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Abstract. We present an approach for deriving a system-
atic mathematical representation of the statistically signifi-
cant features of the average long-term changes and seasonal
cycle of concentrations of trace tropospheric species. The
results for two illustrative data sets (time series of baseline
concentrations of ozone and N2O at Mace Head, Ireland) in-
dicate that a limited set of seven or eight parameter values
provides this mathematical representation for both example
species. This method utilizes a power series expansion to ex-
tract more information regarding the long-term changes than
can be provided by oft-employed linear trend analyses. In
contrast, the quantification of average seasonal cycles utilizes
a Fourier series analysis that provides less detailed seasonal
cycles than are sometimes represented as 12 monthly means;
including that many parameters in the seasonal cycle rep-
resentation is not usually statistically justified, and thereby
adds unnecessary “noise” to the representation and prevents
a clear analysis of the statistical uncertainty of the results.
The approach presented here is intended to maximize the sta-
tistically significant information extracted from analyses of
time series of concentrations of tropospheric species, regard-
ing their mean long-term changes and seasonal cycles, in-
cluding nonlinear aspects of the long-term trends. Additional
implications, advantages and limitations of this approach are
discussed.

1 Introduction

Utilizing observations to fully characterize the four-
dimensional (latitude, longitude, altitude and time) concen-
tration distribution of a trace tropospheric species is a daunt-
ing prospect. This paper discusses an analysis approach for
quantification of only a small part of the full distribution –
the mean long-term changes and seasonal cycle at a particu-
lar point in the troposphere – but it provides that quantifica-
tion in an accurate, precise and simple form. The discussion
focuses on monthly mean baseline ozone (Derwent et al.,
2018a) and N2O concentrations reported for the surface site
at Mace Head, Ireland, but the analysis approach is general,
and thus can be applied to other locations and trace species.
This approach extends the techniques developed in earlier
publications: Parrish et al. (2012, 2014, 2017) for long-term
changes and Parrish et al. (2016) and Derwent et al. (2016,
2018b) for seasonal cycles. This extension provides consis-
tently defined parameters with confidence limits that quantify
these systematic temporal variations.

From a wider, more formal perspective, Bowdalo et
al. (2016) discuss the temporal variability of hourly aver-
age tropospheric ozone concentrations through an exten-
sive spectral analysis. They identify two distinct scaling
regimes of ozone variability, one at high frequencies with
periods from 2 h to about 10 d, and a second at lower fre-
quencies with 10 d to 5-year periods (the maximum period
they considered). Analogous with the spectral analysis of
meteorological variability, Bowdalo et al. (2016) identify
the higher frequencies as the “weather” regime, driven by
meteorological processes with frequencies up to those of

Published by Copernicus Publications on behalf of the European Geosciences Union.



3384 D. D. Parrish et al.: Long-term changes and seasonal cycles

planetary-scale weather systems. Meteorological frequencies
with periods greater than ∼ 10 d are driven by the average
of the largest planetary-scale weather systems, which they
term “macroweather”. They also suggest that there would
be a third “climate” regime beginning at between 10 and
100 years, caused by low-frequency interactions such as so-
lar, volcanic or anthropogenic forcings. Since they limited
their consideration to time series of 5 years, they could not
identify any evidence of the climate regime. In this work we
consider some of the longest available observational records
(as long as 30 years) but work with monthly mean concentra-
tions. Thus, we aim to characterize the macroweather regime
and the higher-frequency fraction of the climate regime.

The focus of our analysis is on mean seasonal cycles and
long-term changes spanning the complete data records. By
considering monthly average data we avoid most of the in-
fluence from higher-frequency variability, although interan-
nual variability of lower-frequency weather regime phenom-
ena contributes “noise” to the monthly averages, and thereby
affects the precision of the mean seasonal cycle and long-
term change quantifications. Even when using monthly aver-
aged data, observable autocorrelation remains in the data af-
ter accounting for the seasonal cycle and long-term changes.
This autocorrelation is estimated from an autoregressive pro-
cess and from accounting for the autocorrelation results in
expanded error estimates for the derived parameters.

An accurate and precise quantification of the mean long-
term changes and seasonal cycles of trace species distri-
butions with well-defined confidence limits is the ultimate
goal of the analysis. This quantification meets three needs:
(1) it provides a robust, minimum set of parameters capturing
the statistically significant information in the observational
data set regarding these two temporal variations, parameters
which can serve as metrics for quantitative comparisons of
long-term changes and seasonal cycles between data sets col-
lected at different locations or for different species. (2) These
same metrics serve as a basis for evaluation of results from
models that simulate these temporal features of atmospheric
concentrations. Finally, (3) it provides a coherent, conceptual
view of these features of the species’ concentration distribu-
tion, a view that can provide an indication of the need for
more detailed studies of particular aspects of the distribution.

Importantly, no physical model underlies the statistical
analysis. Instead we use two mathematical series to fit the
long-term change (a power series) and the seasonal cycle (a
Fourier series). These series provide flexible fits to these tem-
poral variations, even though the functional form of these
variations is not known a priori. The data sets themselves
dictate the functional form defined by the mathematical se-
ries. To avoid over fitting the data, the number of terms in
each series is limited to only those that are statistically sig-
nificant. Without an underlying physical model, care must be
exercised in the interpretation of the derived parameter val-
ues and in the attribution of a physical cause to any of the
terms in the series. Parrish et al. (2016) do present evidence

of a direct physical cause of the statistically significant sec-
ond harmonic of the seasonal cycle of ozone in the marine
boundary layer (MBL) by showing that the photolysis rate
of ozone, i.e., j (O1D), which drives the loss of ozone in the
MBL, also has a second harmonic of opposite phase to that of
ozone’s seasonal cycle. However, this identification required
information and analysis beyond that of the time series of
concentration measurements alone.

2 Example data sets

The analysis approach discussed here is exemplified through
application to two data sets collected at Mace Head, Ireland:
monthly mean concentrations of ozone (O3) and nitrous ox-
ide (N2O) filtered for baseline conditions. These two data
sets provide an informative contrast – ozone has a strong sea-
sonal cycle with a relatively small long-term change, while
N2O has a relatively small seasonal cycle superimposed on
a pronounced long-term change. Derwent et al. (2018a) fully
describe the ozone data set; it covers the 30-year period from
April 1987 to April 2017. The N2O data were provided by
the AGAGE program and downloaded from the public U.S.
Department of Energy (DOE) Carbon Dioxide Information
Analysis Center (CDIAC) website (https://cdiac.ess-dive.lbl.
gov/ftp/ale_gage_Agage/AGAGE/gc-md/monthly/, last ac-
cess: 3 December 2018); these data cover the 22-year pe-
riod from March 1994 to September 2016. All AGAGE data
are available from the public AGAGE website (http://agage.
mit.edu/data, last access: 24 June 2019) and the World Data
Center for Greenhouse Gases (WDCGG) in Japan (https:
//gaw.kishou.go.jp, last access: 24 June 2019), as well as on
the CDIAC website.

3 Analysis approach

The overall goal of the analysis is to quantify the minimum
set of parameters (including robust confidence limits) that
mathematically describes the mean long-term evolution and
seasonal cycle of an atmospheric trace species’ concentra-
tions, within the limits of statistical significance, from a time
series of measured concentrations. The minimum set of pa-
rameters is desired because (1) it minimizes the possibility of
over fitting to the data and (2) the analysis can quantify these
parameters to the highest precision, which thus provides the
most concise picture of the variations and the most strin-
gent metrics for comparisons of different data sets and for
model evaluation through model–measurement comparisons.
In Sect. 3.1–3.4 the analysis is illustrated through application
to the Mace Head baseline ozone observations (Derwent et
al., 2018a), but the method is generally applicable to other
trace species; Sect. 3.5 illustrates the application to the Mace
Head baseline N2O observations.

Here, we first quantify the long-term changes through a
power series fit to the time series of monthly mean ozone
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concentrations (Sect. 3.1). The derived function defining the
long-term changes is then used to detrend the monthly mean
data (Sect. 3.2) in order to facilitate characterization of the
seasonal cycle through a Fourier transform and harmonic
analysis of the detrended monthly means (Sect. 3.3). Finally,
a nonlinear regression fit of a function containing the statis-
tically significant terms of both the power and Fourier series
gives the most precise determination (i.e., yields the small-
est confidence limits) of the derived parameters (Sect. 3.4).
Sect. 3.6 through 3.8 discuss additional statistical features of
the data, including their influence on the confidence limits of
the derived parameter values.

Working with monthly mean data reduces the impact of
autocorrelation due to weather regimes and results in residu-
als that are more Gaussian in nature. As long as the tempo-
ral sampling scheme does not introduce any bias to monthly
means (e.g., through sparse sampling such that the data are
not fully representative of the actual monthly means), re-
stricting the analysis to monthly mean time data rather than
working with higher-frequency data does not reduce the sta-
tistically significant information regarding the average long-
term trends or seasonal cycles. A qualitative explanation for
this can be given. Deriving monthly means from higher-
frequency data (e.g., hourly or daily mean data) is an averag-
ing process that minimizes the sum of the squares of the devi-
ations of the higher-frequency data from the derived monthly
means. The fitting procedures employed in the analysis here
minimize the sum of the squares of the deviations of the
monthly mean data from the derived long-term changes and
seasonal cycles. The overall result is independent of whether
the sum of the squares of the deviations is minimized in two
steps (monthly mean calculation followed by further fits) or
in one step (extracting long-term trends and seasonal cycles
directly from the higher-frequency data). One example of
this independence is shown in Sect. 3.1, where a fit of the
long-term change function to annual mean data gives results
equivalent to the fit to monthly mean data. We work with
monthly mean data because they provide clearer illustrations
of the method and its results, compared to higher-frequency
data.

3.1 Long-term change analysis

A power series fit is a general and convenient means of quan-
tifying the long-term temporal evolution of a time series of
concentration measurements. This is a general approach in
that no underlying assumptions are made regarding the func-
tional form of the temporal evolution of the data set, since
any continuously varying curve can be fit to any desired ac-
curacy given enough terms in a power series. In practice, the
power series fit is obtained through a nonlinear regression
fit of monthly mean data to a polynomial, as indicated in
Eq. (1):

[O3] = a+ bt + ct
2
+ dt3+ . . .. (1)

Figure 1. Fits of long-term change in mean baseline tropospheric
ozone measured at Mace Head, Ireland. Monthly means are from
Appendix A of Derwent et al. (2018a), from which the annual
means were calculated. The solid black and dotted violet curves
are nonlinear regression fits of the first three terms of Eq. (1) to the
monthly and annual means, respectively.

The fits utilized in this work include all terms in Eq. (1)
with coefficients that are statistically significant at the 95 %
confidence level. This means that as longer data records de-
velop, additional terms can be added and new insights can be
gained. Figure 1 shows a fit (black solid curve) to monthly
mean baseline ozone data (blue solid circles) obtained at
Mace Head, Ireland (Derwent et al., 2018a). The annotation
gives the derived values (with 95 % confidence limits) for
the first three coefficients of Eq. (1). The fit to the calendar
annual mean data (dotted violet line and larger violet sym-
bols) are also shown. Table 1 compares the coefficients de-
rived from these fits. For this data set, only the first three
terms of Eq. (1) are retained, as the coefficients of higher-
order terms are not significantly different statistically from
zero (see derived d parameters in Table 1). All three param-
eter values derived from the two fits agree within their con-
fidence limits; the small differences are due to the exclusion
of the partial years of data at the beginning and end of the
data record when calculating the calendar means. The scat-
ter of the annual means about the fitted curve is considerably
smaller than that of the monthly means (compare root-mean-
square deviation, RMSD, values in Table 1) since the vari-
ability associated with the seasonal cycle has been removed
by the annual averaging period.

To more precisely determine the coefficients, it is impor-
tant for the time origin to be well within the time span of
all the data series considered. Here we choose the year 2000
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Table 1. Parameter values of fits of long-term change in Mace Head, Ireland, ozone data to Eq. (1).

Data fit a b c (×10−3) RMSD d (×10−4) yearmax
(ppb) (ppb yr−1) (ppb yr−2) (ppb) (ppb yr−3)

Monthly means 39.8± 0.8 0.35± 0.08 −20± 6 5.4 5± 11 2008.8± 4.2
Annual means 39.8± 0.7 0.31± 0.07 −17± 8 1.3 −4± 11 2008.9± 4.5
Combined regression 39.8± 0.4 0.34± 0.04 −20± 4 2.9 – 2008.7± 2.2

(i.e., t in Eq. (1) equals 2000). If the time origin is selected
outside the time spanned by the data (an extreme example
would be year 0), the confidence limits of the derived param-
eters and the absolute values of a and b (but not c) change,
but the fitted curve does not change. With the year 2000
chosen as the time origin, the first coefficient (a, with units
ppb O3) is the intercept of the fitted curve at the year 2000; it
quantifies the absolute magnitude of the average ozone con-
centration at that year. The second coefficient (b, with units
ppb O3 yr−1) is the slope of the fitted curve in that same
year; it gives the best estimate of the (continually varying)
time rate of change of ozone at that particular time. Finally,
the third coefficient (c, with units ppb O3 yr−2) is equal to
one-half of the (constant) time rate of change of the slope of
the fitted curve. This third term is important for characteriz-
ing the nonlinear aspects of long-term behavior of the data.
Many published studies rely on various approaches to ana-
lyze long-term trends through linear fits; the recent Tropo-
spheric Ozone Assessment Report (TOAR) project (Chang
et al., 2017; Gaudel et al., 2018; Lefohn et al., 2018) takes
this approach. The focus of TOAR is on shorter measure-
ment records at hundreds of sites where only the first two
terms of Eq. (1) are statistically significant, thus their choice
is appropriate. Linear trend approaches can accurately quan-
tify the average rate of change in concentrations over a mea-
surement record of any length, but do not fully quantify the
long-term temporal evolution of data sets with strong nonlin-
ear behavior, as is the case in the Mace Head ozone data illus-
trated in Fig. 1. The choice of examining linear behavior or
more complex modes of change depends upon the purpose of
the analysis; this study focuses on deriving scientific insights
into concentration changes that may be driven by nonlinear
factors.

The long-term fit to the Mace Head data finds a statisti-
cally significant, negative value for c, with ozone concen-
trations increasing early in the data record. The polynomial
fit reaches a maximum and then decreases later in the record.
When three terms are included, Eq. (2) allows the calculation
of the year that the maximum of the fit was reached, yearmax:

yearmax =−b/2c+ 2000. (2)

The yearmax calculated from Eq. (2) is included in Table 1,
which is within the time period of the observational record.
The physical interpretation of the maximum derived from the
fit and any extrapolation to a maximum year outside the ob-

servational time period would depend on the scientific under-
standing of the factors driving the concentration changes. As
discussed later, the apparent decrease after the derived maxi-
mum of the fit in Fig. 1 is not statistically significant, and the
existence of a physical maximum of Mace Head ozone con-
centrations remains an open question. Extrapolation of fits
derived from Eq. (1) is likely misleading, since polynomials
generally diverge to large negative or positive values when
extended outside the data range used to derive the polyno-
mial itself.

In summary, only three parameters are required to describe
the long-term changes in the Mace Head ozone data set; addi-
tional terms are not statistically significant and are therefore
omitted from the analysis. This parameter set is a, b and c,
or equivalently a, c and yearmax, with the last derived from
Eq. (2). The second parameter set has more direct physical
significance for this time series. Derwent et al. (2018a) con-
ducted a similar analysis of the long-term change in this data
set and obtained statistically equivalent results.

3.2 Detrending monthly mean data

The time series of monthly mean ozone data can be detrended
simply by subtracting the second and third terms of the fit to
Eq. (1) from the original time series. As expected, no signifi-
cant long-term change remains; the average of the detrended
data (39.8 ppb) agrees with the a parameter derived above
(i.e., the year 2000 intercept of the original fit); and their stan-
dard deviation (5.4 ppb) agrees with the RMSD of the orig-
inal monthly means about the long-term trend fit to Eq. (1).
All three statistically significant terms of Eq. (1) could be
subtracted from the monthly means, which would give de-
trended data averaging zero with the same standard devia-
tion; subtracting only the second and third terms preserves
the year 2000 intercept as the mean of the data set.

3.3 Seasonal cycle analysis

The quantitative analysis of the seasonal cycle has two steps;
first, a Fourier analysis determines the number of statistically
significant harmonic contributors to the seasonal cycle of the
detrended data, and second, a least-squares fit of those data to
the significant harmonic terms provides a set of parameters
that quantify the seasonal cycle to the fullest extent that is
statistically justified.
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Figure 2. Results of the Fourier transform of the detrended monthly
mean ozone concentrations.

A Fourier transform of a time series of data captures the
information of that time series in frequency space, i.e., as a
series of sine functions, whose magnitude and phase are ex-
pressed as a sequence of complex numbers. Plotted in Fig. 2
are results from the Fourier transform of the detrended data.
These are the magnitudes of the real parts of each term, nor-
malized to give the magnitude of the respective sine func-
tions plotted as a function of frequency. There is one point
that is off-scale at zero frequency, which gives the magni-
tude of the average of the detrended monthly means. The
fundamental (frequency= 1 yr−1) and the second harmonic
(frequency= 2 yr−1) terms clearly have much greater mag-
nitudes than any of the other terms of non-zero frequency.
Terms of frequencies < 1 yr−1 describe the systematic, multi-
year variability that contributes to deviations from a purely
repetitive seasonal cycle in Fig. 1. There is an indication that
the third harmonic (frequency= 3 yr−1) may have a signif-
icant magnitude, but it is on the edge of statistical signifi-
cance; in the following analysis, only the fundamental and
second harmonic terms will be considered further. This ap-
proach is consistent with that of Parrish et al. (2016), who
found that, at most, two terms were required to quantify the
seasonal cycle of monthly mean ozone concentrations in the
marine boundary layer and in the lower free troposphere.

The Fourier transform indicates that the seasonal cycle of
the detrended data is quantitatively described by two terms
– the fundamental and the second harmonic – plus a third
constant term equal to the annual average. The second step
in this analysis is to fit these three terms to the detrended

Figure 3. Results of the fit of Eq. (3) to the detrended monthly mean
concentrations. The black curve is the nonlinear regression fit to the
plotted points.

monthly means through a least-squares regression to Eq. (3):

[O3] = yo+A1 · sin(χ +ϕ1)+A2 · sin(2 ·χ +ϕ2). (3)

Figure 3 illustrates this fit for the detrended data. The second
and third terms in Eq. (3) are the fundamental and second
harmonic. If the Fourier transform indicated one or more ad-
ditional harmonics terms were statistically significant, an ad-
ditional term would be added to Eq. 3 for each additional har-
monic, but for the data sets investigated here, no additional
harmonics are statistically significant. Two parameters, the
amplitude, A, and the phase angle, ϕ, are required to define
each of these sine functions. yo is the annual average ozone
concentration over the entire data set, and from the discus-
sion above, must equal both a (the year 2000 intercept de-
rived from the fit to Eq. 1) and the average of the detrended
data. In Eq. (3) the variable χ spans a 1-year time period
in radians from 0 to 2π . The parameters derived from the
least-squares fit are annotated in Fig. 3; they agree closely
with those derived for Mace Head by Parrish et al. (2016)
(see their Table 2). The small differences between the results
here and in that earlier work are due to the baseline reanaly-
sis and extra years of measurements (Derwent et al., 2018a),
now available from Mace Head. The extra years of measure-
ments have resulted in noticeably smaller confidence limits
for most of the derived parameters. Derwent et al. (2018a)
conducted a similar analysis of this seasonal cycle and ob-
tained statistically equivalent results.
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Table 2. Parameter values of fits of long-term change and seasonal cycle in Mace Head, Ireland, data to Eq. (4).

Data set a b c (×10−3) d (×10−4) A1 ϕ1 A2 ϕ2 RMSD
(ppb) (ppb yr−1) (ppb yr−2) (ppb yr−3) (ppb) (rad) (ppb) (rad) (ppb)

Ozone 39.8± 0.6 0.35± 0.06 −20± 6 – 5.7± 0.6 0.52± 0.10 3.1± 0.6 −2.37± 0.19 2.9
N2O quad 315.9± 0.2 0.76± 0.04 +5.1± 3.1 – 0.31± 0.17 0.48± 0.55 0.10± 0.17 −3.42± 1.67 0.23
N2O cubic 316.0± 0.1 0.76± 0.02 −4.7± 5.1 +6.0± 2.9 0.31± 0.09 0.48± 0.29 0.10± 0.09 −3.39± 0.86 0.18

3.4 Improved confidence limits through simultaneous
long-term change and seasonal cycle analysis

It is possible (and preferable) to do a simultaneous fit to the
long-term change and seasonal cycle by utilizing an iterative,
nonlinear regression to Eq. (4), which combines the statisti-
cally significant terms of Eqs. (1) and (3), giving a total of
seven (or eight) parameter values:

[O3] = a+ bt + ct
2
(
+dt3

)
+A1 · sin(χ +ϕ1)

+A2 · sin(2 ·χ +ϕ2)+ residuals, (4)

where residuals represent the unexplained portion of the data
and will be examined in Sect. 3.6. Whether the fourth term
(or even additional terms) of Eq. (1) are included in Eq. (4)
depends upon whether each additional term is statistically
significant. The violet curve in Fig. 4 shows the fit of Eq. (4),
and the values derived for the seven parameters are anno-
tated. (For ozone the fourth terms in Eqs. (1) and (4) are not
statistically significant, so no value is given for the d param-
eter.) The results here are nearly identical to those discussed
earlier, except the confidence limits for the a,b,c parameters
are smaller than those derived in the analysis illustrated in
Fig. 1 (see Table 2). This improvement is due to simultane-
ously treating the two systematic sources of data variability
(i.e., the long-term change and the seasonal cycle).

3.5 Analysis of nitrous oxide time series

The preceding sections developed and illustrated the applica-
tion of Eqs. (1) through (4) for a time series of monthly mean
ozone concentration data, but in principle these equations
and analysis approaches can be applied to a series of mea-
surements of any trace species. For example, Fig. 5 illustrates
the analogous analysis of the time series of monthly mean,
baseline-selected nitrous oxide (N2O) measurements from
Mace Head. This time series (Fig. 5a) is significantly differ-
ent from that of ozone, with the long-term change dominat-
ing the variability of the data, perturbed by only a relatively
small seasonal cycle. Further, with ozone only three terms of
Eq. (1) are statistically significant but for N2O the fourth (cu-
bic) term is also statistically significant (while higher-order
terms are not). Figure 5a shows fits of Eq. (1) for two, three
and four terms; it is difficult to discern the differences be-
tween these fits in the figure, but as the annotations indi-
cate, these differences are statistically significant. For N2O

Figure 4. Results of the nonlinear regression fit of Eq. (4) (violet
line) to the monthly mean concentrations from Fig. 1. Table 2 gives
the units of the parameters, and the confidence limits corrected for
autocorrelation in the data set.

the quadratic term in the three-term fit is positive, indicating
that the rate of increase in nitrous oxide has, on average, ac-
celerated over the measurement record in contrast to ozone
whose rate of increase decelerated. The statistically signif-
icant cubic term shows that the acceleration of the rate of
increase has not been constant over the measurement record;
Sect. 3.7 discusses these issues in more detail.

The N2O data can be detrended as for ozone by subtracting
the second, third and fourth terms of the fit to Eq. (1) from
the time series (results not shown). The Fourier transform of
the detrended data (Fig. 5b) is similar to that of ozone in that
the only important harmonic terms are the fundamental and
second harmonic. For comparison the Fourier transform re-
sults are shown for data detrended with both the cubic and
quadratic fits; the magnitudes at frequencies < 1 yr−1 are sig-
nificantly smaller for the cubic fit compared to the quadratic
fit, reflecting the reduced variability of the monthly mean
data about the cubic fit. Also, for N2O the magnitudes at
frequencies < 1 yr−1 are relatively large compared to those
for ozone (Fig. 2). These larger magnitudes reflect the no-
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Figure 5. Analysis results for a time series of monthly mean baseline nitrous oxide measured at Mace Head, Ireland. (a) The three curves
are fits of the monthly means to Eq. (1) with two terms (i.e., linear), three terms (i.e., quadratic) and four terms (i.e., cubic), with the derived
parameters annotated. (b) Results of the Fourier transform of the monthly mean concentrations detrended using the cubic (blue points) and
quadratic fits (violet points). (c) Results of the fit of Eq. (3) to the detrended monthly mean concentrations. The black curve is the nonlinear
regression of Eq. (3) to the plotted points. (d) Results of the cubic fit (violet curve) of Eq. (4) to the detrended monthly mean concentrations.
Table 2 gives the parameter values and the confidence limits corrected for autocorrelation in the data set.

ticeable interannual departures of the N2O monthly means
from the fitted curve (violet) in Fig. 5d. For example, in the
years near 2000, the data appear to be significantly smaller
than the fit before 2000, and higher after that year. Investi-
gating statistically significant departures, such as this exam-
ple, may yield additional information regarding sources or
sinks of N2O (or other trace species investigated through this
analysis approach).

The fit of the detrended data to Eq. (3) to define the sea-
sonal cycle (Fig. 5c) is also similar to that of ozone in that
the phases of the two harmonics are similar (see Table 2)
for these two species, agreeing (or nearly agreeing) within

their confidence limits. This close correspondence is consis-
tent with the long-standing observation that many trace gases
show a springtime maximum and a summertime minimum at
Mace Head (e.g., Derwent et al., 1998); the cause(s) of this
correspondence is an issue warranting further investigation.
Finally, Fig. 5d illustrates the fit of the original data (plotted
in Fig. 5a) to both the long-term change and the seasonal cy-
cle as defined by Eq. (4), with the inclusion of the cubic term
from Eq. (1).
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3.6 Autocorrelation and parameter confidence limits

Through the preceding discussion the statistical fitting ig-
nored any autocorrelation in the data. Systematic intra- or
inter-annual variability associated with persistent meteoro-
logical and/or climate variability could possibly cause auto-
correlation in these data sets. If such autocorrelation is signif-
icant, we expect that the derived parameter values would not
be significantly affected, but the confidence limits derived for
those parameter values would be unrealistically small. Par-
rish et al. (2016) considered this issue for ozone data sets
from several sites within the marine boundary layer through-
out the globe and found it to only have small influence. Here
we discuss this issue from a more general perspective and il-
lustrate this discussion through the two example Mace Head
data sets.

The time series of the residuals (i.e., the deviations be-
tween the monthly mean baseline ozone concentrations and
the fit of Eq. (4) to these means) for the two example data
sets are shown in Figs. 6a and 7a. For N2O the residuals are
shown for both the quadratic and cubic fits to the long-term
change. The characteristics of these time series differ notice-
ably; the N2O residuals (Fig. 7a) show much more coherent
variability than is apparent in the more chaotic ozone residu-
als (Fig. 6a).

The autocorrelations of the time series are shown in
Figs. 6b and 7b. Each plot shows the correlation of the time
series of the monthly means with a duplicate of itself as a
function of a time offset (i.e., month lag) between the time
series and its duplicate. When the lag is zero, the correla-
tion is perfect (i.e., autocorrelation coefficient= 1), and as
the lag increases, the autocorrelation coefficient decreases.
These plots differ markedly between the two species. As ex-
pected, the more chaotic time series of the ozone residuals
shows smaller autocorrelation coefficients (Fig. 6b), decreas-
ing in an approximately exponential manner with a time con-
stant (tau) ≈ 1 month as the time offset increases. The au-
tocorrelation of the N2O residuals (Fig. 7b) is greater, also
decreasing in an approximately exponential manner with tau
≈ 4 and 10 months for the cubic and quadratic fits, respec-
tively). Leith (1973) discusses the degree to which autocor-
relation affects the confidence limits of parameters derived
from observational time series and finds that the confidence
limits increase proportionally to (2 tau)1/2. Thus, for the two
example data sets discussed here, the confidence limits an-
notated in Figs. 1 and 3–5 and included in Table 1 must be
increased by a “correction factor” of 1.4 and 2.9 for ozone
and N2O (for cubic long-term change fit), respectively; Ta-
ble 2 gives the corrected confidence limits for the final values
derived for the seven or eight parameters.

As is common to all basic treatments of error propaga-
tion, the confidence limit analysis presented here is based on
the assumption that the residuals of the fits are Gaussian dis-
tributed. The nearly linear relationships in Figs. 6c and 7c
(at least for the cubic long-term change fit) give a qualitative

Figure 6. Analysis of the deviations between the monthly mean
baseline ozone concentrations and the fit of Eq. (4) to these means
(i.e., the fit residuals) illustrated in Fig. 4. (a) Time series of the
residuals. (b) The time lag autocorrelation of the residuals. The fit-
ted curve is an exponential decrease from unity at a lag of zero
months, with the time constant, tau, annotated. (c) Cumulative prob-
ability distribution of the residuals, plotted on an ordinate scale that
gives a linear fit for a Gaussian distribution.

indication that this assumption is approximately valid. Each
time series has a few apparent outliers of unknown cause;
since the prevalence of these outliers is small (no more than
1 % to 2 %), and they are not greatly outside the general dis-
tribution, their influence is believed to be minor and will not
be considered further.

It is notable that Fig. 7 clearly reflects the improvement
made by the addition of the cubic term to the long-term
change fit for the N2O time series. The standard deviation
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Figure 7. Analysis of the fit residuals for the monthly mean baseline
N2O concentrations illustrated in Fig. 5d (blue points). For compar-
ison, the violet results show the analysis with a quadratic fit to the
long-term changes. The annotations are similarly color coded. The
format of the figure is generally the same as that of Fig. 6.

of the residuals is reduced, the degree of autocorrelation is
reduced, which results in improved confidence limits for all
of the derived parameters, and the residuals are more closely
fit by a Gaussian distribution.

3.7 Rate of change of concentrations

Estimates of the rate of change of the mean concentrations of
ozone (or other species) can be derived through differentia-
tion of Eq. (1) to give Eq. (5):

d[O3]/dt = b+ 2ct
(
+3dt2

)
, (5)

where the third term applies when a cubic fit to the long-term
change is statistically justified. Acceleration or deceleration
in the rates of change of a species may contain information
regarding changes in the magnitude of sources or sinks of the
species, and thus may lead to improved physical understand-
ing of the processes that determine the observed atmospheric
concentrations. The quadratic fits to the two species indicate
that over their respective data records, the rate of increase on
average decelerated at ∼ 0.04 ppb yr−2 for ozone and accel-
erated at∼ 0.01 ppb yr−2 for N2O. The deceleration reversed
the trend of ozone from an increase of∼ 0.8 ppb yr−1 to a de-
crease of ∼ 0.3 ppb yr−1 over the 30-year data record, while
the acceleration increased the trend of N2O from ∼ 0.9 to
∼ 1.1 ppb yr−1 over the 23-year record. The statistically sig-
nificant value of the cubic term (i.e., the positive value of the
d parameter) indicates that the acceleration of the N2O rate
of increase was not uniform; the rate increased more slowly
near the middle (minimum∼ 2002) than at the beginning and
end of the data record. In contrast, no statistically significant
change can be discerned in the deceleration of the trend de-
rived from the ozone data record. A caution to this discussion
should be noted – Eq. (5) is obtained by differentiation of an
equation, whose parameters are derived from fits to data sets
that have significant unexplained variability. As noted previ-
ously, Eq. (5) is not based on a physical model; hence, the
above discussion regarding the rate of change must be con-
sidered cautiously, as discussed in Sect. 4.

3.8 Sources of variance of data sets

The squares of the standard deviations of the original data
sets that are annotated in Figs. 1 and 5a give the total variance
in the original data, and the square of the RMSD values that
are annotated for all of the illustrated fits provide an approx-
imate measure of the variance remaining in the data set after
accounting for the average long-term change and/or the sea-
sonal cycle. Table 3 summarizes the fraction of the original
variance of the monthly mean time series due to the average
long-term changes and seasonal cycle. Despite the obvious
differences of the data records in Figs. 1 and 5a, the variance
of the ozone and N2O data sets are similar (36 and 29 ppb2,
respectively); however, the source of that variance is quite
different. The average long-term change accounts for only
19 % of the ozone variance but 99.7 % of the N2O variance,
while the seasonal cycle accounts for 58 % and 0.19 % of the
ozone and N2O variance. The residuals thus account for the
remaining 23 % and 0.12 % of the variance; these residuals
represent systematic interannual variability, i.e., the lower-
frequency macroweather regime of Bowdalo et al. (2016),
and any other effects leading to variability in the data record
(including any measurement errors or analysis biases).
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Table 3. Sources of variance in Mace Head, Ireland, data sets.

Data set Variance Long-term trend Seasonal cycle Residual
(ppb2) contribution (%) contribution (%) (%)

Ozone 36.1 19.2 58.0 22.7
N2O quad 28.2 99.6 0.19 0.18
N2O cubic 28.2 99.7 0.19 0.12

4 Discussion and conclusions

The analysis approach presented in this work derives a lim-
ited set of parameter values that defines a mathematical rep-
resentation of the statistically significant features of the mean
long-term changes and seasonal cycles of the concentrations
of trace tropospheric species. The results for the two example
data sets (baseline concentrations of ozone and N2O at Mace
Head, Ireland) selected to illustrate the analysis show that
no more than the seven or eight parameter values included
in Table 2 are needed for this mathematical representation.
Three or four parameters (the coefficients of the polynomi-
als given by the first three or four terms of Eq. 1) quantify
the long-term changes, including the absolute concentration
in the reference year 2000, and four parameters (the ampli-
tude and phase of the two harmonic terms of Eq. 3) quantify
the seasonal cycle. These parameters provide a minimum set
of parameters that capture the statistically significant infor-
mation in the observational data set regarding these temporal
variations. These parameters can serve as metrics for quanti-
tative comparisons of long-term changes and seasonal cycles
between different locations or for different species and can
serve as a basis for evaluation of model simulations atmo-
spheric concentration variations.

In the quantification of mean long-term concentration
changes, the method presented provides statistically signif-
icant information not given by linear trend analysis, an ap-
proach often employed to quantify long-term trends. Lin-
ear analysis does provide a quantification of the average an-
nual rate of change of a species’ concentration over the time
span of the measurement record, but does not generally pro-
vide information about any statistically significant changes
in the rate of concentration change (i.e., acceleration or de-
celeration of the rate of concentration increase or decrease)
within the data record. For baseline ozone concentrations,
such changes of rate have been identified as quite impor-
tant, as shown here in Fig. 1, and have been quantified in
earlier work (Logan et al., 2012; Parrish et al., 2012, 2014,
2017; Derwent et al., 2018a); these analyses show an increase
early in the data record that slows with concentrations reach-
ing maxima, followed by decreases in the latter part of the
record. In such cases, Eq. (2) provides an estimate of the year
when the maximum concentration was reached. The Mace
Head N2O record gives a contrasting result, with a statisti-
cally significant acceleration of the rate of increase through-

out the data record, which is in agreement with an indepen-
dent analysis of N2O trends and also identifies a significant
acceleration of a similar magnitude (Rona Thompson, per-
sonal communication, 2018).

In the quantification of average seasonal cycles, the
method presented here provides less detailed seasonal cy-
cles than are sometimes derived in analyses of average sea-
sonal cycles. Here it is shown that only four statistically
significant, independent pieces of information are needed
to quantify the mean seasonal cycles in the example data
sets. Published studies often represent the seasonal cycle as
12 monthly means; such an approach implicitly assumes that
there are 12 statistically significant, independent pieces of
information available from the mean seasonal cycle. At least
for the example data sets examined in this and earlier work,
(e.g., Parrish et al., 2016) the mean seasonal cycles are well
described with no more than 4 independent pieces of infor-
mation (i.e., independent parameter values) that can be ex-
tracted from the analysis. Including 12 monthly means in the
seasonal cycle representation adds statistically insignificant
variability to the results, and thus over fits to the available
data, preventing a clear analysis of the statistical uncertainty
of those results. For the greatest statistical significance of the
description of the seasonal cycle, we recommend a harmonic
analysis that includes only significant terms, as exemplified
in the method presented in this work. However, it is possi-
ble that other data sets from different locations may warrant
more or fewer terms.

The analysis approach presented here is based on nonlin-
ear regression fits to Eq. (4), which assumes a number of
properties about the behavior of the data, including that the
data behave in a smooth manner, that the long-term change
is independent of season and that the seasonal cycle is sta-
ble over the data record. Should any of these assumptions
fail or additional information be desired, the equation could
be modified appropriately. The analysis derived a minimum
set of statistically significant parameters that capture as much
statistically significant information as possible from the orig-
inal data sets while avoiding over fitting the data. How-
ever, no physical model underlies Eq. (4), so physical in-
terpretation of the parameter values and extrapolation of the
functional fit must be done only very cautiously. For ex-
ample, the fit to the long-term changes in the Mace Head
ozone record indicates that maximum ozone concentrations
occurred within 2.2 years of 2008.7, i.e., within∼ 26 months
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of 1 September 2008, and that after that maximum ozone
concentrations have been decreasing. The question arises as
to whether the maximum and the subsequent decrease are
physically real or are simply mathematical implications of
the three-term polynomial utilized to fit the data. Supple-
mentary trend analyses indicate that (1) there has been no
statistically significant trend after the year 2000 (average
trend=−0.015± 0.070 ppb yr−1), so it is at least clear that
the positive trend in the early years of the data record has
ended, and (2) that any decrease after the derived maximum
in the year 2008.7 is not statistically significant. Thus, an-
swering the above question requires additional information
that perhaps may come from additional years of data col-
lected at Mace Head or analysis of other ozone data sets that
can be considered to reflect the same physical driving forces
as those at Mace Head.

Data availability. The ozone data are available from Derwent et
al. (2018a) and the N2O data are available from the AGAGE,
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