal-
ibration. Luke and Kollias (2016) proposed using the unique
relationship between the equivalent radar reflectivity factor
(here referred to as reflectivity or Ze, in dBz, Smith, 2010)
and the skewness of the radar Doppler spectrum (γ , unit-
less) during drizzle onset – commonly defined as drops ex-
ceeding the critical diameter for starting autoconversion (20
to 40 µm) – for calibration. Several studies have suggested
that γ is helpful for studying drizzle formation (Kollias et al.,
2011a, b; Luke and Kollias, 2013; Acquistapace et al., 2019).
Further, Luke and Kollias (2016) suggested that the relation-
ship between the liquid water path (LWP, in kg m−2) and
the maximum reflectivity in the column max(Ze) contains
information that can be used for radar calibration. LWP and
max(Ze) are correlated because larger LWP values permit
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drops to grow larger by condensation and enhance the prob-
ability of drizzle formation leading to higher Ze values (see
Fig. 1 of Acquistapace et al., 2019). In this study, we evaluate
whether the Ze–γ and LWP–max(Ze) relationships can be
used for calibrating vertically pointing cloud radars. In addi-
tion to these two relationships proposed by Luke and Kollias
(2016), we also investigate the relationship between Ze and
the mean vertical Doppler velocity (W , in m s−1) becauseW
has been successfully used for drizzle detection (e.g., Shupe,
2007) due to the larger fall velocity of drizzle drops.

We run box model simulations of drizzle onset to develop
the details of the method, characterize its uncertainties, and
apply it to radar observations of the North Slope of Alaska
(NSA) and Oliktok Point (OLI) ARM sites from 2016. The
instruments, data sets, box model, and radar simulator used
in this study are detailed in Sect. 2. The calibration meth-
ods used in this study are presented in Sect. 3. Besides the
three new methods based on liquid cloud microphysical pro-
cesses, we use a reference method to calibrate the two cloud
radars relative to one another. For this, we modify the relative
calibration method that Protat et al. (2011) proposed for cali-
brating ground-based cloud radars with CloudSat. In Sect. 4,
we apply the various calibration methods to data from NSA
and OLI and assess the temporal evolution of the calibration
quality at both sites. Finally, concluding remarks are given in
Sect. 5.

2 Data sets and models

2.1 Sites

In this study, we use ground-based remote sensing observa-
tions from two observatories operated by the DOE ARM pro-
gram located in northern Alaska: Utqiaġvik (ARM’s North
Slope of Alaska, NSA site, formerly known as Barrow,
71.323◦ N, 156.616◦W) and Oliktok Point (OLI, 70.495◦ N,
149.886◦W). While the former was established in 1996, the
latter did not become fully operational until late 2015. Both
sites are located on the coast of the Beaufort Sea and lie
only 250 km apart. The synoptic-scale forcing is very sim-
ilar, resulting in high correlations between both sites for sea
level pressure and near-surface air temperature, humidity,
and wind (Maahn et al., 2017).

2.2 Instruments and observations

Both sites are equipped with a 35 GHzKa-band ARM Zenith
Radar (KAZR). While the radar at NSA is a first-generation
KAZR, the one at OLI is a second-generation KAZR2 with
improved sensitivity (Table 1). The spectral resolution of the
OLI KAZR2 was increased from 256 to 512 Doppler spec-
tral bins on 16 June 2016. For the radar moments Ze, γ ,
and W , we use the radar product presented in Williams et al.
(2018), which, unlike the standard ARM general mode (GE)
moment products, includes advanced clutter removal and

Table 1. Technical specifications of the radars at Oliktok Point and
Utqiaġvik (Barrow).

Oliktok Point Utqiaġvik
(Barrow)

Abbreviation OLI NSA
Radar KAZR2 KAZR
Frequency [GHz] 34.83 34.83
Mode general (ge) general (ge)
Fast Fourier transform 512 (256)∗ 256
(FFT) points [–]
Pulse repetition frequency 2771.31 2771.31
[Hz]
Spectral averages [–] 9 (18) 20
Dwell time [s] 1.69 1.85
Nyquist velocity [m s−1] 5.977 5.963
Sensitivity at 1 km [dBz] −37.3 (−39.0) −32.7

∗ Specifications in parentheses correspond to the configuration before
16 June 2016.

higher moments such as γ (Williams, 2018). Because turbu-
lence can mask microphysical signals in γ , observations with
high temporal resolution are usually required for minimizing
broadening effects of the Doppler spectrum (Acquistapace
et al., 2017). Instead, Williams et al. (2018) use a shift-then-
average method to reduce the impact of turbulence on the
radar moments, allowing the use of coarser temporal resolu-
tion (15 s). For temperature and humidity profiles, we use
the standard ARM interpolated radiosonde product (ARM
user facility, 1999) based on three (two) daily launches at
NSA (OLI). Further, both sites are equipped with ceilome-
ters for cloud base estimation (Vaisala CL31, ARM user fa-
cility, 1996) and microwave radiometers (MWRs) to retrieve
LWP and integrated water vapor (IWV) using the MicroWave
Radiometer RETrieval (MWRRET, Turner et al., 2007) and
the Monochromatic Radiative Transfer Model (MonoRTM;
Clough et al., 2005). To minimize MWR retrieval biases, we
applied monthly offset corrections to the observed brightness
temperatures using MonoRTM to forward model clear-sky
radiosonde observations. At NSA, we estimate LWP from a
combination of the 90 GHz channel of an RPG-150-90 ra-
diometer (ARM user facility, 2006, the 150 GHZ channel
was not operational in 2016) and the 23.8 and 31.4 GHz
channels of a Radiometrics WVR-1100 radiometer (ARM
user facility, 1993). At OLI we retrieve LWP from a three-
channel (23.834, 30, and 89 GHz) Radiometrics PR2289 ra-
diometer (ARM user facility, 2011). For identifying cloud
phase, we use the phase classification by Shupe (2007),
which depends on a combination of KAZR, MWR, radioson-
des, and micropulse lidar (MPL, ARM user facility, 1990)
measurements.

The site at OLI was also equipped with a Ka-band Scan-
ning ARM Cloud Radar (KaSACR) from March 2016 to
September 2017. However, the KaSACR was pointing ver-
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tically for only 10 min h−1. Combined with its reduced sen-
sitivity, this leads to too few observations of liquid clouds,
and thus we decided not to include KaSACR observations in
this study.

Unless stated otherwise, Ze is corrected for gaseous at-
tenuation (Rosenkranz, 1998) using the radiosonde profiles
scaled by the MWR’s IWV. Two-way integrated gaseous at-
tenuation is typically less than 0.4 dB for the whole vertical
column at the Ka-band. Attenuation by liquid water is ne-
glected. W is adjusted to sea level air density following Za-
wadzki et al. (2005).

We analyze observations of the full year 2016 obtained at
both sites. The time period was selected because the KAZR
at OLI became fully operational only in fall 2015 and suf-
fered from a malfunction of a phase-lock oscillator resulting
in resonance peaks in the Doppler spectrum for most of 2017.

2.3 Box model

To simulate the transition from cloud droplets to drizzle
drops in an idealized way, we use a zero-dimensional box
model of the droplet collection process (Hoffmann et al.,
2017). The box model results will allow us to determine
the potential of using drizzle onset for radar calibration.
The box model is based on the “superdroplet” approach, in
which several hundred computational particles are simulated,
each superdroplet representing an ensemble of real, identical
droplets. We apply the so-called “all-or-nothing” approach
to calculate collections among the superdroplets, which has
been shown to accurately represent collision–coalescence in
the superdroplet framework (Unterstrasser et al., 2017). The
model is initialized using the so-called “singleSIP” method
(Unterstrasser et al., 2017). In this method, the underly-
ing droplet size distribution is divided into logarithmically
spaced bins. Each bin is represented by one superdroplet, of
which the diameter and weighting factor (the number of real
droplets represented by that superdroplet) are determined by
integrating the droplet size distribution across the bin. Here,
we use 500 bins, i.e., 500 superdroplets, to represent the
droplet size distribution.

While we also use measured droplet size distributions, we
primarily use an idealized lognormal drop size distribution
(Feingold and Levin, 1986) to evaluate the sensitivity of our
calibration methods by varying the distribution’s parameters
systematically:

N(D)=
Ntot

√
2π ln(σg)D

exp
[
−ln2(D/dg)

2ln2(σg)

]
, (1)

with D the droplet diameter, Ntot the total number of
droplets, dg the geometric mean diameter, and σg the geo-
metric standard deviation.

Collision–coalescence is steered by the collection kernel,
in which the droplet velocity difference is calculated using
terminal velocities by Beard (1976), the collision efficien-

cies are taken from Hall (1980), coalescence efficiency is
assumed as unity, and turbulent enhancement is described
as in Ayala et al. (2008) and Wang and Grabowski (2009).
Turbulence enhancement of the collision process is con-
trolled by a prescribed energy dissipation rate (see Riechel-
mann et al., 2012). The simulation time has been restricted
to 3h. Note that no other microphysical processes besides
collision–coalescence are considered, and droplets are not al-
lowed to sediment from the box; i.e., the liquid water content
(LWC) remains constant (Hoffmann et al., 2017).

2.4 Radar simulator

To convert the drop size distributions (DSDs) of the box
model into radar observables, we use the spectral radar simu-
lator of the second-generation Passive and Active Microwave
radiative TRAnsfer model (PAMTRA2; as in Maahn and
Ori, 2019). Its physical basics are the same as for the first-
generation PAMTRA (Maahn et al., 2015; Maahn and Löhn-
ert, 2017), but it is designed in a more modular way. Because
the drop size in the box model does not exceed 1/10th of
the radar wavelength (8.6 mm) for Ze < 10 dBz, we can use
the Rayleigh scattering assumption for estimating the radar
backscattering cross section of the drops. From the backscat-
tering cross section, the radar Doppler spectrum is estimated
using the same fall-velocity–size relationship as in the box
model (Beard, 1976). Unlike for Ze and W , broadening by
the Doppler spectrum due to turbulence imposing random
motion on the droplets needs to be accounted for when es-
timating γ . For this, we convolve a Gaussian velocity distri-
bution with the idealized radar spectrum. The standard de-
viation of the Gaussian distribution depends mostly on the
degree of turbulence and the contribution of the horizon-
tal wind field to the radial velocity due to the finite radar
beamwidth following Shupe et al. (2008). The former is esti-
mated from the energy dissipation rate ε, which is varied as
discussed below, and a constant horizontal wind of 10 m s−1

is assumed for the latter. Noise is added to the spectrum in
correspondence with KAZR2 specifications after June 2016
(Table 1). From the simulated radar Doppler spectrum, we
estimate its moments including radar reflectivity Ze, mean
Doppler velocity W , and skewness γ following Maahn and
Löhnert (2017).

3 Calibration methods

3.1 Skewness and mean Doppler-velocity-based
methods

We hypothesize that there are reference points during drizzle
onset that have a typical Ze value, which can be constrained
by γ or W . To determine these reference points we use and
analyze the results of the box-model–radar simulator com-
bination introduced above for simulating drizzle onset. Fo-
cusing on the formation of drizzle drops from cloud droplets
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– referred to as autoconversion – we assume that collision–
coalescence is the dominating cloud process during drizzle
onset and that other cloud processes can be neglected for
this purpose. To assess the model’s sensitivity to the micro-
physical properties of a given cloud, we first vary the initial
DSDs (Sect. 3.1.1). Based on these results, we determine the
best reference points for radar calibration (Sect. 3.1.2) and
discuss how to apply these reference points to observations
(Sect. 3.1.3).

3.1.1 Sensitivity study

Here, we show how Ze, γ , and W change with time during
drizzle onset and how this is affected by the DSD and turbu-
lence. For a reference run, we chose a set of parameters fea-
turing a slow cloud-to-drizzle transition in agreement with
observations of DSDs (Geoffroy et al., 2010) and turbulence
(Shupe et al., 2012; Maahn et al., 2015): Ntot = 108 m−3 as
the initial drop number, σg = 1.34 as the standard geomet-
ric deviation, dg = 1.6× 10−5 m as the geometric mean di-
ameter to describe the initial lognormal distribution (Eq. 1),
and ε = 10−4 m2 s−3 as the turbulent energy dissipation rate.
This DSD corresponds to 0.26 g m−3 LWC. The results of
the reference run show (orange lines Fig. 1) that Ze in-
creases monotonically with time and that γ reflects the typ-
ical competition of cloud droplets and drizzle drops in the
radar Doppler spectrum (Kollias et al., 2011b). In the absence
of drizzle, only backscattering by cloud droplets contributes
to the radar Doppler spectrum. For this stage, the Doppler
spectrum has a Gaussian shape (i.e., γ ≈ 0), the variability
of droplet fall velocities is small, and turbulence regulates the
width of the Doppler spectrum. The critical droplet diameter
required to start autoconversion varies between 14 and 80
×10−6 m depending on the DSD (Liu et al., 2004). As soon
as the first drizzle drops are created by autoconversion after
45 min, the γ values become positive (motion towards the
radar is defined as positive in this study) because the drizzle
drops extend the tail of the Doppler spectrum towards faster,
more positive velocities. The maximum γ value of approxi-
mately 0.7 is reached at−20.2 dBz (referred to as Zmax(γ )

e in
the following). When drizzle and cloud droplets contribute
approximately equally to Ze, the shape of the spectrum is
again more symmetric resulting in γ ≈ 0. This stage is re-
ferred to as the cloud drizzle balance point in the follow-
ing and is reached after another 45 min at −16.5 dBz (re-
ferred to as Zγ=0

e ). Finally, γ becomes negative when the
spectrum is dominated by drizzle drops and the remaining
cloud droplets extend the tail of the spectrum to the opposite,
smaller-droplet side. However, simulated values significantly
larger than Zγ=0

e have to be treated with care because drizzle
removal from the cloud by sedimentation is not accounted
for by the box model.

To assess the sensitivity of the Ze–γ relationship to mi-
crophysics, the initial parameters of the box model were per-
turbed. We chose the perturbations such that a realistic range

is covered but made sure that drizzle is created neither in-
stantly nor too slowly (i.e., no drizzle after 3 h runtime). To
evaluate the sensitivity with respect to Ntot, we divided and
multipliedNtot by a factor of 2 (Fig. 1a). When cloud droplets
dominate the radar signal, Ntot scales linearly with Ze in lin-
ear units and the offset between the model runs is close to
3 dB (corresponding to a factor of 2 as expected from the
modification of Ntot). Consequently, the Zmax(γ )

e values are
approximately 3 dB apart (−23.5, −20.2, and −17.6 dBz).
However, autoconversion is more efficient for greater num-
ber concentrations (with constant droplet size), thus γ de-
creases faster as a function of both Ze and time than for the
other runs. Due to these compensating effects, Zγ=0

e values
are closer together (−16.5 and −15.4 dBz) than for the max-
imum of γ . Interestingly, this is not the case if we reduce
Ntot by 50 %. Then, the Ze–γ line is shifted to the lower left
and Zγ=0

e is −21.1 dBz and 4.7 dB smaller than for the ref-
erence run. For this run, autoconversion is so slow that after
2 h cloud droplets still dominate the spectrum and a reflec-
tivity value of only −15 dBz is reached at the end of the 3 h
simulation. For the run with doubled Ntot, the time required
until the drizzle dominates the radar Doppler spectrum (i.e.,
γ < 0) is less than 1 h.

For estimating the sensitivity to the width of the size dis-
tribution, we perturb σg by ±0.05 (Fig. 1b). If we perturbed
the initial DSD width by larger values, the box model would
create drizzle too slowly or too quickly for our purposes.
While the Zmax(γ )

e values for both perturbations are about
2 dB apart, the difference between the Zγ=0

e values is 2.9
and 0.2 dB for the reduction and increase in σg, respectively.
Similar to the doubled Ntot run, autoconversion is more ef-
ficient and faster when we increase σg. At the same time, a
narrower distribution leads to a larger absolute γ value due
to the reduced Doppler spectrum width of the cloud peak.
Note that the reference run and the run with increased σg
are almost identical for Ze >−18 dBz, but the run with re-
duced σg remains different. This highlights that the presence
of larger droplets in the initial spectrum (due to a larger stan-
dard deviation) is important for drizzle onset, but the effect
saturates when drizzle drops become more numerous. This is
similar for the runs where dg has been increased and reduced
by ±1 µm (Fig. 1c). Zγ=0

e changes little when increasing dg
(−16.3 dBz) but is reduced for a smaller dg (−19.4 dBz).

To assess the impact of turbulence on drizzle onset, ε is
perturbed by an order of magnitude (Fig. 1d), in agreement
with observations of Arctic clouds (Shupe et al., 2012). En-
hanced turbulence leads to turbulent broadening, which re-
duces the γ magnitude by making the spectrum more sym-
metrical (Acquistapace et al., 2017). This is particularly vis-
ible for low reflectivities, which are dominated by cloud
droplets. Turbulence only has a small impact on autocon-
version, which can be seen by the slightly faster drizzle for-
mation and the small change in Zγ=0

e of 0.2 dB. Similar re-
sults have been found in other simulations by Hoffmann et al.
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(2017), in which turbulence did not significantly change the
timing of drizzle but rather the amount of cloud water trans-
formed to drizzle.

In reality, a change in Ntot alone is not very realistic be-
cause when Ntot is increased, the available liquid is typically
distributed on a larger number of smaller sized droplets. In
other words, an increase in Ntot for fixed LWC, which would
shift the Ze–γ relationship towards larger Ze values, is com-
pensated for by a reduction of dg, which would shift the re-
lationship to the opposite direction. To investigate this, we
repeated the Ntot variation for fixed LWC by changing dg
accordingly (Fig. 1e). Note that the required change in dg
is larger (18.9 and 11.9 µm) than investigated above. As ex-
pected, autoconversion is more efficient in the low Ntot|LWC

case, but there is apparently an upper threshold for Zγ=0
e ,

which increases only by 1 dB. For the high Ntot|LWC case,
Z
γ=0
e is reduced strongly from −16.5 to −22.9 dBz. Unlike

for the other runs, drizzle formation is very slow and droplets
still dominate after 2 h of model run time. Interestingly, the
steeper slope of the Ze–γ relationship for the high Ntot|LWC
case agrees with the results of Kollias et al. (2011a), who
compared maritime and continental (implying higher Ntot
values) data sets.

Collision–coalescence, including autoconversion, is a
stochastic process so a random number generator is used in
the box model for emulation. To make sure the runs are com-
parable, we previously seeded the random number genera-
tor with the same number for the sensitivity study. Here, we
use five different seeds for the reference initial DSD to quan-
tify the role of chance. Figure 1f shows that Zγ=0

e (Zmax(γ )
e )

varies significantly between −16.5 and −18.9 dBz (−20.0
and −21.6 dBz). We conclude from this that the stochastic
nature of collision–coalescence reduces the impact of the
clouds’ initial DSD on the Ze–γ relationship. However, the
impact of stochasticity is likely overestimated in the box
model because of the limited number of simulated super-
droplets (Dziekan and Pawlowska, 2017).

For comparison, we also evaluate the results of the sensi-
tivity study with respect to the Ze–W relationship (Fig. 2).
Generally,W increases with increasing drizzle concentration
because the drop fall velocity depends strongly on size. On
the one hand, W is more prone to biases than γ , e.g., due to
inaccurate radar pointing or vertical air motion. While we as-
sume that the latter cancels for longer time series, consistent
lifting related to orography could bias W even for long-term
data sets. On the other hand, W can be found in radar data
sets more frequently than γ and observing W does not re-
quire a high temporal resolution (Acquistapace et al., 2017).
The dependence on the initial DSD is similar to the Ze–γ
relationship. The fact that drizzle develops more efficiently
for DSDs with larger Ntot, σg, or dg can be seen from the
slower W for the same Ze. This is because W (proportional
to the first DSD moment for drizzle) increases more slowly
with size thanZe (proportional to the sixth DSD moment).W

Figure 1. Sensitivity of the reflectivity Ze to skewness γ transition
for drizzle onset to (a) total number concentrationNtot, (b) the unit-
less standard deviation of the lognormal distribution σg, (c) the ge-
ometric mean diameter dg, and (d) the turbulent energy dissipation
rate ε. We also (e) modified Ntot while keeping liquid water content
(LWC) constant (i.e., increasing dg) and (f) used different seeds for
the box model. All lines are smoothed. The light gray points show
all data points of the reference run; the lines denote smoothed model
results. The triangles, squares, and hexagonal shapes indicate model
simulation times of 1, 1.5, and 2 h, respectively. Note that the orange
lines are identical for all panels.

does not depend on ε; therefore, the runs with different ε are
practically identical. Unlike for Zγ=0

e , there are apparently
no saturation effects limiting the variability of the Ze–W re-
lationship.

3.1.2 Determining reference values

The sensitivity study evaluated only a single microphysical
condition, which is not realistic for observations. Therefore,
we investigate how stable the relations are for longer data sets
with varying microphysical conditions and assess whether
the Ze–γ and Ze–W relations have the potential to be used
for radar calibration. For this, we used the box model and
combined all perturbations of Ntot, σg, dg, and ε with each
other to cover the parameter space of initial conditions bet-
ter than for the sensitivity study. Every run was repeated five
times with different assigned seeds (i.e., 5× 34

= 405 runs).
To make sure the full cloud droplet to drizzle transition is
included in the data set, only runs without drizzle at model
initialization are considered. Also, runs without any drizzle
production within 3 h are omitted, which leaves 340 runs.
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Figure 2. As in Fig. 1 but for mean Doppler velocity W .

The results show considerable spread for σ andW (Fig. 3)
thus we were able to obtained a median relationship. For this,
we bin the data by Ze (bin width 1 dB) and estimate the me-
dian values of γ and W for every bin. We smooth the re-
sulting curve using the Savitzky–Golay filter (window length
7, polynomial order 2, Savitzky and Golay, 1964). That is
particularly important when applying the method to obser-
vations (see below) because it makes the method more ro-
bust by increasing the number of observations contributing
to a particular point on the curve. Typically, the smoothing
changes Zγ=0

e by less than 1 dB. The resulting median re-
lationships show the typical partly sinusoidally shaped Ze–
γ relationship and an increase in W for Ze >−20 dBz. We
maintain that this median curve is much better suited for cali-
bration because the mean reflectivity would be more sensitive
to outliers. It is important to consider the whole Ze–γ rela-
tionship instead of determining a mean value for all Ze with
γ = 0. This is because a certain σ value is not unambigu-
ous and, e.g., a value of γ = 0 can also refer to a spectrum
consisting only of cloud droplets.

To determine which point of the Ze–γ and Ze–W relations
is most stable and best suited for calibration, we estimate the
uncertainties of severalZe reference values for γ (maximum,
0,−0.1) and W (0.25,0.5,0.75 m s−1) for comparison. The
choice of the reference values is somewhat arbitrary, but the
variability increases strongly outside the investigated range
of reference values, which enclose the onset of drizzle. While
the determination of max(γ ) is straightforward, we estimate
the other values by linear interpolation from the neighboring
Ze bins. In case a reference point is crossed more than once
by the median relationship (e.g., γ of cloud droplets is also

close to zero), we choose the crossing associated with a larger
Ze value. The use of the Savitzky–Golay filter ensures that
adjacent Ze bins impact the reference values, which makes
the method more stable. Unlike other Ze calibration studies
(e.g., Protat et al., 2011), we do not need to account for radar
sensitivity differences because the range of relevant Ze val-
ues is strictly limited and well above the sensitivity limit. To
assess the stability of the reference values, we use a boot-
strapping approach: we select 5 % of the 340 runs randomly
100 times and determine the resulting reference values for
each subset. We estimate the final reference values and their
uncertainties from the means and standard deviations, re-
spectively (see uncertainty bars in Fig. 3). For γ , the com-
parison reveals that the variability of Ze is less for reference
γ values 0 and −0.1 (± 0.7 and 0.8 dB, Table 2) than for the
maximum of γ (±1.6). For W , the variability is generally
larger (±0.8 to 1.9 dB).

Even though we chose the initial conditions to be represen-
tative of liquid stratiform clouds at high latitudes, it is possi-
ble that our choice of initial conditions is biased. Therefore,
we repeated the box model experiment with initial conditions
based on aircraft in situ observations from the same region as
the cloud radars expecting that measured DSDs include all
microphysical processes including advection and sedimen-
tation (Fig. 4). For this, we use data of the 5th ARM Air-
borne Carbon Measurements (ACME-V) aircraft campaign.
This campaign took place from June to September 2015 and
included cloud probe observations near the North Slope of
Alaska (ARM user facility, 2016). Here, we use liquid-only
cloud observations in the vicinity of OLI and NSA. We use
every 10th profile of the data shown in the Fig. 4a and b of
Maahn et al. (2017). Except for the initial DSDs, the setup
is identical to the idealized runs introduced above. ε was
not measured during ACME-V and we apply the same ε
values as for the sensitivity study to each measured profile
(ε = 10−3, 10−4, and 10−5 m2 s−3). Every run was repeated
five times with different seeds; runs that did not produce
drizzle or that included drizzle in the initial DSD were not
considered. By doing so, we avoid the impact of potential
sampling problems of large, rare drizzle drops by the in situ
probes. This leaves 237 runs and the bootstrapping method
is used to determine the uncertainties of the reference points.
Even though the estimated Ze–γ and Ze–W relationships are
more uneven, the general shape between −20 and −10 dBz
is very similar to the runs using lognormal DSDs (Table 2).

Figures 3 and 4 contain only box model runs where drizzle
eventually formed, but the minimum required Ze for drizzle
formation is different for ACME-V data than for the ideal-
ized DSDs. While for the idealized DSDs drizzle is formed
only when Ze of the initial DSD is at least −27 dBz, drizzle
can form at less than −30 dBz for the ACME-V DSDs. We
relate this to the non-idealized nature of the initial ACME-V
DSDs and the fact that a single, larger cloud droplet can trig-
ger drizzle formation if included in the observed DSD. As a
side effect, the drizzle formation at lower Ze values leads to
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enhanced γ values below −20 dBz. This is most likely only
a spin-up effect of the box model, which can be seen from
the excellent agreement of the median curves for larger Ze.
Note also that at −21 dBz γ is around zero due to competi-
tion between runs with higher and lower γ values. But this
does not bias our calibration method because we only use the
crossing with the largest Ze value.

For both initial DSDs, the variability determined from
bootstrapping is minimal for γ = 0.0 and W = 0.25 m s−1,
and we conclude that Zγ=0

e and ZW=0.25
e are the best ref-

erence values for assessing radar calibration. Initializing the
simulations with the lognormal and ACME-V DSDs,Zγ=0

e is
−17.3±0.7 and−17.8±1.2, respectively (Table 2).ZW=0.25

e

is estimated as −16.3± 0.8 and −16.9± 1.5 dBz, respec-
tively. Combining both setups, we obtain Zγ=0

e =−17.6 and
ZW=0.25
e =−16.6 dBz. These values are very close to the

value of −17 dBz proposed by Frisch et al. (1995) for distin-
guishing between drizzle-free and drizzle-containing clouds.
Given the idealized setup, we likely underestimated the un-
certainties ofZγ=0

e andZW=0.25
e and estimate the uncertainty

to be at least 3 dB.
While it is true that we found a much larger variability

of Zγ=0
e and ZW=0.25

e for the sensitivity study (Sect. 3.1.1),
we are confident that the reference values can still be deter-
mined with sufficient accuracy. We base this claim on the as-
sumption that observations with reflectivities corresponding
to drizzle onset (Ze −20 to−15 dBz) are likely dominated by
clouds that produce drizzle slowly. Clouds with faster driz-
zle production reach larger reflectivities quickly, likely have
a shorter lifetime, and do not contribute to the data set quan-
titatively. Clouds without or with extremely slow autoconver-
sion rates will likely not reach Ze values larger than−20 dBz
before the end of their lifetime. Together with the signifi-
cant role of random effects, this indicates that the variability
of the Ze–γ and Ze–W relationships for larger data sets is
lower than estimated in the sensitivity study. By binning the
box model results by Ze and determining the median γ and
W values, we ensure that slow drizzle generating clouds also
dominate our box model estimates because, similar to obser-
vations, clouds forming drizzle quickly in the box model also
have quickly increasing Ze values. Therefore, these clouds
contribute little to observations of reflectivities between −20
and −15 dBz.

This does not mean that Zγ=0
e and ZW=0.25

e can be used
to identify individual profiles with or without drizzle. As
shown in the sensitivity study above and in Acquistapace
et al. (2019), the variability from profile to profile can be
substantial and Ze, γ , and W are not suited to identify the
presence of drizzle for individual profiles.

3.1.3 Application to observations

In the following, we determine Zγ=0
e and ZW=0.25

e from
observations at NSA and OLI. Comparison with the theo-

Figure 3. (a) Reflectivity Ze skewness γ and (b) reflectivity Ze
mean Doppler velocity W relationships for the individual model
runs using synthetic initial model conditions. The black lines denote
the medians as a function of Ze; the error bars are estimated using
bootstrapping for selected γ and W values (see Table 2). Color is
for model run time.

Table 2. Mean Ze values at various reference points for γ and W .

Reference value idealized Ze [dBz] ACME-V Ze [dBz]

max(γ ) −21.3± 1.6 −26.6± 2.0
γ = 0.0 −17.3± 0.7 −17.8± 1.2
γ =−0.1 −16.1± 0.8 −16.4± 1.4

W = 0.25 m s−1
−16.3± 0.8 −16.9± 1.5

W = 0.50 m s−1
−12.6± 1.3 −14.3± 2.1

W = 0.75 m s−1
−8.2± 1.9 −11.4± 3.3

retical values derived above will allow for evaluating the
radars’ calibration. We only use clouds identified by the
Shupe (2007) method as purely liquid throughout the col-
umn. We expect that drizzle onset can be observed best in
stratiform clouds due to their lower turbulence, and we limit
our analysis to observations with a cloud base lower than
1000 m and cloud thickness less than 1000 m. Even though
the Doppler spectrum peak identification algorithm provided
by Williams et al. (2018) can identify atmospheric signals
with a signal-to-noise ratio (SNR) as small as −15 dB, we
only use data with SNR >−5 dB because γ is a particularly
noisy variable. We use the same method to estimate Zγ=0

e

and ZW=0.25
e from the observations as from the box model

(see Appendix A for step-by-step instructions): the liquid
cloud observations are binned by Ze (1 dB bin width), the
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Figure 4. As in Fig. 3 but using ACME-V observations as the initial
conditions.

median γ and W values are estimated for each bin, and the
resulting curve is smoothed using the Savitzky–Golay filter.
Bins with fewer than 100 observations are omitted from the
analysis. To obtain Zγ=0

e and ZW=0.25
e , the median relation-

ships are interpolated linearly.

3.2 Liquid-water-path-based method

Here, we investigate the potential of the relation between
LWP and Ze for calibration. While the relationships between
γ or W and Ze are shaped by the drizzle onset process, the
correlation between LWP and Ze is based on the fact that
the likelihood of drizzle formation (i.e., increased Ze values)
increases with increasing LWP. But there is also a correla-
tion between LWP and Ze for non-drizzling clouds: cloud
droplets can grow larger in deeper clouds with greater LWP
values. Frisch et al. (1998) showed that for non-drizzling
adiabatic clouds with constant Ntot, LWP is proportional to∑
iz

1/2
i with zi = 10Ze,i/10 for range gate i. While this rela-

tionship could be exploited for radar calibration assuming a
fixed Ntot value, we were not able to apply the method to our
data set successfully. This is likely due to challenges identify-
ing a sufficient number of clouds fulfilling the conditions of
the method (i.e., non-drizzling adiabatic clouds with constant
Ntot). Instead, we decided to use the maximum Ze value in
the column (max(Ze)) to combine the one-dimensional LWP
with the two-dimensional, range-resolved Ze measurements.
Not relying on the relationship found by Frisch et al. (1998)
allows us to not distinguish between non-drizzling and driz-
zling clouds and use the very same data set as for the γ and
W methods. Even though max(Ze) is likely noisier than, e.g.,

the mean of Ze in the column, max(Ze) has the major advan-
tage that the maximum is less likely impacted by radar sen-
sitivity than the mean because a truncation of a distribution’s
lower end does not impact its maximum.

3.2.1 Determining a reference relation

Similar to the Ze–γ and Ze–W relationships, and as shown
for cloud-integrated reflectivity by Frisch et al. (1998), the
LWP–max(Ze) relationship likely also depends on micro-
physical (e.g., initial Ntot) and dynamical (e.g., turbulence,
entrainment and mixing) conditions. With respect to the
LWP–max(Ze) relationship, we expect that higher Ntot val-
ues lead to reduced Ze values for the same LWP due to sup-
pression of drizzle formation. But unlike the γ - andW -based
methods, which focus on a very specific moment during driz-
zle onset, the LWP method is impacted by the full set of pro-
cesses of droplet growth and drizzle formation, and is po-
tentially impacted by multiple feedback processes between
clouds and their environment. For example, the impact of
Ntot on the LWP–max(Ze) relationship would be even larger
assuming drizzle suppression due to enhanced Ntot leads to
larger LWP values (Albrecht, 1989). However, the question
of whether and how feedback processes compensate for a
LWP increase is still debated (Stevens and Feingold, 2009).
Focusing only on drizzle onset has allowed us to use a simple
box model to determine the reference points for theZe–γ and
W relationships but addressing the question of how Ntot (and
the related cloud condensation nuclei concentration) changes
LWP cannot be answered with a box model and is beyond the
scope of this study. Therefore, we decided not to use a model
for determining a reference LWP–max(Ze) relationship. In-
stead, we will use the LWP–max(Ze) relationship of one site
as a reference and determine the calibration offset of a second
site from this. In other words, the LWP–max(Ze) relationship
is used in a relative way unless we can trust the calibration
of one of the radars, which would make it an absolute cali-
bration similar to Protat et al. (2011). Similar to the γ - and
W -based methods, this assumes that the LWP–max(Ze) rela-
tionship is sufficiently stable with respect to changes in mi-
crophysical and dynamical conditions. Because we have no
box model to identify the LWP value with the lowest vari-
ability of max(Ze), we do not use a reference point but a
reference relationship and minimize the mean weighted dif-
ference between reference and observed relationship.

3.2.2 Application to observations

To apply the LWP method to observations, we use the same
liquid-only data set as for the γ - and W -based methods but
restrict the observations to cases when the wind direction at
cloud level is from the sea. In this way, we reduce the po-
tential impact of local pollution at OLI (Maahn et al., 2017;
Creamean et al., 2018), which could alter the LWP–max(Ze)
relationship at OLI due to varyingNtot. To determine a LWP–
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max(Ze) relation for a certain period, we determine mean
max(Ze) values for LWP intervals of 0.01 kg m−2 from 0.01
to 0.120 kg m−2 (see Appendix B for step-by-step instruc-
tions). For larger LWP values, the number of liquid-only
cloud observations drops quickly for the Arctic data set used
in this study. When using LWP for radar calibration, it is
crucial that the MWR LWP retrievals are offset-corrected,
as discussed in Sect. 2.2.

3.3 High-altitude clouds method

To evaluate the new methods independently, we apply the rel-
ative calibration method based on high-altitude clouds pro-
posed by Protat et al. (2011). They estimated a relative cal-
ibration offset between CloudSat and ground-based cloud
radars by comparing mean reflectivity values of high-altitude
ice clouds. Here, we adapt this technique to the KAZR
data set of NSA and OLI assuming that high-altitude ice
cloud statistics are similar for both sites and have the same
mean(Ze). This will only provide a relative calibration in-
stead of an absolute one. Comparing mean(Ze) of two radars
requires that both are limited to the same sensitivity level;
therefore, we limit the OLI sensitivity to that for NSA. How-
ever, changing the relative calibration also changes the dif-
ference in sensitivity. To account for this, we implemented
the iterative procedure proposed by Protat et al. (2011): after
the calibration offset is estimated, the sensitivity limit of the
radar at NSA is applied to the OLI radar and the relative cal-
ibration offset is estimated again. This procedure is repeated
until the relative calibration offset converges.

For the comparison, we use all data with – according to ra-
diosondes – an ambient temperature below 0 ◦C above a cer-
tain cutoff altitude. To avoid precipitation attenuation, pro-
files containing Ze values exceeding 10 dBz are discarded.
Gaseous attenuation is not accounted for because both sites
are expected to be, on average, equally affected. The cutoff
altitude has to be high enough to avoid local impacts (e.g.,
due to pollution Maahn et al., 2017) and biases due to in-
dividual frontal systems but low enough to get a sufficient
number of observations. For the latter, we have to consider
the low height of the Arctic tropopause in winter. To identify
the best cutoff height for every three month period, we apply
different cutoff altitudes from 3000 to 7000 m to the data set
and compare two quality control measures. First, we com-
pare the vertical profiles of mean(Ze) for OLI and NSA be-
fore and after relative calibration. Second, we estimate cloud
top altitude statistics, which depend strongly on radar sensi-
tivity (Protat et al., 2011), using 500 m bins before and after
calibration. We choose the cutoff height whose root-mean-
square differences after calibration are best based on both
methods.

4 Results and discussion

In the following, we apply the three new calibration methods
introduced above to the data sets of NSA (Sect. 4.1, Fig. 5)
and OLI (Sect. 4.2, Fig. 6) in 2016. In Sect. 4.3, we will com-
pare the new methods to the high-altitude reference method.
We quantify the calibration quality using the calibration off-
set O defined as follows:

Ztruth
e = Zmeasured

e +O. (2)

To investigate temporal trends, we group the data monthly
and estimate the calibration offset for every month sepa-
rately. We chose monthly intervals as a compromise be-
tween the ability to resolve rapid calibration changes and
the need for a sufficient number of liquid cloud observations
with varying microphysical properties. The only exception
is June 2016 because the radar configuration was changed
at OLI on 16 June 2016 (see Table 1), potentially affecting
radar calibration. Therefore, the June data set contains only
observations from the first half of June and the remaining ob-
servations are combined with the July observations. Due to
instrument issues in the second half of June, this affects only
a few observations.

4.1 Calibration of North Slope of Alaska (NSA) data

For NSA, the monthly Ze–γ relationships follow a
sinusoidal-type curve similar to the box model (Fig. 5a),
indicating that the phase classification is correctly identi-
fying liquid clouds. This is also supported by the fact that
all but one month (April 2016) feature W < 0.2 m s−1 for
Ze <−25 dBz, as expected for liquid clouds without ice
(Fig. 5e). Also, most monthly LWP–max(Ze) relationships
(Fig. 5i) have a similar shape and align within a couple of dB.
For the Ze–γ relationship, most monthly relationships have
Z
γ=0
e values between−20 to−17 dBz, but there are a couple

of outliers. The monthly Ze–γ relationships that are shifted
towards smaller (e.g., December 2016) or larger values (e.g.,
July 2016) show a similar shift for theZe–W relationship, in-
dicating that both methods are consistent. The shift in the cor-
responding LWP–max(Ze) relationships is smaller, but the
December and July relationships are still below and above
the mean relationship, respectively (Fig. 5i). As discussed
above, this could be related not only to a change in radar cal-
ibration but also to a change in the dominating microphysi-
cal conditions. We estimate the calibration offsets Oγ=0 and
OW=0.25 from Z

γ=0
e and ZW=0.25

e , respectively, following
the definition in Eq. (2) (Fig. 7a, Table 3). Over the course of
the year, Oγ=0 varies between −2.8 and 7.2 dB with a mean
of 1.8±2.5 dB.OW=0.25 is between−2.8 and 3.7 dB and has
a mean of 0.1±2.0 dB. Even though there are a couple of out-
liers enhancing the variability, the standard deviations of 2.5
and 2.0 dB of Oγ=0 and OW=0.25, respectively, are consis-
tent with the assumed uncertainty of the methods of at least
3 dB. Comparing Oγ=0 and OW=0.25 reveals that the differ-
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Figure 5. Observed reflectivityZe – skewness γ (a),Ze – mean Doppler velocityW (e), and liquid water path LWP–max(Ze) (i) relationships
for the North Slope of Alaska (NSA). The data have been calibration-corrected using the γ method (second column), the W method (third
column), and the LWP method (fourth column). The colored lines indicate the various calibration periods of 2016. The black stars (rows 1
and 2) show the reference point used for calibration; the dotted black line (row 3) is the reference LWP–max(Ze) relationship obtained from
the mean of the monthly relationships weighted by the number of observations.

Figure 6. As in Fig. 5 but for Oliktok Point (OLI).

ences are smallest in summer when the number of observa-
tions is largest (corresponding to the number of reflectivity
observations in the two bins adjacent to Zγ=0

e and ZW=0.25
e ,

Fig. 7c). Because the methods require a sufficient number
of drizzling liquid clouds, we expect that the accuracy of

the calibration estimate is reduced in winter. The sensitiv-
ity study (Sect. 3.1.1) revealed that higher Ntot concentra-
tions for fixed LWC could lead to higher Zγ=0

e and ZW=0.25
e

values. Assuming that Arctic haze – pollution transported to
the Arctic from midlatitudes – peaks in spring (Shaw, 1995)
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and leads to enhanced Ntot values, the increased Oγ=0 and
OW=0.25 could be related to a change in Ntot values. Be-
sides this potentially seasonal impact, we cannot identify any
trends for NSA. The yearly mean values of 1.8 and 0.1 dB
for Oγ=0 and OW=0.25, respectively, indicate a slight posi-
tive calibration offset for NSA. Given the uncertainties, this
agrees with Kollias et al. (2019), who estimated KAZR’s O
to be around 3 dB at NSA by using CloudSat observations.

We did not estimate a reference LWP–max(Ze) relation-
ship from a model, but given that the KAZR’s calibration
at NSA is – according to the γ and W methods – stable
and accurate within 2 dB, we can use the LWP–max(Ze) re-
lationship at NSA as a reference. We obtain the reference
by taking the mean of the monthly LWP–max(Ze) relation-
ships weighted by the number of observations. Based on the
average of the yearly mean Oγ=0 and OW=0.25 values (1.8
and 0.1 dB, respectively), we apply an O value of 1 dB (see
Table 4). This allows us to estimate monthly OLWP values
from the mean difference between the reference and the cor-
responding monthly relationship (Fig. 7a, Table 3). We de-
cided to weight the mean difference by the number of obser-
vations in each LWP bin because the seasonality of the LWP
distribution is high and there are only few observations for
higher LWP values in winter. Bins with fewer than 100 ob-
servations are skipped. Obviously, this is of limited use for
determining an absolute calibration at NSA, but it allows us
to compare the variability ofOLWP withOγ=0 andOW=0.25.
OLWP varies between −1.6 and 1.9 dB with a standard devi-
ation of 1.1 dB, which is a ∼ 50 % reduction in comparison
toOγ=0 (2.5 dB) andOW=0.25 (2.0 dB). Because it is highly
unlikely that a variation in the real O would compensate for
the variability of OLWP but not the variability of Oγ=0 and
OW=0.25, we conclude that the LWP–max(Ze) method is the
most stable method. The uncertainty of the LWP method is
probably half of the two drizzle onset methods (i.e., 1.5 dB).

Another way to compare the accuracy is to compare the
Ze-based relationships after correcting using the various cal-
ibration methods. Of course, the variability of Zγ=0

e is zero
when applying Oγ=0 (Fig. 5b) and the same applies to W
(Fig. 5g) and LWP (Fig. 5l). Also, OW=0.25 leads to a re-
duction of the variability of Zγ=0

e relationship and vice versa
(Fig. 5c, f). This shows the consistency of both methods but
is also related to the fact that the Zγ=0

e and ZW=0.25
e refer-

ence values are close, thus both methods use similar sub-data
sets. When applying, e.g., OLWP to the Ze–γ relationship
(Fig. 5d), the variability of Zγ=0

e is not reduced; the inverse
operation (applying Zγ=0

e to LWP–max(Ze) relation) even
enhances the variability (Fig. 5j). This indicates that the vari-
ability of Oγ=0, OW=0.25 and OLWP is dominated by their
intrinsic variability and not by real changes in O. This is an-
other indication that O at NSA was very stable in 2016.

4.2 Calibration of Oliktok Point (OLI) data

For OLI, the relationships align less well than for NSA.
Even though most Ze–γ relationships show a quasi-
sinusoidal shape, Zγ=0

e varies between approximately −28
and −12 dBz (Fig. 6a). This is confirmed by the spread
of ZW=0.25

e (Fig. 6e) and the LWP–max(Ze) relationships
(Fig. 6i), which vary consistently with the Ze–γ relation-
ships. The corresponding Oγ=0, OW=0.25 and OLWP (with
the latter estimated using NSA as a reference, Table 4) val-
ues vary between −6.9 and 11.0 dB (dotted lines Fig. 7b).
There is no reason why the intrinsic variability of the rela-
tionships at OLI should be that much higher than at NSA.
We conclude that the KAZR at OLI was not properly cali-
brated, with O likely strongly changing with time. We note
that some monthly relationships look different even after ap-
plying Oγ=0, OW=0.25 and OLWP (estimated using NSA
as a reference, Table 4). Even after applying a calibration
correction (Fig. 6b, g, l), the spread of the relationships is
larger than for NSA. Some months have a drastically reduced
amplitude of the Ze–γ relationship. Further, many months
feature W > 0.25 m s−1 also for Ze <−20 dBz. Lastly, the
LWP–max(Ze) relationship is much more curved than the
reference relationship in some months. This indicates that
the phase classification was not working properly and the
data set also contains nonliquid clouds. The phase classifi-
cation by Shupe (2007) depends on absolute Ze values, e.g.,
by assuming that – under certain conditions – clouds are
mixed-phase for Ze >−17 dBz. Consequently, a large pos-
itive calibration offsetO might result in mixed-phase and ice
clouds being falsely classified as liquid clouds because their
Ze value is underestimated. Mixed-phase and ice clouds,
however, have different and probably more variable Ze–γ ,
Ze–W , and LWP–max(Ze) relationships. A simple solution
would be to constrain the data set to cases with a tempera-
ture larger than 0 ◦C, but this is not feasible for Arctic sites
because few observations would remain. Instead, we run the
classification by Shupe (2007) assuming different calibration
offsets Ophaseclass from −6 to +10 dBz (with 2 dB steps) and
estimate the relationships for every assumed offset. Note that
Ophaseclass impacts only which data points are selected based
on the phase classification, and we do not modify the Ze

values themselves for obtaining Zγ=0
e , ZW=0.25

e and the ref-
erence LWP–max(Ze) relationship. To obtain a phase clas-
sification consistent with the calibration offset, we choose
the run with the smallest difference between Ophaseclass and
Oγ=0 (or OW=0.25, OLWP). Typically, the smallest differ-
ence is less than the 2 dB step size of Ophaseclass. After ac-
counting for Ophaseclass, the magnitudes of the Ze–γ rela-
tionships are more similar (Fig. 8b), the W for small Ze val-
ues is reduced (Fig. 8g), and the LWP–max(Ze) relationships
are less curved (Fig. 8l). With respect to the used num-
ber of observations (Fig. 7d), application of Ophaseclass re-
duces the number of observations by approximately half and
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Table 3. Estimated offsets for NSA and OLI using the three calibration techniques for NSA and OLI. Our best estimate is to use a constant
offset of 1 dB for NSA and to use OLWP for OLI. A positive O value means the Ze value reported by the radar is too low (Eq. 2).

NSA OLI

Time Oγ=0 [dB] OW=0.25 [dB] OLWP [dB] Oγ=0 [dB] OW=0.25 [dB] OLWP [dB]

2016-01-01–2016-01-31 2.3 −1.4 0.8 9.6 7.9 7.9
2016-02-01–2016-02-29 0.2 −0.9 0.4 9.5 7.4 3.7
2016-03-01–2016-03-31 0.2 −0.8 −0.5 11.7 11.1 6.3
2016-04-01–2016-04-30 4.5 3.7 0.6 9.7 6.0 2.7
2016-05-01–2016-05-31 2.2 −1.0 1.5 4.3 3.4 2.7
2016-06-01–2016-06-15 1.1 −1.4 −0.5 7.1 0.9 1.1
2016-06-16–2016-07-31 −2.8 −2.8 0.3 -5.4 −7.2 −4.4
2016-08-01–2016-08-31 1.0 1.4 0.9 −3.5 −3.1 −2.1
2016-09-01–2016-09-30 0.8 1.4 3.0 −4.3 −4.6 −2.3
2016-10-01–2016-10-31 2.8 0.5 1.4 −0.1 −1.6 1.1
2016-11-01–2016-11-30 2.5 −1.0 −1.2 1.3 1.5 −2.0
2016-12-01–2016-12-31 7.2 3.4 1.6 4.3 −3.4 1.9

Estimated uncertainty ±3 ±3 ±1.5 ±3 ±3 ±1.5

Table 4. Reference LWP–max(Ze) relationship obtained at NSA
using the mean of monthly LWP–max(Ze) relationships weighted
by the number of observations. Note that the mean O was likely
around 1± 1 dB for NSA, and the reported values in this table are
corrected accordingly.

LWP interval [kg m−2] <max(Ze) > [dBz]

[20, 30[ −23.35
[30, 40[ −22.19
[40, 50[ −21.13
[50, 60[ −20.60
[60, 70[ −19.76
[70, 80[ −19.49
[80, 90[ −19.35
[90, 100[ −19.00
[100, 110[ −18.66
[110, 120[ −18.40

makes them more similar to NSA. This indicates that nonliq-
uid clouds have been successfully removed from the data set
by accounting for Ophaseclass. Interestingly, the differences
between O with and without accounting for Ophaseclass are
often smaller than 2 dB (Fig. 7b). This suggests that the meth-
ods are more robust than expected and can provide meaning-
ful calibration estimates even if the liquid cloud data sets are
contaminated by nonliquid clouds.

When analyzingO values for OLI, the decrease from June
to July 2016 stands out. Even though the decrease magni-
tude varies between −5.6 and −12.5 dB, all methods show
this decrease (Fig. 7b, Table 3), and a similar change was re-
ported by Kollias et al. (2019). Based on discussions with the
DOE ARM program, the decrease coincides with a change in
the KAZR radar configuration (including the calibration con-

stant) on 16 June 2016, though the details of the change are
unclear. To find out more about this decrease, we also an-
alyze collocated KaSACR measurements. Even though the
KaSACR data set size was not sufficient to apply the new
calibration methods, we can compare KaSACR and KAZR
Ze measurements directly for the two weeks before and af-
ter the step on 16 June 2016. This comparison shows a de-
crease in the difference between both radars of 7.5 dB (not
shown). Because we have no indication for a simultaneous
change in the KaSACR’s configuration or calibration, we at-
tribute this change to the KAZR confirming the step identi-
fied by the liquid cloud methods. The fact that the relative dif-
ference between KAZR and KaSACR was almost zero after
16 June 2016 indicates that the change of the KAZR’s con-
figuration was made on purpose to make the measurements
of both radars match. After June, all liquid cloud methods
show a gradual increase in O with time. Except for Decem-
ber 2016, where fewer than 1000 observations are available,
the agreement of the various methods is high, which indi-
cates that the gradual trend is likely related to the radar and
not to the intrinsic variability of the liquid cloud methods.
The gradual trend could indicate hardware problems or a de-
pendence of O on the ambient temperature. The latter could
also explain the gradual decrease in O before June 2016.
Even though all methods agree about the sign of the trend
in spring, O is higher for the γ - and W -based methods than
for the LWP method, which is similar to our results for NSA.
Therefore, the higher Oγ=0 and OW=0.25 values could be
related to Arctic haze, which apparently has a larger impact
on Zγ=0

e and ZW=0.25
e than the LWP–max(Ze) relationship.

Based on this and on the reduced variability for NSA, we
conclude that OLWP is likely best suited for performing an
absolute calibration at Arctic sites.
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Figure 7. Calibration offsets O (a, b) and number of used observa-
tions (c, d) for NSA (a, c) and OLI (b, d). For OLI, the dotted lines
show the preliminary results without modifying the phase classifi-
cation with Ophaseclass.

The median difference between Oγ=0 and OW=0.25 is
very similar for OLI and NSA (1.6 and 1.7 dB, respectively),
which could indicate a systematic bias between our box-
model-based estimations of Zγ=0

e and ZW=0.25
e . The fact that

the mean Oγ=0 value of 1.8 dB for NSA for 2016 is closest
to the 3 dB estimate of Kollias et al. (2019) might suggest
that Zγ=0

e is closer to reality than ZW=0.25
e .

4.3 Relative calibration of North Slope of Alaska
(NSA) and Oliktok Point (OLI) data

The high-altitude calibration method only allows a relative
calibration, which we analyze in Fig. 9 for NSA and OLI.
We found that individual events can bias the statistics when
applying the high-altitude calibration method to monthly pe-
riods; therefore, we applied the methods to intervals of three
months with the bin threshold of 1 July 2016 shifted to
16 June 2016. The standard deviation between the differ-
ent cutoff heights varies between 0.9 and 2.3 dB, which is
probably a good estimate for the uncertainty of the high-
altitude calibration method. Assuming that the NSA calibra-
tion was stable, the relative comparison reveals the decrease
in O at OLI on 16 June 2016. When using the best cutoff
altitudes, the decrease is estimated to be −5.9 dB, which is –
given the different time intervals used for estimating O – in
good agreement with the estimate based on the KaSACR–
KAZR comparison (−7.5 dB) and the LWP-based method
(−5.6 dB).

A comparison of relative calibration with the high-altitude
cloud method and the new methods (Sects. 3.1, 3.2) is pre-
sented in Fig. 10. This requires deriving a relative calibration
from Oγ=0, OW=0.25, and OLWP by subtracting OLI from
NSA and averaging the monthly O estimates to 3-monthly
values. While the combination of both calibrations generally
combines the uncertainties of both estimates, some poten-
tial error sources cancel out. This is particularly true for any
constant or seasonal biases of estimating Zγ=0

e , ZW=0.25
e , or

the reference LWP–max(Ze) relationship. Given the uncer-
tainties, there is excellent agreement (difference < 3 dB) be-
tween the high-altitude and liquid cloud methods for April
to December 2016 showing the general feasibility of the liq-
uid cloud methods. For the winter period (January–March),
the agreement is worse, which is likely related to the less
robust statistics due to the reduced number of liquid clouds.
Moreover, the data sets used for the high-altitude method and
the liquid cloud method are not necessarily obtained at the
same time even though they are averaged to the same in-
tervals. This would require the high-altitude ice clouds and
the liquid clouds to always occur at the same time, which is
not the case. In particular, when O is shifting quickly, such
a temporal mismatch can contribute to the observed differ-
ences between the methods. Even though the difference be-
tween the LWP-based method and the high-altitude clouds
method can be up to 2.7 dB in late 2016, the mean difference
is lower (0.9 dB) than for the γ -based (2.0 dB) and W -based
(1.6 dB) methods. This confirms our previous conclusion that
the LWP-based method has the smallest intrinsic variability
and likely works best for estimating O in the Arctic.

5 Summary and conclusions

In this study, we investigate the potential for using the im-
print of liquid cloud processes on DSDs for radar calibration.
Specifically, we investigate the relationships of radar reflec-
tively Ze to the skewness of the radar Doppler spectrum γ

and to the mean Doppler velocity W . Moreover, we use the
relationship between the maximum Ze value in the column
(max(Ze)) and the liquid water path LWP measured by a mi-
crowave radiometer (MWR). These methods close an impor-
tant gap in our ability to monitor and assess radar calibration.

The fact that we focus only on drizzle onset for the Ze–γ
and Ze–W relationships allows us to use a box model (Hoff-
mann et al., 2017) coupled to the PAMTRA2 radar simu-
lator (Maahn et al., 2015) to determine the dependency of
the relationship on the initial DSD and random effects. De-
pending on initial cloud microphysical conditions and, to
a lesser extent, random effects, we determine typical rela-
tionships for γ and W as a function of Ze. We find that
compensation and saturation effects reduce the variability
of the Ze–γ and Ze–W relations, which allows us to iden-
tify reference values of γ and W with minimal variability
during drizzle onset. For γ , we find that Ze variability is
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Figure 8. As in Fig. 6 but considering a calibration offset for the phase classification.

Figure 9. Comparison relative calibration offsets NSA–OLI for dif-
ferent cutoff heights (colored lines). The best estimate (see text) is
highlighted in black.

smallest for Zγ=0
e =−17.6±3 dBz when cloud droplets and

drizzle contribute to reflectivity equally, i.e., γ = 0. For W ,
we identify the smallest variability for W = 0.25 m s−1 and
ZW=0.25
e =−16.6±3 dBz. Because we cannot quantify feed-

back effects of clouds and their environment on the LWP–
max(Ze) relationship with a box model, we do not use a
model to obtain a reference relationship. Instead, we use the
approach for relative calibration between two radars.

Applying the methods to radar observations of low-level
Arctic liquid clouds at the ARM North Slope of Alaska
(NSA) and Oliktok Point (OLI) sites, we identify medianZe–
γ , Ze–W , and LWP–max(Ze) relationships. We applied the
methods to monthly intervals to identify rapid changes but

Figure 10. Comparison of relative calibrations NSA–OLI using γ
(Oγ=0, blue line),W (OW=0.25, orange line), and the high-altitude
method (green line). All methods have been averaged to the same
temporal resolution; the original resolutions are indicated by the
dashed lines. For clarity, the lines have been slightly shifted along
the x axis.

obtain a sufficient number of liquid cloud observations (at
least 1000 data points for a 15 s temporal resolution). For
NSA, the observed relationships are in general agreement
with the box model simulations and we successfully iden-
tify the reference Ze values for γ = 0 (−17.3±3 dBz) and
W = 0.25 (−16.3±3 dBz). We use the difference between
measured and modeled Ze reference values for assessing the
calibration offsetO on a monthly basis. Considering the 3 dB
uncertainties of Zγ=0

e and ZW=0.25
e , the calibration at NSA is
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relatively stable and O is on average around 1 dB (Fig. 7a).
The good calibration of the NSA KAZR motivated us to use
the LWP–max(Ze) relationship at NSA as a reference for
absolute calibration. The variability of the estimated OLWP

is smaller than for Oγ=0 and OW=0.25, indicating that the
LWP-based method has an uncertainty of about 1.5 dB and
is less impacted by microphysical and dynamical conditions.
The difference between the methods is largest for the winter
months (Fig. 7a), indicating that the lower number of liq-
uid clouds might limit the quality of the O estimation. Also,
the phase classification algorithm employed might struggle
in winter to remove all mixed-phase clouds from the data set
as required.

For OLI, we identify serious problems with maintaining
an accurate radar calibration. Most remarkably, we find that
O decreased 5 to 7 dB in June 2016 (Fig. 7b), which was
likely related to a change in radar configuration even though
the details cannot be reconstructed. Further, we identify a
slowly decreasing and increasing trend of O in spring and
fall, respectively, of 2016. Similar to NSA, the agreement
between the liquid-cloud-based methods is reduced during
winter, indicating that a sufficient number of liquid cloud
samples is required for the method to work properly. Despite
this, the Ze–γ , Ze–W , and LWP–max(Ze) relationships for
OLI are consistent after application of a calibration correc-
tion (Fig. 6b, g, l). This indicates the ability of the methods
to correct also for larger O values as long as the calibration
offset is considered during the phase classification (Shupe,
2007) for identifying liquid clouds. The LWP-based method
matches the high-altitude cloud reference method best. Con-
sidering the error margins, our results are in excellent agree-
ment with Kollias et al. (2019). By applying the CloudSat
method by Protat et al. (2011), they found a similar drop for
OLI and a 3 dB offset for NSA.

In summary, we find that liquid cloud microphysical pro-
cesses can be used for radar calibration in the Arctic. The
Ze–γ , Ze–W , and LWP–max(Ze) relationships contain valu-
able information that can be used to determine the cloud
radar calibration offset O. Due to the effect of turbulence
on radar observations, the γ -based method likely works best
for stratiform clouds, which are typically not that turbulent.
In comparison to other calibration methods for cloud radars,
the new methods have several advantages. Most importantly,
no dedicated field campaigns are required and the methods
can be easily applied to past data sets. In comparison to the
method by Protat et al. (2011), the liquid cloud microphysical
processes methods can be applied to shorter time intervals,
which better enables the detection of sudden changes. Also,
our methods do not depend on CloudSat, which is likely
close to the end of its lifetime. Further, the method can be
– with limited accuracy in winter – applied to year-round ob-
servations even at high latitudes because liquid clouds occur
throughout the year. The γ - and W -based methods require
supporting instrumentation (microwave radiometer, lidar, ra-
diosonde observations) only for the identification of liquid

clouds. If the presence of ice and mixed-phase clouds can
be ruled out by other means (e.g., at subtropical or tropical
sites), application of the method is possible without any ad-
ditional instrumentation. The LWP-based method requires a
collocated MWR that has to be calibrated carefully using an
offset correction during clear-sky periods. While we found
the LWP-based method to work best, the question of whether
Z
γ=0
e or ZW=0.25

e is the second-best method for calibration
is still open. The box model indicates a larger stability for
Z
γ=0
e , but the variability of observed ZW=0.25

e is lower at
NSA. Assuming the NSA KAZR calibration was stable, this
would indicate that ZW=0.25

e is slightly better suited. Yet,
ZW=0.25
e is more easily affected by biases, e.g., due to per-

sistent vertical air motions related to orography. These biases
could be an explanation for the small 1.6 to 1.7 dB offset be-
tween the Zγ=0

e - and ZW=0.25
e -based calibration estimates.

Instead, γ is less affected by biases, but the observations are
noisier, require a high temporal resolution, and most stan-
dard radar products do not include γ . Likely, it is best to
apply all three methods and use the agreement between the
methods as an indicator for the quality of the calibration off-
set estimate. With respect to the calibration offset O for OLI
and NSA in 2016, we recommend using the results of the
LWP–max(Ze) method for OLI (Fig. 7b, Table 3) and using
an offset of +1 dB for NSA.

Further research is needed to reduce the uncertainty of the
methods and to assess the dependence of the reference Ze
values on climatological and environmental conditions like
the availability of cloud condensation nuclei. The reference
Ze values and relationships need to be carefully reevaluated
when applying the method to radar observations from other
regions. This also applies to the LWP–max(Ze) relationship
where we used the relationship obtained at NSA as a refer-
ence. However, it is not clear whether this relationship is ap-
plicable to other sites or whether it is valid only at the North
Slope of Alaska. Sites with a radar with stable calibration off-
sets could be used to assess the seasonality of the used refer-
ence relationships over multiple years. Further, an extension
of the method to mixed-phase and ice clouds would be de-
sirable, but the greater variability of ice particles shapes, fall
velocities, and radar backscattering cross sections makes this
even more challenging than for liquid clouds. Even though
the method has been developed for Ka-band cloud radars, it
should be generally applicable to zenith pointing radars us-
ing other frequencies. For W-band radars, we expect that the
Rayleigh approximation is also mostly valid because – ac-
cording to the box model – drizzle drops are small enough
to assume Rayleigh scattering for Ze values smaller than
−13 dBz. However, one has to correct for attenuation by at-
mospheric gases and liquid water, which are stronger at W-
band.
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Data availability. All ARM data products used in the current study
are available at the ARM archive: https://doi.org/10.5439/1027736
(ARM user facility, 1990), https://doi.org/10.5439/1046211 (ARM
user facility, 1993), https://doi.org/10.5439/1181954 (ARM user
facility, 1996), https://doi.org/10.5439/1095316 (ARM user fa-
cility, 1999), https://doi.org/10.5439/1025250 (ARM user fa-
cility, 2006), https://doi.org/10.5439/1025248 (ARM user fa-
cility, 2011), and https://doi.org/10.5439/1346549 (ARM user
facility, 2016). Please refer to the references for the data
stream names and DOIs. The PAMTRA2 model is available at
https://doi.org/10.5281/zenodo.2552448 (Maahn and Ori, 2019).
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Appendix A: How to apply the γ and W methods to
observations

To apply the γ and W methods (Sect. 3.1) to a different data
set, apply the following steps:

1. Prepare monthly data sets of radar, ceilometer, and
MWR observations.

2. Correct Ze for gaseous attenuation and adjust W to sea
level air density.

3. Apply phase classification (Shupe, 2007) to identify all
liquid data points (corresponding to the phase classes
“liquid”, “drizzle”, “liquid and drizzle”, and “rain”).

4. Remove data points with SNR <−5 dB, below cloud
base, and corresponding to clouds with cloud base
> 1000 m or cloud thickness > 1000 m.

5. Bin γ and W data using Ze (1 dB spacing) and deter-
mine median γ and W values for each Ze bin.

6. Apply Savitzky–Golay filter (window length 7, polyno-
mial order 2, Savitzky and Golay, 1964) to γ –Ze and
W–Ze relations.

7. Interpolate reference values Zγ=0
e and ZW=0.25

e by in-
terpolating relations from adjacent Ze bins. Make sure
adjacent bins include at least 1000 observations.

8. DetermineOγ=0 andOW=0.25 from difference of Zγ=0
e

and ZW=0.25
e to reference values−17.3±3 and−16.3±

3,dBz, respectively1.

1For radars with large calibration offsets (> 4 dB), the phase
classification needs to be estimated for several calibration offsets
Ophaseclass (2 dB spacing). The Ophaseclass is chosen that matches
the derived Oγ=0 and OW=0.25 best.

Appendix B: How to apply the LWP method to
observations

To apply the LWP method (Sect. 3.2), follow Appendix A
until step 4. Then follow these steps:

1. Limit data to marine winds using radiosondes (Only for
this study).

2. Estimate max(Ze) for each vertical profile.

3. Make sure monthly data sets include at least 1000 ob-
servations.

4. Bin max(Ze) using LWP (0.01 kg m−2 spacing) and
determine mean max(Ze) for each bin with at least
100 data points.

5. Minimize the difference of the LWP–max(Ze) relation
with the reference relation (In this study, Table 4) to es-
timate OLWP.
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