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Abstract. The Geostationary Carbon Cycle Observatory
(GeoCarb) will make measurements of greenhouse gases
over the contiguous North and South American landmasses
at daily temporal resolution. The extreme flexibility of ob-
serving from geostationary orbit induces an optimization
problem, as operators must choose what to observe and
when. The proposed scanning strategy for the GeoCarb mis-
sion tracks the sun’s path from east to west and covers the
entire area of interest in five coherent regions in the order
of tropical South America east, tropical South America west,
temperate South America, tropical North America, and tem-
perate North America. We express this problem in terms of
a geometric set cover problem, and use an incremental op-
timization (IO) algorithm to create a scanning strategy that
minimizes expected error as a function of the signal-to-noise
ratio (SNR).

The IO algorithm used in this studied is a modified greedy
algorithm that selects, incrementally at 5 min intervals, the
scanning areas with the highest predicted SNR with respect
to air mass factor (AF) and solar zenith angle (SZA) while
also considering operational constraints to minimize overlap-
ping scans and observations over water. As a proof of con-
cept, two experiments are performed applying the IO algo-
rithm offline to create an SNR-optimized strategy and com-
pare it to the proposed strategy. The first experiment consid-
ers all landmasses with equal importance and the second ex-
periment illustrates a temporary campaign mode that gives
major urban areas greater importance weighting. Using a
simple instrument model, we found that there is a significant
performance increase with respect to overall predicted error
when comparing the algorithm-selected scanning strategies
to the proposed scanning strategy.

1 Introduction

Understanding the effects of anthropogenic carbon dioxide
(CO2) on the carbon cycle requires us to understand the spa-
tial distribution of atmospheric CO2 concentrations to iden-
tify natural and anthropogenic sources and sinks. In addition
to a sparse in situ sampling network, ground-based remote-
sensing measurements are currently obtained from the Total
Column Carbon Observing Network (TCCON) and space-
based measurements from the Orbiting Carbon Observatory
(OCO-2) (Eldering et al., 2017a, b; Crisp et al., 2017, 2008,
2004) and Greenhouse Gases Observing Satellite (GOSAT)
(Kuze et al., 2009; Yokota et al., 2009; Hammerling et al.,
2012). These instruments have provided a wealth of data for
understanding the global carbon cycle in recent years. How-
ever, these instruments have spatial and temporal limitations.
The repeat cycles of the space-based instruments force the
spatial and temporal interpolation of the atmospheric CO2
concentrations within their respective cycles, 3 d for GOSAT
(Kuze et al., 2009) and 16 d for OCO-2 (Miller et al., 2007).
The sparsity of the TCCON measurement sites restricts the
latitudinal range of observations. The new Geostationary
Carbon Cycle Observatory (GeoCarb) (Moore et al., 2018;
Polonsky et al., 2014) will provide measurements that aug-
ment the current remote sensors on the ground and in space
in both temporal and spatial coverage.

Recently selected as NASA’s Earth Venture Mission-2
(EVM-2), GeoCarb is set to launch into geostationary orbit
in 2022 to be positioned at approximately 85◦ (±15◦) west
longitude, with the mission of improving the understanding
of the carbon cycle. Building on the work of OCO-2, Geo-
Carb will observe reflected sunlight daily over the Ameri-
cas, and retrieve the column average dry air mole fraction of
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carbon dioxide (XCO2), carbon monoxide (XCO), methane
(XCH4), and solar-induced fluorescence (SIF). (Moore et al.,
2018) identify six major hypotheses about the carbon–
climate connection that the GeoCarb mission aims to provide
insight into: (1) the ratio of the CO2 fossil source to biotic
sink in the conterminous United States (CONUS) is ∼ 4 : 1,
(2) variation in productivity controls the spatial pattern of ter-
restrial uptake of CO2, (3) the Amazon forest is a significant
(0.5—1.0 PgC yr−1) net terrestrial sink for CO2, (4) tropi-
cal Amazonian ecosystems are a large (50—100 PgC yr−1)
source for CH4, (5) the CONUS methane emissions are a
factor of 1.6± 0.3 larger than in the EPA database, and (6)
larger cities are more CO2 emission efficient than smaller
ones. These six hypotheses were used as a basis to select the
∼ 85◦W observing slot as the position with the most “poten-
tial for significant scientific advances”.

GeoCarb will view reflected sunlight from Earth through
a narrow slit that projects on the Earth’s surface to an area
measuring about 1690 miles (2700 km) from north to south
and about 3.2 miles (5.2 km) from east to west. The instru-
ment will make measurements along the slit with a ∼ 9 s
integration time. Instrument pointing will be accomplished
by way of two scanning mirrors that shift the field of view
north–south and east–west. The pointing system is extremely
flexible, and observations can be made at any location and
time with sufficient solar illumination. This flexibility in-
duces an optimization problem: where should the instrument
take measurements at a given time throughout the day?

Determining when and where to make daily scans with
GeoCarb’s observing capabilities is mathematically similar
to a CO2 ground observation network optimization problem
for establishing new observation sites. Selecting the optimal
location of new observing stations has been shown to be
feasible by utilizing various optimization algorithms. There
have been previous studies performed on the problem of opti-
mizing CO2 observation networks utilizing computationally
expensive evolutionary algorithms (i.e., simulated annealing,
Rayner et al., 1996; Gloor et al., 2000; and genetic algorithm,
Nickless et al., 2018) and one utilizing a deterministic, incre-
mental optimization (IO) algorithm (Patra and Maksyutov,
2002). All of the previous studies mentioned employed their
optimization routines to minimize CO2 measurement uncer-
tainty as a function of signal-to-noise ratio (SNR).

In this paper, a deterministic IO routine is utilized to find
a geostationary scanning strategy that minimizes GeoCarb’s
expected CO2 measurement uncertainty as a function of SNR
for the satellite viewing area. Section 2 gives background in-
formation on the GeoCarb mission and the objectives for this
paper. Section 3 explains the process used to create the SNR-
optimizing IO algorithm and how the expected error is cal-
culated from the simulated retrievals. In Sect. 4, a compari-
son is made between an algorithm-selected strategy and the
baseline strategy in the case where all American landmasses
between 50◦ N and 50◦ S are scanned with equal importance
weighting. In Sect. 5, a case study is performed to exhibit a

“city campaign” mode for the IO algorithm. We offer con-
cluding statements and future research goals in Sect. 6.

2 Background

GeoCarb will be hosted on a SES Government Solutions
(http://www.ses-gs.com, last access: 24 May 2019) commu-
nications satellite in geostationary orbit at ∼ 85◦W. It will
measure reflected sunlight in the O2 band at 0.76 µm to mea-
sure total column O2, the weak and strong CO2 bands at 1.61
and 2.06 µm to measure XCO2, and the CH4 band at 2.32 µm
for measuring XCH4 and XCO. The O2 spectral band al-
lows for determination of mixing ratios and the measure-
ment of SIF, as well as additional information on aerosol and
cloud contamination of retrievals. The baseline mission for
GeoCarb aims to produce column-averaged mixing ratios of
CO2, CH4, and CO with accuracy per sample of 0.7 % (≈
2.7 ppm), 1 % (≈ 18 ppb), and 10 % (≈ 10 ppb), respectively
(Polonsky et al., 2014). Geostationary orbit offers two main
advantages over low Earth orbit (LEO). First, the signal-to-
noise ratio (SNR) is proportional to the square root of the
dwell time for detectors limited by photon shot noise, and
geostationary orbits enable longer observation times, thereby
increasing SNR. Second, due to the flexibility of the scanning
mirrors, areas with high and uncertain anthropogenic emis-
sions of CO2, CH4, and CO may be targeted with contiguous
sampling, relatively small spatial footprints, and fine tempo-
ral resolution allowing for several observations per day on
continental scales.

We are presented with the problem of finding an optimized
scanning strategy for the GeoCarb satellite instrument. The
underlying abstract mathematical problem related to opti-
mizing the scanning pattern is the geometric set cover prob-
lem (Hetland, 2014). Given a finite set of points in space and
a collection of subsets of those points, the objective is to find
a minimal set of subsets whose union covers all the points
in the space. The classical method for finding a solution to
the geometric set cover problem is to employ a greedy algo-
rithm. Greedy algorithms incrementally choose optimal so-
lutions based on the available information at a given time. In
the context of the geometric set cover problem, the greedy al-
gorithm incrementally selects subsets that cover the highest
number of uncovered points until all points are covered by
the chosen subsets. Modifying the greedy algorithm to op-
timize an objective function at each iteration is a common
routine for finding geometric solutions to spatial problems
with no known analytical solutions.

The task of determining the locations of new observation
sites so that the total number of required sites to cover an
area is minimal has been solved using IO algorithms (Rayner
et al., 1996; Gloor et al., 2000; Patra and Maksyutov, 2002).
Finding an optimized scanning strategy for GeoCarb is iden-
tical to an observation network optimization problem. There-
fore, these IO algorithms were prospective candidates for ap-
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Figure 1. Candidate scan blocks.

Figure 2. A diagram explaining the objective function, c(s, t), used
in the IO routine. The block labeled si−1 is the last selected block
and the block labeled s is the block for which c(s, t) is being calcu-
lated.

plication to GeoCarb. Our goal was to find a minimal cov-
ering set that translates to a scanning strategy that is oper-
ationally efficient and minimizes global measurement error
for the GeoCarb instrument.

3 Methods

Translating the idea of the geometric set cover problem to
GeoCarb’s application, the collection of geometric subsets
is 5 min east-to-west scan blocks. The points in space to be
covered are the North American and South American land-
masses between 50◦ N and 50◦ S since this contains the re-
gions relevant to the six science hypotheses mentioned in the
introduction. Measurement errors are influenced by param-
eters that vary in space and time such as clouds, air mass,
and solar zenith angle. Predicting cloud formation and quan-
tifying the effects of clouds on measurement errors are ac-
tive areas of research. For simplicity and computational ef-
ficiency, a cloud-free atmosphere is assumed in the simple
instrument model. Surface albedo is assumed to be constant
within the span of a day. Due to time dependency, solutions
are in the form of ordered sets where the scan blocks are
ordered by time of execution. These solutions are referred
to in this paper as scanning strategies. With the simplifying
assumptions making the problem computationally tractable
and minimizing scan coverage over the ocean, a candidate
set of 135 scan blocks is proposed in Fig. 1. This is a much
larger candidate set than those of the network optimization
studies that utilized evolutionary algorithms (Rayner et al.,
1996; Gloor et al., 2000). Therefore, the computationally ef-
ficient IO algorithm, which is a modified greedy algorithm,
was implemented to select scan blocks that minimize our ob-
jective function at each increment in time.

3.1 Scan blocks

The scanning region is discretized in the east–west direction
assuming that GeoCarb will process commands in terms of
5 min scan blocks. During the scan the instrument will step
the slit from east to west within the scan block. Each slit
observation is proposed to contain approximately 1000 in-
dividual soundings and is assumed to have a ∼ 9 s integra-
tion time. The scanning region is further discretized in the
north–south direction by scan blocks separated by 5◦ lati-
tude increments. Potential scans that are primarily over the
ocean are excluded since measurements over the ocean are
not a priority for the GeoCarb mission. The scan blocks are
also restricted to land between 50◦ N and below 50◦ S as a
hard constraint due to larger sensor viewing zenith angles at
the higher latitudes, though this area still includes all regions
relevant to the six science hypotheses mentioned in the intro-
duction. The resulting set of candidate scan blocks is shown
in Fig. 1.
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Figure 3. Comparing air mass factors in September (a) and June (b).

Figure 4. Comparing surface albedo during the autumn equinox (a) and the summer solstice (b).

3.2 Science operations timeline

A goal of this study is to create a scanning strategy that
views all landmasses of interest at least once within the time
window of usable daylight. To determine what time of day
to begin the scanning process, Macapá, Brazil, and Mexico
City, Mexico, were chosen as geographic reference points
to determine the beginning and ending time, respectively,
of the usable daylight time frame. Macapá is located at (0,
50◦W) at the mouth of the Amazon River and being on the
Equator gives us a consistent starting time relative to air
mass factor (AF), a function of solar zenith angle (SZA)
and the sensor viewing zenith angle (VZA), where AF =

1
cos(SZA) +

1
cos(VZA) . Located at 19.5◦ N, 99.25◦W, Mexico

City, Mexico, is an ideal reference point to determine when
the window of usable daylight ended because it is longitudi-
nally centered in the North American landmass while being
close enough to the Equator for the calculated air mass fac-
tors to remain consistent through the winter months. The IO
algorithm calculates the starting time when Macapá first ex-
ceeds a starting threshold for AF and the ending time when
Mexico City drops below an ending threshold for AF to de-
termine when the usable daylight time window is over. As

a result of parameter exploration experiments described in
Sect. 3.6, the suggested starting threshold is AF= 2.6 for the
summer solstice and AF = 2.7 for the autumn equinox for
minimum variance in predicted errors.

3.3 Uncertainty in retrieved gas concentrations

Errors in retrieved gases arise from a result of numerous dif-
ferent sources, including imperfect radiometric calibration,
errors in differential absorption spectroscopy, variations in
the instrument line shape, and others. For simplicity, we as-
sume that the errors in retrieved gases arise from instrument
noise as specified by a simple noise model arising from Geo-
Carb specific design parameters. The signal-to-noise ratio is
then propagated through to uncertainty using a simple pa-
rameterization that was trained on retrieval results from sim-
ulated data.

The radiance observed by GeoCarb is an aggregate of
insolation and atmospheric and land surface processes that
absorb, reflect, and scatter photons. The impact of these
processes is parameterized using a simple model, I , from
Polonsky et al. (2014) that incorporates the effects of sur-
face albedo and attenuation by aerosols over the sun–Earth–
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Figure 5. The baseline strategy (a) compared to an algorithm-selected strategy (b).

Figure 6. Violin plots show the effect of starting threshold on vari-
ance of errors: summer solstice (a) and autumn equinox (b). Figure 7. Violin plots show the effect of starting threshold on error

distribution medians: summer solstice (a) and autumn equinox (b).
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Figure 8. Global error distribution, baseline strategy (c, d), and algorithm-selected strategy (a, b).

Figure 9. Comparison of the spatial distribution of XCO2 errors of the baseline strategy (a) and the algorithm-selected strategy (b).

satellite path described by SZA and VZA:

I = Fsunα cos(SZA)e−AFτ nW
(

cm2 sr cm−1
)−1

, (1)

where Fsun is the band-specific solar irradiance, α is the
band-specific surface albedo, and τ is the optical depth (OD)
of atmospheric scatterers (e.g., aerosols, water). A cloud-free
atmosphere is assumed for this simple model, whereas in the
operational environment, clouds play a major role in retrieval

quality due to poorly understood 3-D scattering effects. As
can be readily verified, larger zenith angles lead to reduced
signal for constant scatterer OD, as does smaller surface
albedo. Note that τ is a quantity with significant spatial and
temporal variability, as aerosol concentrations are modified
by atmospheric dynamics, emissions, and chemistry. Typical
values of τ in successful retrievals for OCO-2 are less than
0.6 for nadir soundings near the Equator and decrease as AF
increases. Similarly, surface albedo varies with land cover
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Figure 10. There is a significant improvement in predicted errors over the Amazon for the autumn equinox.

Figure 11. The histograms show that the algorithm selects more scan blocks with low AF (a) and low SZA (b) than the baseline strategy.

type on small spatial scales, and throughout the year with
vegetation density. The OD term was set to τ = 0.3 as it was
previously found to be a reasonable estimate for a “clear” sky
retrieval (Crisp et al., 2004; O’Dell et al., 2012).

An important indicator of observation quality is the signal-
to-noise ratio (SNR). In the case of GeoCarb, the signal is
modeled as I and the instrument noise equivalent spectral
radiance model, N , as

N(I)=

√
N0

2
+N1I nW

(
cm2 sr cm−1

)−1
, (2)

where N0 and N1 (nW(cm2 sr cm−1)−1) are parameters that
empirically capture the effects of the instrument design (e.g.,
telescope length, detector noise) on overall instrument noise
(O’Dell et al., 2012). Constants that represent a signal-
independent noise floor radiance, N0 = 0.1296, and shot
noise due to observed signal radiance, N1 = 0.00175, spe-
cific to the weak CO2 band (1.61 µm) are used in Eq. (2) to
later calculate SNR. N0 and N1 are updated figures derived
from the airborne trials with the Tropospheric Infrared Map-
ping Spectrometers (TIMS) by Lockheed Martin (Kumer

et al., 2013), and later revised in Polonsky et al. (2014). The
SNR is then defined as I

N
.

In O’Brien et al. (2016), the authors fitted an empirical
model to predict the posterior errors, σ , estimated by the L2
retrieval algorithm as a function of the measurement SNR.
In their case, σ was derived from the L2 retrieval algorithm
posterior covariance given by

Ŝ =
(
K tS−1

ε K + S−1
a

)−1
, (3)

where Sε is the covariance of the instrument noise, Sa is the
covariance of the distribution about the prior state, and K is
the Jacobian of the transformation from states to measure-
ments. This uncertainty represents the impacts of the noise
on the fitted spectra as well as nonlinearities in the radiative
transfer model. It does not account for systematic errors that
account from model deficiencies or instrument mischaracter-
ization, which are beyond the scope of this work. O’Brien
et al. (2016) found that the solid curves that best fit the poste-
rior errors in the weak CO2 band were of the form σ = a

1+bxc ,
where x is the SNR and a,b,c are real constants. For CO2,
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Figure 12. Scan blocks containing the 10 most populated cities are
given higher weighting in city campaign mode.

Figure 13. Scaling factor for an observation point with minimum
daily air mass factor, a = 2.

σ represents uncertainty in parts per million. For a SNR of
x = 0, the function takes its maximum value of a. There-
fore, a represents the prior uncertainty. With large values of
x, the constant c determines the rate of decay for σ . Setting
a = 14 ppm to express a conservative prior uncertainty on re-
trieved CO2 and c = 1, the resulting empirical model was

σ =
14

1+ (0.0546)x
ppm. (4)

The same model is used to connect SNR and uncertainty for
evaluating scanning strategies later in this paper. For the pur-
pose of our experiments, the distribution of σ is treated as

the metric against which a particular scanning sequence is
evaluated.

3.4 Objective function

Examining the definition of SNR, it is easy to see that SNR≈
k
√
I , where k is a constant. Therefore it is sufficient to focus

on maximizing I . Maximizing I is equivalent to minimizing
its multiplicative inverse, 1

I
. Therefore, an objective function

was defined that is approximately proportional to 1
I

on the
parameters AF and surface albedo. In addition to minimizing
SNR, two constraints were included in the objective function
to prevent erratic scanning behavior. An overlap term, φ, was
introduced to minimize repeated coverage of regions. A dis-
tance term, δ, was also included to prevent erratic scanning
behavior. δ is the shortest linear distance from the boundary
of the last selected scan block to a candidate scan block. The
objective function, c, to be minimized is given by

c(s, t)= ψ
(

1+
φ+ δ2

β

)
, (5)

where s is the candidate scan block, t time, β area of uncov-
ered landmass covered by the candidate scan block, φ area
of overlapping coverage with selected blocks, ψ median of
eAFα−1 over the entire area of the candidate scan block, and
α the surface albedo of a point within a scan block. The terms
φ, β, and δ are illustrated in Fig. 2 for clarity. The median of
eAFα−1 is used because it is assumed that the distributions of
air mass factor and surface albedo are non-Gaussian within
the scan blocks due to the long viewing slit. The high vari-
ability of both parameters is described in Sect. 3.4.2.

3.4.1 Surface albedo

The MCD43C3 version 6 white-sky albedo MODIS band 6
data set (Schaaf and Wang, 2015) was utilized for obtain-
ing surface albedo, α. The MODIS BRDF/Albedo product
combines multiband, atmospherically corrected surface re-
flectance data from the MODIS and MISR instruments to
fit a bidirectional reflectance distribution function (BRDF)
in seven spectral bands at a 1 km spatial resolution on a
16 d cycle (Lucht et al., 2000). The white-sky albedo mea-
sure is a bihemispherical reflectance obtained by integrating
the BRDF over all viewing and irradiance directions. These
albedo measures are purely properties of the surface; there-
fore they are compatible with any atmospheric specification
to provide true surface albedo as an input to regional and
global climate models. The native data were aggregated to
the 0.5◦ spatial resolution and interpolated in time to daily
resolution.

3.4.2 Seasonal variation in parameters

Since AF is affected by the sun’s position and albedo is af-
fected by the density of vegetation, there are large seasonal
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Figure 14. Compared to the baseline strategy (a), the overall performance of the algorithm-selected strategy (b) is not significantly degraded
in the city campaign mode.

Figure 15. The algorithm-selected strategy (a) has approximately 2000 more usable observations than the baseline strategy (b) in the city
campaign mode.

Table 1. This table shows for a sample of daily minimum AFs the
distance relationship between the daily minimum AF of an observed
point, a, and the scaling factor threshold, c, used in the modified
objective function (Eq. 7).

a c c− a

2.0 3.0 1
2.3 3.041 0.741
2.5 3.107 0.607
2.7 3.197 0.497
3.0 3.36 0.36
4.0 4.135 0.135
4.95 5.0 0.05

variations in both of these variables, shown in Figs. 3 and 4.
However, there is little to no variation between day-to-day
comparisons of these variables. It suffices then, and gives an
added advantage of being computationally efficient, to calcu-

late separate scanning strategies for each month rather than
day.

3.5 Optimization algorithms

The time dependency of the scanning strategy requires the
solutions to be represented as ordered scan blocks of the
discretized candidate set described in Sect. 3.1 and shown
in Fig. 1. Therefore, the sum of permutations

∑135
k=1

135!
(135−k)!

gives approximately 7× 10230 possible solutions. Since it is
computationally intractable to evaluate all possible solutions,
a greedy heuristic algorithm was employed to find a mini-
mal covering set as a lower-bound estimate for the size of a
solution set. The greedy algorithm was then modified to an
incremental optimization (IO) algorithm to find a scanning
strategy optimizing for SNR.

www.atmos-meas-tech.net/12/3317/2019/ Atmos. Meas. Tech., 12, 3317–3334, 2019
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3.5.1 Greedy algorithm

Viewing the North American and South American land-
masses as a uniform space to be covered without consider-
ing any additional constraints, the problem is a geometric
set cover problem where the goal is to find a minimal size
covering set that we will call optimal. It is well-known that
there are no known analytical solutions to the set cover prob-
lem, as it is one of Karp’s 21 NP-complete problems, and
the optimization version is NP-hard (Karp, 1972). However,
there exists a heuristic method for finding a solution called
the greedy algorithm that selects the cover with the largest
intersection with the uncovered space recursively until the
space is covered (Hetland, 2014). The pseudo-code of the
greedy routine is shown in Algorithm 1. The greedy algo-
rithm is computationally efficient, but it is difficult to verify
that the solution it finds is the optimal solution. The greedy
algorithm is suitable for the purpose of finding the smallest
size scanning strategy because it reduces the set of candidate
blocks at each iteration by removing the selected scan blocks
to ensure that there are no repeated scan blocks in a solu-
tion. Running the greedy heuristic with no objective function
shows that the area of interest can be covered using 83 scan
blocks. Therefore, this was taken as the lower bound of cov-
ering set size.

3.5.2 Incremental optimization

The greedy algorithm was modified to select the scan block
that minimizes the objective function at each iteration to sat-
isfy operational constraints. Presented in Patra and Maksyu-
tov (2002), this modification to the greedy algorithm is called
an incremental optimization (IO) algorithm because its goal
is to minimize the objective function at each increment of
time to find the global optimum. Like the greedy algorithm,
IO has the advantage of being computationally inexpensive.
However, it may find local optima only and produce sub-
optimal solutions depending on the nature of the problem.
Usually to avoid this issue, small perturbations are intro-
duced at each increment, such as is done in evolutionary al-
gorithms (e.g., simulated annealing and genetic algorithm).
It has been shown that IO yields results that are nearly as
good as evolutionary algorithms while using a fraction of the
computational power (Nickless et al., 2018).

For GeoCarb’s application, we were looking at the global
distribution of errors, σ , and therefore were not concerned
about local optima. An additional constraint was added
that required the algorithm to cover South America before
switching to North America to further prevent erratic scan-
ning behavior. The pseudo-code of the IO algorithm is shown
in Algorithm 2.

Atmos. Meas. Tech., 12, 3317–3334, 2019 www.atmos-meas-tech.net/12/3317/2019/
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Figure 16. In the city campaign mode, the histograms show that the algorithm-selected strategy has more observations with low AF (a), but
the baseline strategy’s observations have lower SZA (b).

Table 2. The SRCs show that the variance and median of global error distributions are sensitive to starting AF thresholds.

Standardized regression coefficients, summer solstice

Input parameters Variance Median Expected usable observations

R2 0.939 0.935 0.311

Starting threshold 0.9679 0.9618 −0.2769
wo 0.0615 −0.0621 −0.0634
wd −0.0040 −0.0716 0.4839

3.6 Parameter exploration

The IO algorithm calculates a scanning start time from a
specified starting AF threshold, described in Sect. 3.2, but
it was unknown what overall effect the AF threshold had on
the overall performance of the resulting scanning strategy. In
the objective function (Eq. 5), the overlap and distance terms
had equal weighting and different weightings were tested to
understand their effects as well. A Monte Carlo experiment
was performed to determine the distribution of sample error
statistics across a range of possible starting AF thresholds
and weights for overlap and distance. The effects of different
weightings of the distance and overlap terms on the global
distribution of errors were investigated specifically by adding
(wo,wd) constant weight terms to Eq. (5) as new input pa-
rameters, resulting in

c(s, t,wo,wd)= ψ

(
1+

woφ+wdδ
2

β

)
. (6)

Applying Eq. (6) to the algorithm gives the operator three
inputs to specify, wo, wd, and the starting AF threshold. For
both wo and wd, 1000 weights were randomly sampled from
a uniform distribution between 0 and 10. This process was

repeated for the summer solstice and autumn equinox for
starting AF thresholds starting from 2.5 increasing by 0.1
to 3.5 for a total of 22 000 experiments. For these experi-
ments, the contiguous landmasses of North and South Amer-
ica were scanned with equal importance. The minimum vari-
ance of predicted errors with respect to starting AF threshold
occurred at 2.6 for the summer solstice and 2.7 for the au-
tumn equinox, shown in Fig. 6. Both distributions of median
and variance of errors averaged a 0.01 ppm spread over all
values of wo and wd tested. Therefore, it was concluded that
the effects of different weightings of the distance and over-
lap terms were negligible on the overall aggregate error, and
weighting terms were excluded from the objective function.
A sensitivity analysis was also performed to quantify the ef-
fects of these results and can be found in Appendix A.

3.7 Evaluating the optimized scanning strategy

For evaluating the performance of an algorithm-selected
scanning strategy, the empirical distributions of error, σ
(Eq. 4), were compared between the optimized strategy and
a baseline scanning strategy proposed in Moore et al. (2018).
An example of the two strategies is shown in Fig. 5. The
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Table 3. The SRCs show that the median of global error distributions is sensitive to starting AF thresholds. The low R2 value for variance
indicates that there may be a nonlinear relationship between variance and starting AF threshold. Figure 6 shows that this is the case.

Standardized regression coefficients, autumn equinox

Input parameters Variance Median Expected usable observations

R2 0.646 0.977 0.208

Starting threshold 0.7997 0.9770 −0.4473
wo −0.0163 0.0056 −0.0579
wd 0.0757 0.1455 0.0772

Table 4. The SRCs show that the median and variance of global error distributions are not sensitive to different weighting of the distance and
overlap terms. R2 < 0.7 usually signifies insensitivity to independent variables.

SRC for starting threshold = 2.7, autumn equinox

Input parameters Variance Median Expected usable observations

R2 0.384 0.552 0.497

wo −0.3051 0.2502 −0.2310
wd 0.5450 0.6950 0.6702

baseline strategy tracks the sun’s path from east to west and
covers the entire area of interest in five coherent regions
in the order of tropical South America east, tropical South
America west, temperate South America, tropical North
America, and temperate North America. The same scanning
start times used by the IO algorithm are used for evaluating
the performance of the baseline strategy. The times calcu-
lated by the algorithm, based on a starting AF threshold sup-
plied by the user, were 12:30 UTC for the autumn equinox
with a starting AF threshold of 2.6 and 13:15 UTC for the
summer solstice with a starting AF threshold of 2.7.

In practice, a post-processing filter (PPF) is applied to re-
trieved satellite data and the data are marked with a quality
flag to notify the end user of its overall usefulness. For this
study, a threshold of 100 on the SNR is used as our PPF to
determine a “usable” sounding. This threshold limits the pre-
dicted error to a maximum of∼ 2 ppm, (Eq. 4), and is within
the accuracy per sample performance requirements laid out
in Polonsky et al. (2014).

4 Experiment 1 – equal importance for all landmasses

In the first experiment, all contiguous landmasses of North
and South America were scanned with equal importance.
Based on the parameter exploration results, simulations were
performed for the summer solstice with a starting AF thresh-
old of 2.6 and the autumn equinox with a starting AF thresh-
old of 2.7 (Nivitanont, 2019a, b). The algorithm-selected
scanning strategies consistently matched or exceeded the per-
formance of the baseline scanning pattern, shown in Figs. 8
and 9. The region where the most significant improvement

is seen is in the Amazon during the autumn equinox; re-
fer to Fig. 10. After applying the PPF to the simulation
results, it was clear that the greatest performance increase
from the baseline strategy was in usable soundings. During
the summer solstice, the algorithm-selected strategy yielded
∼ 3.79 million usable soundings versus ∼ 3.02 million us-
able soundings from the baseline strategy. During the autumn
equinox, the algorithm-selected strategy yielded ∼ 4.31 mil-
lion usable soundings versus ∼ 3.04 million usable sound-
ings from the baseline.

Part of the increase in usable soundings can be attributed to
the optimized strategy following the coastline better, which
results in fewer scans over the ocean and more overlap-
ping scans; refer to Fig. 5. However, the comparison of SZA
and AF between the baseline and algorithm-chosen strategy
shows that the algorithm also selects more scan blocks with
low SZA and low AF; refer to Fig. 11. It is important to note
that these figures are results from simulations performed in
the cloud-free environment of the model. Realistically, there
is a high probability that parts of the scanning slit will include
cloudy scenes. We expect the yield of usable soundings to be
significantly lower during operations, but those effects will
be seen similarly in both the baseline and optimized strate-
gies.

5 Experiment 2 – city campaign

A major advantage of having a geostationary platform is
the flexibility to scan areas of high interest at times of opti-
mal observing conditions. In this section, a “temporary cam-
paign” mode is demonstrated where GeoCarb observes the
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Table 5. The SRCs show that the median and variance of global error distributions are not sensitive to different weighting of the distance and
overlap terms. R2 < 0.7 usually signifies insensitivity to independent variables.

SRC for starting threshold = 2.6, summer solstice

Input parameters Variance Median Expected usable observations

R2 0.148 0.242 0.284

wo −0.3481 −0.4833 −0.3911
wd −0.1717 −0.1064 0.3519

10 most populous cities in North and South America as areas
of high interest, which are New York, Chicago, Los Angeles,
Dallas–Fort Worth, Mexico City, Bogotá, São Paulo, Rio de
Janeiro, Lima, and Buenos Aires. The demonstration is car-
ried out for the autumn equinox with a starting AF threshold
of 2.7. The areas of interest are given higher weighting in the
algorithm through a modified version of Eq. (5). The perfor-
mance of the resulting optimized strategies is compared to
the baseline strategy, both globally and for the 10 cities of
interest.

5.1 Modified objective function

To give these areas of interest a higher weight, a time-
dependent scaling factor was added to the term ψ in the
objective function (Eq. 5) for scan blocks containing these
cities; refer to Fig. 12. The scaling factor is defined as,
eb−c, where b is the AF of a point with respect to time and
c = a+e2−a , where a is the daily minimum AF of the point.
The term c acts as a threshold for the selection of the scan-
ning block. While b is greater than c, the scaling factor penal-
izes the objective function by giving it a larger value, which
tells the algorithm to wait on selecting the block until it is
reasonably close to its minimum AF. Once b becomes less
than c, the scaling factor scales down the value of the ob-
jective function to make the algorithm select the scan block
as soon as possible. Figure 13 shows the scaling factor for
a point with a minimum daily AF of 2. Table 1 shows the
relationship between minimum daily AF and the scaling fac-
tor threshold for a sample of minimum AFs. The modified
objective function is

c(s, t)= ψ̃

(
1+

φ+ δ2

β

)
, (7)

where ψ̃ is the median of eb−ceAFα−1 over the entire area of
a candidate scan block containing a city of interest.

5.2 Predicted errors

The addition of the scaling factor only affects the candidate
scan blocks that contain a city of interest. Hence, there should
be no significant degradation in the overall performance of
the optimized scanning strategy. Figure 14 shows that there

is still a significant increase in usable soundings,∼ 3.97 mil-
lion versus ∼ 3.03 million globally.

Looking at only observations over the 10 cities, the op-
timized scanning strategy shows an increase of ∼ 2000 us-
able soundings over the baseline strategy; refer to Fig. 15.
Shown in Fig. 16, the baseline strategy’s city observations
have a higher concentration of low-SZA soundings, but the
optimized strategy’s city observations have a higher concen-
tration of low-AF soundings.

6 Conclusions

We illustrate an efficient, offline technique that creates a geo-
stationary scanning strategy that minimizes overall predicted
measurement error. Applied in a simplified instrument model
of GeoCarb, the IO routine gives us an optimized scanning
strategy that performs better than the baseline scanning strat-
egy relative to the global distribution of error and number
of usable soundings. In Sect. 4, we showed that the incre-
mental optimization of SNR with respect to the stationary
physical processes, AF, and albedo results in an overall per-
formance increase with the region of greatest performance
increase seen in the Amazon (Fig. 9). We have also shown
in Sect. 5 that the IO routine can be easily modified for a
temporary campaign mode that focuses on the 10 most pop-
ulated cities of North and South America. Other examples
of possible scenarios for temporary campaigns are wildfires,
droughts, and volcanic eruptions.

At the moment, our model does not take into account the
effect of clouds on retrieval quality. It is known that clouds
play a significant role in scattering effects and influences τ
in the calculation of radiance (Eq. 1), but quantifying these
effects is an active area of research. In a case study including
clouds and aerosols in the atmosphere performed by Polon-
sky et al. (2014), the authors found that the number of us-
able soundings passing their post-processing filter (PPF) of
aerosol optical depth (AOD) < 0.1 was between 8.1 % and
20 % of total simulated soundings. We believe that an AOD
threshold of 0.1 is too strict for the clear-sky atmosphere used
in our simulations; therefore the threshold was relaxed to 0.3
to capture a conservative estimate of usable soundings as pre-
viously performed by O’Dell et al. (2012) and Rayner et al.
(2014). O’Dell et al. (2012) found that 22 % of their sim-
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ulated observations were classified correctly as clear when
they used an AOD threshold of 0.3. Because we set τ = 0.3
in our calculation of radiance (Eq. 1), our estimate is that the
true number of usable soundings will be around 20 % of our
simulated usable soundings in Sect. 4. Going forward, the in-
corporation of cloud products from CALIPSO will be inves-
tigated to better simulate operational conditions and produce
more robust estimates of usable soundings.

The SNR-optimized scanning strategy outperforms the
proposed strategy for the GeoCarb scientific observation
plan. An empirical model that calculates predicted CO2 re-
trieval uncertainty, σ , as a function of SNR was used to eval-
uate the performance of algorithm-selected strategies. The
optimized scanning strategies consistently matched or ex-
ceeded the predicted performance of the proposed scanning
strategy pattern with respect to aggregate distribution of σ .
When a simple post-processing filter (PPF) of SNR > 100
was applied to determine what constituted a usable sounding,
the optimized strategies yielded a ∼ 18% increase in usable
soundings during the summer and a ∼ 41% increase during
the autumn over the proposed scanning strategy.

Data availability. The MCD43C3 MODIS BRDF/Albedo
data were retrieved from the online Data Pool, courtesy
of the NASA EOSDIS Land Processes Distributed Active
Archive Center (LP DAAC), USGS/Earth Resources Observa-
tion and Science (EROS) Center, Sioux Falls, South Dakota,
https://doi.org/10.5067/MODIS/MCD43C3.006 (Schaaf and Wang,
2015).
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Appendix A: Sensitivity analysis

To quantify the algorithm’s sensitivity to input parameters,
the method of standardized regression coefficients (SRCs)
was utilized (Helton et al., 2006). SRCs are the regression
coefficients of a linear model fitted to the standardized de-
pendent variable, YZ = Y−Ȳ

σY
, using standardized indepen-

dent variables, XZ = X−X̄
σX

. The dependent variable in this
case is the predicted error and the independent variables are
wo,wd, and the starting AF threshold. The standardization of
variables allows for measuring the effect of the input param-
eters without their dependency on units (i.e., parts per mil-
lion). The coefficient of determination,R2, of the SRC model
tells us how much of the variability in the sample statistics is
explained by the SRC model. R2 is defined as the modeled
sum of squares (MSS) divided by the total sum of squares
(TSS), where

MSS=
n∑
i=1

(
Ŷi − Ȳ

)2

TSS=
n∑
i=1

(
Yi − Ȳ

)2
R2
=

MSS
TSS

,

and Ŷ is model-predicted values, Ȳ mean error, Y observed
values, and n number of observations. The method of SRC
was chosen for the sensitivity analysis by convenience of
readily available simulation data from the parameter explo-
ration experiment.

The SRCs show that both the median and variance of the
global error are found to be sensitive to starting AF thresh-
olds as seen in Figs. 6 and 7 and Tables 2 and 3. This sensi-
tivity was expected considering that air mass factors depend
on time and play a large role in the calculation of radiance
(Eq. 1). The starting AF thresholds affect the scanning strat-
egy as a whole by shifting the scanning time frame. Because
SRCs determine the effect of the input parameters in the pres-
ence of others, the SRCs fitted to a linear model of predicted
error with respect to wo and wd were also analyzed within
the Monte Carlo samples of starting AF threshold equal to
2.7 for the autumn equinox and starting AF threshold equal
to 2.6 for the summer solstice.

Within the specified starting AF threshold of 2.7 for the
autumn equinox, moderate effects of the weights were found
on the sample global error distribution. The values in Ta-
ble 4 show that the SRC model explains approximately half
of the variability in median of global error distributions,
R2
= 0.552, and the parameter with the largest effect on the

variance is the distance, δ. With respect to variance of global
error distributions, the SRC model explains less than half of
the variability with R2

= 0.384. Again, the parameter with
the largest effect is the distance term.

Within the specified starting AF threshold of 2.6 for the
summer solstice, the effects of the weights on the sample
global error distribution are small. The SRC model explains
around a quarter of the variability in median of global error
distributions, R2

= 0.242, and ∼ 15% of the variability with
R2
= 0.148, shown in Table 5. The parameter with the largest

effect is the overlap term for both variance and median of er-
ror distributions.
R2 values less than 0.7 signify low sensitivity to the in-

dependent variables or a nonlinear relationship between the
independent and dependent variables. Visual analysis of the
scatter plots of the distributions of sample statistics versus
weights (Fig. A1) does not imply a nonlinear relationship
between the weights and sample statistics. It is important
to note as well that the non-standardized sensitivity of pre-
dicted errors with respect to wo,wd, results in a spread of
0.01 ppm in the overall performance of an algorithm-selected
scanning strategy. We conclude that the weighting terms con-
tribute negligible effects to the algorithm’s performance.
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Figure A1. Scatter plots do not indicate a nonlinear relationship between weights and sample statistics. wo and wd are indicated as w_dist
and w_overlap on the x axis.
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