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Abstract. Pollen-induced allergies are among the most
prevalent non-contagious diseases, with about a quarter of
the European population being sensitive to various atmo-
spheric bioaerosols. In most European countries, pollen in-
formation is based on a weekly-cycle Hirst-type pollen trap
method. This method is labour-intensive and requires nar-
row specialized abilities and substantial time, so that the
pollen data are always delayed and subject to sampling- and
counting-related uncertainties. Emerging new approaches to
automatic pollen monitoring can, in principle, allow for real-
time availability of the data with no human involvement.
The goal of the current paper is to evaluate the capabil-
ities of the new Plair Rapid-E pollen monitor and to con-
struct a first-level pollen recognition algorithm. The eval-
uation was performed for three devices located in Lithua-
nia, Serbia and Switzerland, with independent calibration
data and classification algorithms. The Rapid-E output data
include multi-angle scattering images and the fluorescence
spectra recorded at several times for each particle reach-
ing the device. Both modalities of the Rapid-E output were
treated with artificial neural networks (ANNs) and the re-
sults were combined to obtain the pollen type. For the first
classification experiment, the monitor was challenged with
a large variety of pollen types and the quality of many-
to-many classification was evaluated. It was shown that in
this case, both scattering- and fluorescence-based recogni-
tion algorithms fall short of acceptable quality. The com-
binations of these algorithms performed better, exceeding

80 % accuracy for 5 out of 11 species. Fluorescence spec-
tra showed similarities among different species, ending up
with three well-resolved groups: (Alnus, Corylus, Betula and
Quercus), (Salix and Populus) and (Festuca, Artemisia and
Juniperus). Within these groups, pollen is practically indis-
tinguishable for the first-level recognition procedure. Con-
struction of multistep algorithms with sequential discrimi-
nation of pollen inside each group seems to be one of the
possible ways forward. In order to connect the classification
experiment to existing technology, a short comparison with
the Hirst measurements is presented and the issue of false
positive pollen detections by Rapid-E is discussed.

1 Introduction

Pollen of many wind-pollinated plants has specific proteins
that cause human allergies (Valenta et al., 1992; Bousquet
et al., 2006, 2015; Radauer and Breiteneder, 2006; Choual
et al., 2018), particularly affecting children (Skoner, 2001;
Hgst et al., 2003; Douladiris et al., 2018). Stress due to con-
tact with the pollen-contained allergen can cause an allergic
reaction or exacerbate some related diseases (Leynaert et al.,
2000; Devillier et al., 2017; Poethko-Miiller et al., 2018). Al-
lergies impair the quality of life of about 30 % of the world
population (Akdis et al., 2015). In most European countries,
national organizations of various kinds provide information
about pollen concentration in the air, publish pollen prog-
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noses and issue warnings. The bulk of such efforts is based on
retrospective pollen observations and climatological pollen
calendars. Most observers use Hirst-type volumetric pollen
traps where airborne particles (>5 pm) are collected on a ro-
tating drum covered by Melinex tape. Samples are identified
by a microscopic analysis (Galan et al., 2014; Buters et al.,
2018). This method is labour-intensive and tedious, requires
narrow specialization abilities, and incorporates significant
uncertainties (e.g. Oteros et al., 2017). In addition, due to
the manual treatment of the collected samples and weekly
cycle of the trap, the data are always delayed from a few
days up to a few weeks. However, timely data about pollen
concentration in the air are also needed for improving the
accuracy of tools for personalized medicine (for example,
PASYFO app, http://www.pasyfo.lt, last access: 14 Novem-
ber 2018; POLLEN app, http://www.polleninfo.org, last ac-
cess: 14 November 2018; NORKKO forecast and app http://
www.norkko.fi, last access: 14 November 2018; etc.) (Bous-
quet et al., 2017; Horgan and Pazzagli, 2017; Pereira et al.,
2018; Tabatabaian and Casale, 2018). It can also be used
for informing people about the current pollen concentration
in the air. Finally, real-time data are needed for short-term
pollen forecasts with statistical and atmospheric dispersion
models (Sofiev et al., 2013, 2015, 2017; Prank et al., 2016;
Ritenberga et al., 2016; Zink et al., 2017).

As the approach to information and personal responsi-
bility for health is changing, it has become a necessity
to develop new methods enabling the information on air-
borne pollen to become available in real time. The first at-
tempts to obtain automated information were related to im-
age recognition technologies (Bennett, 1990). Their develop-
ment was accompanied by the formation of more potential
possibilities (Ronneberger et al., 2002; Landsmeer, 2009).
Currently, two types of technologies seem to be the most
suitable for taxon-level classification of pollen: based on im-
age recognition and laser fluorescence (or their combina-
tions). Image-based technologies are used in detectors, such
as BAA500 (Helmut Hund GmbH, https://www.hund.de);
the laser-fluorescence-based approach is implemented in a
wideband integrated bioaerosol sensor (WIBS) device (http:
/lwww.dropletmeasurement.com, last access: 19 Novem-
ber 2018), PA-300 and Rapid-E (Plair, http://www.Plair.ch,
last access: 19 November 2018), whereas the new Poleno
device (Swisens, https://swisens.ch/, last access: 19 Novem-
ber 2018) aims at integration of both features. The Hund- and
Plair-manufactured devices were used in limited-scale scien-
tific studies, Oteros et al. (2015) for BAAS00 and Crouzy
et al. (2016) for PA-300, and showed promising results.
However, the large-scale evaluation and calibration suitable
for European-scale applications have yet to be concluded
(Oteros et al., 2015; Crouzy et al., 2016).

The goal of the current paper is to evaluate the capabilities
of the new Plair Rapid-E pollen monitor and to construct and
evaluate the first-level pollen recognition algorithms using
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particle scattering and fluorescent data from Rapid-E. The
key questions to answer were as follows:

— can we identify different pollen genera using the Rapid-
E data?

— can we identify different species within the same pollen
genus?

— what is the recognition accuracy for the most common
pollen types in Europe?

The experiment was performed in Siauliai (Siauliai Uni-
versity and Finnish Meteorological Institute), Novi Sad
(BioSense Institute of the University of Novi Sad) and Pay-
erne (Federal Office of Meteorology and Climatology Me-
teoSwiss) with three newly acquired experimental Rapid-E
devices. The devices were provided with local pollen sam-
ples and several pollen recognition algorithms have been
constructed independently in each centre. This organization
of the study allowed us to account for variability of the ac-
tual technical characteristics of the individual devices and an
absence of “good practice” for such types of measurements.
The best classification results compared across the centres
formed the basis of of this paper. Finally, outputs of the Me-
teoSwiss classifier are compared with airborne pollen data
collected with the Hirst-type pollen trap. The provided time
series were used to discuss the “false positive” identifications
important for the operational context.

2  Methods
2.1 Description of the measurement instrument

The new Rapid-E instrument designed and produced by Plair
SA is the successor of the first-generation particle analyser
PA-300 used by Crouzy et al. (2016). It is a particle counter;
i.e. it analyses all particles coming to its inlet one by one. Op-
eration of the instrument is based on two physical principles:
scattering of near-UV laser beam and deep-UV laser-induced
fluorescence (Kiselev et al., 2011, 2013). Multi-angle scat-
tering is used for determination of the particle’s morphology,
such as size and shape. The fluorescent light is analysed for
its spectrum and lifetime. The instrument constantly takes in
the ambient air through the air inlet on the top of its panel.
Sample air flow is up to 2.8 Lmin~! with the counting rate of
up to 4500 particle detections per minute; i.e. the theoretical
saturation level is 1.6 x 10° particles m—3. Since according to
the device provider the smallest observable particle is 0.5 um
in diameter, this saturation level will not be reached in real-
istic ambient conditions.

The sampled air enters the nozzle, which creates a lami-
nar flow in the measurement zone. Particles interact with the
400 nm laser light source and the scattered light is captured
by 24 time-resolving detectors distributed at different angles.
The information on chemical properties of the particles is

www.atmos-meas-tech.net/12/3435/2019/


http://www.pasyfo.lt
http://www.polleninfo.org
http://www.norkko.fi
http://www.norkko.fi
https://www.hund.de
http://www.dropletmeasurement.com
http://www.dropletmeasurement.com
http://www.Plair.ch
https://swisens.ch/

I. Sauliené et al.: Automatic pollen recognition with the Rapid-E particle counter

obtained by a powerful deep-UV laser (320 nm) source that
induces fluorescence. Its spectrum (32 measuring channels
within a spectral range of 350-800 nm, eight sequential ac-
quisitions with 500 ns retention) and lifetime (four particular
bands) are recorded and used for the particle identification
(Fig. 1).

The threshold of the particle fluorescence intensity (> 1500
units) was empirically determined as a cut-off level for suf-
ficiently recorded pollen grains. The spectra were subse-
quently normalized to eliminate the difference in the signal
strength between the instruments. Rapid-E has an embedded
mechanism for collecting the particles, which passed through
the registration chamber onto sticky slides for the follow-up
microscopic analysis.

The device has several modes of operation. Since the deep-
UV laser has a limited resource, the 400 nm scattering image
is used for prior estimation of the particle morphology and
deciding if it can be pollen. In the pollen mode, the device
ignites the deep-UV laser only for the 5-100 um particle size
range (used in this study). Another mode allows detection
of particles in the range of 0.5-100 um for spores, particu-
late matter and bacteria identification. However, the expected
lifetime of the deep-UV laser is much shorter in this mode,
especially in polluted atmosphere.

2.2 Data processing and recognition methods
2.2.1 Siauliai

Both modalities of the Rapid-E output (scattering image
and the fluorescence spectra) were processed independently
with artificial neural networks (ANNSs) and the scores were
merged to obtain the final classification result.

Both scattering and fluorescence signals (Fig. 1) signifi-
cantly depend on the particle position with regard to the laser
beam while passing through it. In particular, the apparent
particle size (scattering) and the fluorescence intensity var-
ied between the recordings. Apart from that, 15 %—-50 % of
particles are missed by the deep-UV laser. Therefore, pre-
processing included (i) identification of a characteristic tem-
plate of 44 x 20 pixels from the scattering image to localize
the features characteristic for each pollen type; (ii) filtering
of particles with insufficient fluorescence intensity (Table 1);
(iii) normalization of fluorescence spectrum, (iv) at the first
time moment, inclusion of only 16 of 32 wavelengths in the
feature vector to exclude the saturated short-wavelength flu-
orescence bands.

Several artificial neural networks (ANNs) were created.
One of the best-performing networks included only scatter-
ing and fluorescence signals, taking them separately and dis-
regarding the noisy lifetime component.

ANN for scattering images consists of two convolutional
blocks for the feature extraction and two fully connected lay-
ers for classification (Fig. 2).
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Every convolutional block consists of the 2-D convolu-
tional layer, the batch normalization layer, the rectified linear
unit (ReLU) activation layer and the max-pooling layer. One
mask of the convolutional layer has a size of 5 x 5. The con-
volutional layer of the first block has 16 filters, and the one of
the second block has 32 filters. The max-pooling layer selects
the maximal response from the area of 2 x 2. At the output of
the second convolutional block, the size of the feature vec-
tor is 1760. The first fully connected layer has 256 neurons.
The second fully connected layer classifies these vectors to
the number of pollen classes chosen for the calibration. The
ANN was trained using the cross-entropy loss criterion. The
fluorescence spectrum was processed by a multilayer percep-
tron ANN (Fig. 2) with dropout and batch normalization lay-
ers used for regularization. This ANN was also trained using
the cross-entropy loss criterion. Results of two ANNs were
fused by summing scores of every pollen type. The training
process was monitored to avoid overfitting the networks — see
the Discussion section.

2.2.2 Novi Sad

All Rapid-E signals (i.e. scattering, fluorescence and life-
time) were transformed into images and jointly processed by
a single ANN (Fig. 3). Its architecture considers the same in-
put dimensions of every image, and since the scatter signal
could vary in the number of acquisitions, each image’s width
was equalized by finding its centre of mass and either cut-
ting or zero-padding to fit to 24 x 70 pixels. The dynamic
range of each image was reduced by replacing each pixel
value with its logarithm, which resulted in enhancement of
the low-intensity pixels. Images from temporally resolved
spectrum data and all bands of the lifetime data were used
unprocessed.

Similarly to Siauliai, particles with a fluorescence inten-
sity less than 1500 units at the Rapid-E scale at all wave-
lengths were filtered out. In addition, particles with calcu-
lated optical size out of the range of 5-100 um were filtered
out using the manufacturer’s size approximation, depending
on the sum of the scattering image. Size is 0.5 um if the sum
is less than 5500 000. If the sum is between 5500000 and
500000 000, the size is given by 9.95 x 10~ ! - np.log(3.81 x
107 - x) —4.84 x 10. Finally, if the sum is greater than
500 000 000, the size is given by 0.0004 x x%-5 —3.9.

Each input signal is analysed with its own chain consist-
ing of 2-D convolutional layers, replication padding layers,
ReLU activation functions, batch normalization layers, max
pooling and dropout layers, together forming the convolu-
tional block (Fig. 3).

The convolutional layer of the first scattering block had 10
filters with the kernel size of 5 x 5 while the second one had
20 filters with the kernel size of 3 x 3. For the spectral images,
the convolutional layer of the first block had 50 filters with
the kernel size of 5 x 5, and that of the second block had 100
filters with the kernel size of 3 x 3. For the lifetime images,
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Figure 1. Examples of scattering images, fluorescence spectra and lifetimes of selected pollen types.

Table 1. Pollen used for testing the identification capabilities of the instrument in Siauliai.

20 30 40 50 60
Time, ns

Plant group Total particles counted Fluorescent
by 400 nm laser particles™
Number Percentage of particles with
sufficient fluorescence level
Festuca 21808 12205 56
Artemisia 15521 13370 86
Corylus 14 858 10865 73
Alnus 13692 10486 77
Betula 20676 12089 58
Salix alba 15383 13431 87
Salix fragilis 12942 10401 80
Populus 15340 10963 71
Acer negundo 11832 8647 73
Acer pseudoplatanus 11030 7372 67
Juniperus 17926 10404 58
Quercus 17677 8934 51
Pinus sylvestris 14224 8537 60
Pinus mugo 13399 8287 62

* The particle fluorescence intensity level > 1500 at the Rapid-E scale for at least one emitted wavelength. The initial
number of pollen noticed by the scattering laser is not used in the analysis. The algorithms were based on data of
fluorescent particles. Calibration datasets were normalized.
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Figure 2. Neural network for pollen classification in Siauliai based
on separately treated scattering and fluorescence signals.
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Figure 3. Neural network for pollen classification in Novi Sad using
all three signals.

the first convolutional layer had 70 filters with a kernel size of
7x 1, the second one had 140 filters with a kernel size of 5x 1
and that of the final block had 200 filters with the kernel size
of 3 x 3. At the output of the final convolutional block, the
sizes of the feature vectors for scattering image, fluorescence
spectrum and lifetime are 1800, 1600 and 1400, respectively.
Each feature vector is passed through one fully connected
layer with 50 neurons. Those features were concatenated, re-
sulting in the feature vector of dimension of 150. The size of
the second (last) fully connected layer was the same as the
number of classes, after which the samples were classified
with the log-softmax activation function.
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The ANN was trained using negative log-likelihood (NLL)
loss and the stochastic gradient descent with a learning rate
of 0.001 and a momentum of 0.9.

2.2.3 Payerne

At the preprocessing stage, all three signals were normal-
ized with their maxima. For scattering, the image was ad-
ditionally centred and cut to a 24 x 100 shape. Extra filtering
was imposed, retaining only calibrations with an optical size
above 10 um and a fluorescence signal in a range and spec-
trum compatible with single pollen grains (see Crouzy et al.,
2016, for examples of spectra). The optical size correspond-
ing to 10 um was estimated by comparing the integral of the
scattering signal of 5 um polystyrene latex particles (PSLs)
with the integral of the scattering signal for Urtica and Pari-
etaria pollen grains.

For scattering ANN, 5 x 5 convolutions were applied with
32 filters, ReLU activation and the pooling layers with a
2 x 2 window. For lifetime, 1-D convolution was applied with
ReLU activation, with a window size of 10 x 1 and 10 fil-
ters. For the spectrometer, asymmetric 2 x 4 convolution was
applied with eight filters with ReLU activation. The ANN
was trained using the Adam optimizer and categorical cross-
entropy as loss function (Fig. 4).

In order to retain flexibility, additional features were in-
serted before the final fully connected layers after Crouzy et
al. (2016): the maximum and the integral of the scattering
together with the maxima of each of the four lifetime bands
and the maxima of the first three spectrum acquisitions.
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2.2.4 Additional filtering of false positives in
operational context

Even if high expectations on the performance of the classifier
are met, problems are bound to occur in the operational ap-
plications due to false positive detections. For example, birch
pollen concentrations regularly exceed 1000 pollenm™ in
Switzerland in spring. If just 2 % of these are misinterpreted
as ambrosia pollen, for example, the false concentration of
20 grains per cubic metre would already be significant for
allergy analysis. In order to cope with this, extra steps were
introduced in Payerne. Additional filtering was applied dis-
regarding the events with classification quality below a cer-
tain threshold as in Crouzy et al. (2016), where a reduction
of sampling of 20 % led to an increase in precision of about
10 %.

For the operational monitoring, at least a few events with
an extremely good classification score were required dur-
ing the same or two preceding days to accept the middle-
confidence recognition of the specific pollen type. This con-
dition is applied uniformly over the pollen season to verify
what pollen taxa are present in the air.

2.3 The scheme of the experiment

In this section, we present in detail how the calibration exper-
iment was implemented in Siauliai, followed by the descrip-
tion of specifics of the setups in Novi Sad and Payerne. Most
importantly, only pollen characteristic for each location was
used. Comparison of the results was based on pollen types
belonging to the same plant families found in all three loca-
tions.

2.3.1 Siauliai

The experiment in Siauliai was carried out with 14 pollen
morphotypes, the tested amounts of which are given in Ta-
ble 1. Three genera (Salix, Acer, Pinus) were represented by
two plant types. All 14 plants are naturally widespread in
Lithuania and their airborne pollen is abundantly recorded
annually (gauliené et al., 2016).

Pollen was taken from the plant inflorescences collected
during the vegetation period in April-August of 2018 during
the days with intense pollen release. The collected material
was put in air-permeable paper bags and dried at a tempera-
ture of 40 °C until the maximum release of pollen from the
inflorescences. A vibratory sieve shaker Analysette 3 PRO
was used for gentle shaking of the pollen grains out of the in-
florescences. The extracted pollen was stored in petri dishes
at +4°C.

Each experiment was performed twice and consisted of up
to eight sample tests, using approximately 5 mg of pollen per
sample test. The number of grains registered in the scattering
signal is indicated in Table 1 as “total particles”, whereas the
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Figure 5. The scheme of the experiment for identification of pollen.

column “fluorescent particles” shows the number of grains
with usable fluorescent and lifetime signals.

The experiments were carried out in laboratory conditions
with a self-designed manual exposure method (Fig. 5). In or-
der to isolate the environment of the experiment from the am-
bient particles, a plastic (PET) bottle was fitted tightly to the
Rapid-E inlet. One of the bottle walls was cut open and two
holes of ~ 15cm? were covered with a household air filter.
The filter fabric was tested to hold ~ 99 % of particles larger
than 1 um in diameter without any noticeable disturbance of
the air inflow into the device.

The pollen was injected into the upper part of the bottle by
inserting the pipette tip with the pollen sample into the nar-
row cut in the bottle and then gently blowing the air through
the pipette. With the sampling rate up to 2.8 L min~!, Rapid-
E was collecting the pollen grains from the bottle within a
few tens of seconds. This simple scheme enabled reduction
of the environmental sample contamination by up to 5 times
compared to the unfiltered air in the lab. Each new exper-
iment used a new bottle and the nozzle of the instrument
was cleaned, thus ensuring the removal of previously sam-
pled pollen.

Quality and level of contamination of the samples was
manually controlled by using sticky slides. The presence of
non-pollen particles (debris from the remnants of inflores-
cences) was verified to be substantially less than 1 % by the
visual inspection of a subset of the calibration events. Abun-
dance of pollen aggregates (several pollen grains stuck to-
gether) was also low but their reliable identification by mi-
croscopic analysis was more difficult because of the thick
layer of pollen on the slides. The calibration was performed

www.atmos-meas-tech.net/12/3435/2019/
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Figure 6. Fluorescence spectra (first acquisition) of Salix, Pinus and Acer species.

in pollen mode, which excluded particles smaller than 5 um
of optical size.

2.3.2 Novi Sad

The scheme of the pollen exposure experiment was similar to
that in Siauliai. The exposure was conducted on the roof by
fitting the PET bottle to the sampling pipe after removing the
Sigma-2 inlet. Manual microscopic analysis of sticky slides
was used to confirm the quality of samples and absence of
non-pollen debris and pollen agglomerates. The device was
also in pollen mode; i.e. it filtered out particles smaller than
5 um of optical size.

Classification was tested for an adjusted set of pollen mor-
photypes accounting for the availability of the fresh material
during the study season. In particular, Juniperus was replaced
by Taxus and Festuca was replaced by Cynodon and Dactylis,
aiming to assess the degree of discrimination between dif-
ferent grass genera. Similarly, Picea and Cedrus pollen was
used for assessing differences between the same pollen mor-
photype. Only Acer negundo was analysed as it is the only
Acer pollen that is recorded regularly in Serbia. Fraxinus (in-
cluding both F. excelsior and F. ornus) was added to the test
as it is commonly recorded throughout spring.

2.3.3 Payerne

Low ambient concentration of coarse particles allowed a less
laborious approach: pollen calibrations in Payerne were per-
formed by directly blowing the material into the Sigma 2 in-
let, without protection from contamination. The details of the
procedure are described in Crouzy et al. (2016). In order to
obtain a reasonable panel of the relevant pollen types, 60 cal-

www.atmos-meas-tech.net/12/3435/2019/

ibrations were performed for 21 different taxa. Focus was
set on repeating calibrations, if possible under varying con-
ditions. Only fresh pollen was used and time between col-
lection and calibration was reduced to a minimum (range:
15-120 min). The presence of agglomerates and debris was
investigated by collecting histograms of the optical size and
of the fluorescence intensity of the recorded events. Cut-offs
were introduced accordingly, in order to retain only single
pollen grains. The device was also in pollen mode; i.e. it fil-
tered out particles smaller than 5 um of optical size.

3 Results obtained in Siauliai

The analysis was started from a semi-qualitative considera-
tion of the fluorescence spectra, primarily aiming at demon-
stration of the capabilities and the limitations of the approach
and preliminarily assessing the principal possibility of con-
structing a reliable particle recognition algorithm.

3.1 Qualitative comparison of the fluorescence spectra
of different pollen species

3.1.1 Comparison of fluorescence spectra of different
species of the same genus

The experiment included three genera, for which we col-
lected pollen from different species (Table 1): Salix, Pinus
and Acer. Their fluorescence spectra are shown in Fig. 6,
where the solid lines represent the normalized mean spec-
trum and shadows show the standard deviation range. The
uncertainties of the mean spectra were a fraction of a percent-
age, leading to the statistically significant difference (p <

Atmos. Meas. Tech., 12, 3435-3452, 2019



3442

10000

I. Sauliené et al.: Automatic pollen recognition with the Rapid-E particle counter

Alnus

8000

6000

4000

2000

Betula

Corylus

0
10000

Salix

8000

6000

4000

2000

Populus Quercus

0
10000

Juniperus

8000
6000
4000

2000

Festuca Artemisia

° 400 500 600 700 800 400 500

U
600 700 800

Figure 7. Comparison of fluorescence indicators of the tested pollen. The blue line represents the first acquisition. All other lines are
acquisitions delayed by a step of 500 ns from the last. Shadows show the standard deviation ranges for each acquisition. In the figures, the
x axis represents the wavelength, nm. The y axis shows the amplitude; units not available.

0.001) at all wavelengths for both Pinus and Acer mean spec-
tra and even for some wavelengths of the Salix spectra.
Despite statistically significant differences between the
mean spectra, the sample standard deviation (shadowed
ranges in Fig. 6) was quite large. Therefore, it was not pos-
sible to distinguish between Salix alba and Salix fragilis.
The normalized spectra of Pinus sylvestris and Pinus mugo
coincided at the maximum value of the amplitudes at the
wavelength of 460 nm but the mean amplitude of the Pi-
nus sylvestris spectrum was higher in the short-wave range
(<450 nm). At the longer wavelengths (480-550 nm) the am-
plitude was higher for the Pinus mugo pollen. However, these
differences were well inside the sample standard deviation.
The difference between the species of the Acer genus was
the most pronounced and, even taking the sample variability
into account, these were the ones that could be distinguished.
The Acer pseudoplatanus spectrum showed a higher ampli-
tude than Acer negundo in the short-wave range and lower
amplitude in the central part of the spectrum (400-520 nm).
Therefore, two out of three tested genera allowed, in prin-
ciple, an inter-genus species classification using the pollen
fluorescence spectrum. However, the differences between
them were evidently too small for the multispecies algorithm
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considered in the current paper. Practical work was therefore
left for the follow-up studies.

3.1.2 Comparison of fluorescence spectra of species of
different genera

The study included 11 different pollen genera (Table 1),
whose spectra are shown in Fig. 7 for recordings at every
500 ns starting from the first pulse reaching the detector. For
all species, the most intense fluorescence was observed for
the wavelengths from 390 to 570 nm, with different locations
of the maximum and with different amplitude. For example,
the highest mean intensity of fluorescence was recorded for
the Artemisia pollen: it exceeded > 7000. Meanwhile, the am-
plitudes of Betula and Quercus reached more than 4000. In
all cases, the first pulse had a wider wavelength range than
the subsequent ones. The amplitudes of already the second
recording (500 ns from the first pulse) were close to zero for
wavelengths longer than 600 nm.

In addition, Fig. 7 shows that not only the intensity of the
first signal between separate genera differs, but the shape of
the second recording is also specific, which is significant for
the identification of the pollen morphotype. For example, the
difference in fluorescence intensity of Salix pollen between
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the first and second signals was larger than for other tested
taxa. Tests with Festuca pollen actually showed that, unlike
all other species, the signal amplitude grows during the first
500 ns, resulting in the absolute maximum intensity of the
spectrum registered at the second recording, 500 ns after the
fluorescence is induced.

The qualitative analysis of the data was continued by
grouping the data according to similarity of the fluorescence
spectrum of the first recording (Fig. 8).

Alnus, Corylus and Betula plants are in one taxonomic
family, and our results indicate that their pollen has a similar
fluorescence spectrum. Interestingly, according to the simi-
larities of the fluorescence spectra, Quercus pollen appeared
in the same group with Betulaceae, although the maximum
value of its mean of the normalized spectrum was the lowest
in the group.

Another group in which the pollen fluorescence curves
have similar shapes also consists of pollen of woody plants:
Populus and Salix. They also bloom at a similar time; there-
fore their precise identification is an important but, as seen
from Fig. 8, challenging task. The tested grass pollens form
a separate group, which however also included pollen of
the woody plant Juniperus. This group is characterized by
the high mean amplitude in the short-wavelength (<400 nm)
range.

3.2 Recognition skills

The key practical question for Rapid-E application in daily
pollen monitoring is the accuracy of the pollen type clas-
sification presented below via the confusion matrices. In
these matrices, rows represent the actual type of pollen and
columns are the assigned type. All values are a percentage,
and the sum of values over each row is 100 %: every pollen
has to be assigned to some type.

3.2.1 Comparison of the confusion tables obtained in
Novi Sad, Payerne and Siauliai

The recognition procedure in Siauliai was built indepen-
dently for scattering and fluorescence signals with subse-
quent fusion of the results. The tables for the individual com-
ponents are presented in the Supplement. Tables S1 and S2 in
the Supplement present the outcome of the combined identi-
fication using both the scattering image and the fluorescence
spectra. With the exception of Alnus, the combination of the
identification methods showed better recognition skills than
each of the methods separately. Overall, the improvement
over individual methods was ~ 23 % compared to scattering
images and ~ 7 % compared to fluorescence.

Overall, 6 out of 11 tested pollen genera were identified
with accuracy better than 75 %. The best results (>91 % of
correct classification) were achieved for Pinus pollen. The
pollen of the Betulaceae genus was identified comparatively
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well but the recognition of the individual species of this fam-
ily was poor.

The overall accuracy was very similar for Siauliai and
Novi Sad and somewhat better for Payerne, partially owing
to the stricter filtering of the raw data. Although it is dif-
ficult to make an exact comparison of the confusion tables
between the studies, it still sheds some light on the overall
performance and also highlights the similarities and differ-
ences between the regions. Comparing the Tables 2 and 3,
one can see that the difference in the recognition quality is
about 10 % for most species, and practically identical for Be-
tula (~ 50 % in both studies) and Quercus (~ 60 %).

Somewhat higher skill in Novi Sad was obtained for Cory-
Ius, Alnus and Populus while in Siauliai higher skill was
reached for Acer and Artemisia. It is interesting to note that
the confusion between the two chosen grass pollen morpho-
types in Novi Sad was not notable and for these genera the
Rapid-E data have certain discrimination potential. One can
therefore conclude that the multispecies discrimination algo-
rithms applied in these studies showed similar recognition
skills. It should be stressed however that the training of the
ANNs was completely independent and used local pollen
grains. Therefore, the similar recognition quality does not
imply similar pollen in these regions.

As mentioned earlier (Sect. 2.2.3), the calibration proce-
dure used at MeteoSwiss was slightly different than in Novi
Sad and in Siauliai. In addition, the focus at MeteoSwiss was
more towards operational applications. As a consequence,
only a subset of the 60 calibrations was used to train the clas-
sifier. Only taxa with high relevance for monitoring or for
which very good calibrations were available were selected. It
was noticed that increasing the number of taxa could worsen
the problem of false positive detections (see below). An opti-
mum for monitoring purposes was found when using 10 taxa.
The performance of the corresponding classifier is shown in
Table 4.

It is interesting to note that, as expected, most errors oc-
cur within the Betulaceae family, with an extremely low re-
call for Alnus. It was hypothesized that, although calibrations
were repeated, the classifier may to some extent recognize
the conditions under which the calibration was performed
and quality of the sample. Obtaining a classifier working only
on the generic features of the taxa is a very difficult task. A
holistic validation procedure, going from the analysis of de-
vice raw output (Sect. 3.1) analysis to the comparison with
reference measurements (Sect. 4.5), is therefore essential.

4 Discussion
4.1 Opvertraining — a problem?

The problem of potential overtraining was addressed from
two directions: via the standard training vs. test dataset eval-
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Table 2. Confusion table obtained in Siauliai. Accuracy is 73 %.

700 750 800

Wavelength, nm

Plant genus ~ Festuca  Artemisia  Corylus Alnus  Betula  Salix  Populus Acer Juniperus Quercus  Pinus
Festuca 88 1 0 0 0 0 2 5 2 0 2
Artemisia 2 86 0 0 0 2 1 4 5 0 0
Corylus 2 0 63 17 8 1 0 0 0 9 0
Alnus 1 0 15 53 18 2 1 0 0 9 1| _
Betula 3 1 9 30 47 1 1 0 1 6 1|2
Salix 1 1 2 1 2 78 10 0 1 4 0|
Populus 3 6 1 1 1 18 58 3 3 5 1 S
Acer 5 2 1 1 1 0 2 86 1 1 0
Juniperus 4 4 0 0 0 0 3 1 87 0 1
Quercus 2 0 9 10 5 4 1 0 0 69 0
Pinus 7 0 0 0 0 0 0 0 1 0 91
Predicted label ‘

uation and via an explicit verification of homogeneity of the
datasets.

4.1.1 Performance in the training and test datasets

Prior to starting the ANN training, all datasets were split into
the training and test subsets. The test subset in Siauliai con-
sisted of 1000 particles picked at the end of every calibration
event while all other particles were used for training. The Si-
auliai ANN training continued until saturation of the recog-
nition quality for the training dataset (see example in Fig. 9),
thus including the overfitting range. The maximum perfor-
mance of the fluorescence-based recognition was obtained
at the epoch of ~ 900, after which the overfitting gradually
picked up. Therefore, the ANN parameters after this epoch
were taken as the study outcome. For the scattering-image-
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based training, a similar consideration suggested the epoch
3500 as the optimum.

For Novi Sad (Fig. 10), the training was stopped before
the overfitting picked up and thus the parameters of the last
trained epoch 3000 were used.

4.1.2 Test of homogeneity of the calibration datasets

One of the concerns regarding the fluorescence-based tech-
nology is the stability of the spectra for different conditions
of pollen grains, which are affected by ambient humidity,
temperature, time they spend in the air, chemical interaction
and degradation, etc. Full-scale evaluation of this problem
lies beyond the scope of this paper. Here, we only present a
brief check demonstrating that it was not the major issue.

As stated in the methodological section, the calibration set
for each pollen type in Siauliai consisted of up to eight inde-
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Table 3. Confusion table obtained in Novi Sad. Accuracy is 74 % (obs. different number of species).

Plant genus  Dactylus  Cynodon  Corylus  Alnus Betula  Salix  Fraxinus  Populus Acer Artemisia Taxus Quercus Picea Cedrus
Dactylus 78 3 0 3 0 2 0 4 5 0 1 0 0 0
Cynodon 4 70 0 0 0 6 1 0 0 12 5 0 2 0
Corylus 0 0 64 6 12 1 10 0 0 0 4 2 0 0
Alnus 1 2 6 72 3 2 3 2 1 2 6 3 0 0
Betula 1 0 25 5 51 3 3 0 0 1 1 10 1 0
Salix 3 1 0 2 1 80 3 2 2 2 1 3 1 0 E
Fraxinus 0 0 7 1 3 2 79 1 0 0 4 3 0 0| =
Populus 5 3 1 4 0 4 3 71 1 1 3 4 1 0 %
Acer 8 1 0 2 1 4 0 0 73 0 1 9 1 0| F
Artemisia 1 5 0 2 1 4 0 1 0 84 0 1 1 0
Taxus 0 3 0 2 0 0 0 0 0 0 93 1 1 0
Quercus 1 0 4 5 8 9 2 1 1 1 1 63 4 0
Picea 3 3 0 2 4 3 0 1 1 7 1 13 61 0
Cedrus 0 0 0 0 0 1 0 1 0 1 0 0 1 95
Predicted label
Table 4. Confusion table obtained at MeteoSwiss, Payerne. Accuracy is 80 %.

Plant genus  Alnus  Betula  Carpinus  Cupressus  Fagus  Fraxinus  Corylus  Pinus Poaceae Taxus

Alnus 27 27 1 0 0 1 43 0 0 1

Betula 1 83 2 0 0 4 7 0 0 1

Carpinus 0 13 74 0 0 2 3 0 6 1

Cupressus 0 3 1 84 0 0 1 2 1 8 E

Fagus 0 2 3 1 88 0 1 1 2 3|1 =

Fraxinus 0 12 2 0 0 78 2 1 2 3 Qé

Corylus 4 8 0 0 0 0 87 0 0 0|F

Pinus 0 0 0 0 0 0 0 98 0 2

Poaceae 0 3 8 1 0 1 0 1 82 4

Taxus 0 0 0 1 0 0 0 0 97

Predicted label ‘

pendent calibration sessions for four species; these sessions
were performed on different days and thus with pollen of
different ages. A simple check of homogeneity of the flu-
orescence spectra is then to use the data of one of these
days as the training set and those from another day as the
test subset. A substantial difference in the recognition qual-
ity would point at the inhomogeneous data. Distinguishing
the four species is simpler than 11 but the difference between
the training and test recognition quality is important.

Comparing the upper and lower rows of Fig. 11, one can
see that for the above epochs (3500 for scattering- and 900
for fluorescence-based ANNS), the quality of recognition for
the training subset (one day) and test subset (another day)
differs by <5 % for all four species. Therefore, we conclude
that the conditions during the different days of calibration did
not affect the homogeneity of the dataset.

4.2 Comparison with other studies on pollen
recognition

During recent years, a number of attempts to obtain infor-
mation about pollen concentration in the air in real time
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have been undertaken. However, even the most success-
ful tests carried out with WIBS-4 (O’Connor et al., 2014),
Hund BAAS500 (Oteros et a., 2015), Yamatronics KH-3000-
01 (Kawashima et al., 2017) and Plair PA-300 (Crouzy et
al., 2016) devices, strongly advancing the pollen monitoring
field, left open the questions of scalability and replicability
of the results. They also did not touch the topics related to
application of the tested systems in the operational context.
Application of yet another new device — Plair Rapid-E — in
our study pursued, apart from the scientific objectives, opera-
tional implementation as a mid- to long-term goal. However,
having tested 14 different pollen morphotypes, we found that
significant work is still needed.

One of the challenges to the automatic monitors is the rich
mixture of pollen types in Europe that all pose significant
allergenic threat. This makes it particularly difficult for the
monitors to satisfy the needs of allergic people and allergists
— unlike in many other regions. For instance, Cryptomeria
Japonica identified more than 10 years ago by Kawashima
et al. (2007) is still the main pollen type recognized by that
system (Kawashima et al., 2007; Wang et al., 2013, 2014;

Atmos. Meas. Tech., 12, 3435-3452, 2019
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Figure 9. Siauliai ANN multispecies cost function for scatter-based (a) and fluorescence-based (b) recognition as a function of the training
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Figure 10. Novi Sad ANN overall cost as a function of the training
epoch. The evaluation error is lower than the training error due to
dropout (0.5) in each convolutional and fully connected layer, not
used in the validation round.

Takahashi et al., 2018). However, it seems to be more or less
sufficient for that region.

Varying levels of allergenicity of species within a single
genus or a family raise the question of whether intra-genus
classification is possible. Hirst-based manual techniques do
not allow it: pollen grains are too similar in the microscopic
analysis. Our results show that such a level of identification
is not immediately possible using Rapid-E information ei-
ther. In particular, our data demonstrated that the fluores-
cence spectra of the Salix alba and Salix fragilis species were
almost identical. More promising were the experiments with
Pinus and Acer (Fig. 6) and some grasses (Table 3) where the
work should be continued with different identification algo-
rithms built for these very species after their separation from
other pollen types. Other genera should also be tested.

Fluorescence spectra can be similar not only between
species of a particular genus but also between different fami-
lies. Several groups of otherwise unconnected species mani-
fested very similar spectra, to a degree that did not allow their
reliable differentiation (Fig. 8). Similar results were obtained
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in the studies conducted by O’Connor et al. (2011). They as-
sessed the fluorescence spectrum of pollen of the Betulaceae
family and stated that “birch and alder spectra closely resem-
ble each other although there is a possibility that the birch
pollen is less fluorescent than alder”. Our results show that
in the case of Alnus, the fluorescence amplitudes are higher
than of Betula but the spectra are indeed similar.

Similar spectra of Salix and Populus pollen (Fig. 7) also
resulted in poor differentiation between them. At the same
time, the degree of confusion was higher for Populus than
for Salix (Tables 2—4). This is in agreement with the results
obtained with Hund BAAS500 by Oteros et al. (2015), who
identified Salix pollen as the worst of pollen types analysed
(Oteros et al., 2015). The BAAS00 algorithm is based on
recognition of the particle shape, which can be weakly re-
lated to the scattering images in our study — the very part that
showed substantial confusion of almost all studied pollens
with Salix and Populus.

Crouzy et al. (2016) suggested that a non-zero fluores-
cence amplitude around the 600 nm wavelength is incompati-
ble with pollen from the Betulaceae family (Alnus, Carpinus,
Corylus and Betula) but could possibly be observed for grass
pollen (Dactylis and Phleum) (Crouzy et al., 2016). Our re-
sults support this suggestion and in addition the test in Novi
Sad shows that ANN could show some discriminatory power
between Dactylis and Cynodon. Noteworthy, recognition of
the herbaceous plants (Festuca, Artemisia) was also consid-
erably better than that of pollen of the Betulaceae family in
Siauliai (Table 2).

One can note that the recognition accuracy of this study
(just above 70%) is in an apparent contradiction to the
results of Crouzy et al. (2016), where the skill was sig-
nificantly higher: 91 % was obtained with PA-300. How-
ever, there are several important differences between the ap-
proaches. Firstly, the pre-filtering of the particles is substan-
tially stricter and about 20 % of classifications were filtered
out as uncertain (failed the threshold of the classification
quality). Secondly, the accuracy of the recognition depends
significantly on the number of pollen morphotypes used for
the test (eight by Crouzy et al., 2016). In an extreme case,
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Figure 11. Performance of the Siauliai ANN for the test subset taken from different days than the calibration subset. Values are percentages.

automated discrimination of just one species (Cryptomeria
Jjaponica) from non-pollen particles using KH-3000 was al-
ready high 10 years ago (Kawashima et al., 2007, 2017).
Similarly, the high fraction of BAA500 true positive counts
(93.3 %) against manual analysis of individual species by
Oteros et al. (2015) went down to 65 % when the recogni-
tion of 13 pollen morphotypes was requested. It took an ad-
ditional training of the algorithm to raise it up to the same
72 % as in our study. Finally, it should also be noted that PA-
300 delivers fewer parameters than Rapid-E, possibly mak-
ing it difficult to identify the important combinations in the
raw signal in a single-level many-to-many identification task.
Application of additional levels of the discrimination filters
can improve the results.

4.3 Possible ways to improve the recognition skills

The dependence of the recognition quality on the number of
categories is one of the directions of future research. It may
be possible to consider independent groups of pollens that
never (or very rarely) appear in the air at the same time — but
it can make the algorithm place-specific. It is vital however to
obtain improvement of the algorithm for reliable separation
of pollens that can be in the air together (e.g. Betulaceae,
Quercus and the like).

Considering improvements of the recognition algorithms,
Matsuda and Kawashima (2018) suggested the “extract win-
dow” method of analysis of the scattering images, which en-
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abled us to distinguish unique ranges of light-scattering in-
tensities for each taxon. However, the reliability of the algo-
rithm is known only for five pollen morphotypes. Develop-
ment of this and similar approaches for the Rapid-E scatter-
ing images may eventually improve this line of analysis and,
subsequently, push up the overall scores.

Since the output of the ANN can be transformed to give
a vector of probabilities, where each element i of the vec-
tor represents the probability that the sample belongs to class
ci, we expect improvement of the classification accuracy if
we demand that the classification occurs only if the high-
est probability in that vector is greater than some probability
threshold, but with the price of discarding the samples below
the defined threshold. This direction was initially explored
by Crouzy et al. (2016) and showed high potential: discard-
ing 20 % of samples led to an increase in precision of about
10 % (see also Sect. 2.2.4).

As a more radical approach, one can challenge the usage
of ANNSs without a priori relations derived from physical or
chemical features of each pollen type. Even generic consid-
erations of scattering and fluorescence theories might hint at
quantities, which show enhanced contrast in comparison with
the raw data. This idea was tested in the Payerne algorithm
and showed its potential.
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Figure 12. Comparison between automatic (Plair Rapid-E) and manual (Hirst-type) pollen counts for Betula, Fraxinus, Pinaceae and

Poaceae.

4.4 Lessons from the comparison of the Hirst and
Rapid-E measurements

Comparison of Rapid-E of MeteoSwiss with the operational
Hirst measurements in Payerne from February to June 2018
extended the results of Crouzy et al. (2016) to more impor-
tant taxa (Fig. 12), but also showed that robust determination
of the sampling still needs to be achieved.

In order to obtain pollen concentrations, large particles
presenting bimodal fluorescence spectra with position and
intensity of maxima compatible with the observations made
from calibrations (see Sect. 3.1) were first selected. Then,
the classifier presented in Sect. 2.2.3 was applied. The effec-
tive sampling of Rapid-E is the result of a series of physi-
cal and algorithmic processes: the sampling efficiency of the
Sigma-2 head, the imperfect targeting by lasers and the drop-
offs due to the below-threshold classification. In Fig. 12, the
Rapid-E data are scaled with species-dependent factors (con-
stant over the season), bringing the seasonal mean to that of
the Hirst time series. The issue deserves attention since, as
shown by the Novi Sad results, tightening the thresholds im-
proves the recognition skills but increases the drop-offs at
the recognition stage. Sampling with Poaceae is the high-
est, Pinaceae presents a 2 % decrease in sampling and Be-
tula presents a 33 % decrease in sampling with respect to
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Poaceae. False positives are a significant issue with Fraxinus:
the sampling is dramatically reduced (75 %) for higher fluo-
rescence thresholds. As a consequence of those limitations,
the results presented here should not be taken as a complete
demonstration of operational capabilities.

The suppression of the false positive detections as de-
scribed in Sect. 2.2.4 worked quite efficiently but still an
evident false positive event resulting from the Befula mis-
interpretation as Poaceae is visible in the beginning of April.
Further work is required to completely remove such events,
and, as a last resort, expert supervision could be used in an
operational setup.

4.5 Opinion of the Rapid-E producer

During the work, we have been in periodic contact with the
Plair company regarding features and issues of the Rapid-
E devices used by our groups. With the paper finalized, we
asked for their feedback.

Denis Kiselev, Plair, said

Our impression concerning the presented material
is mixed. While I see some positive and encourag-
ing results, my main critiques would be addressed
to your calibration sets, whose cleaning and fil-
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tering falls short of the actual needs. Our results
are 5 %—10 % better without overfitting the data or
other special processing. The time series Plair gets
for “problematic pollens” like Betula, Corylus and
Alnus are actually very good. Our goal is to obtain
high-quality time series calculated in real time by
the instruments and the good calibration is essen-
tial for that.

We agree with importance of the calibration datasets;
the procedures ensuring their quality are described in the
Methodology section and further explained in the discussion
above. Note that our groups were working largely indepen-
dently using local pollen and original methods of the data
collection and processing. Therefore, the similarities in the
observed features provide additional support for our conclu-
sions. Unfortunately, details of the Plair analysis were not
available when the paper was prepared. Therefore, indepen-
dent evaluation of that algorithm against the common criteria
described in this paper was not possible.

5 Conclusions

We conducted the first analysis of the pollen monitoring ca-
pabilities of the new automatic pollen detector Plair Rapid-E.
Using the very limited data pre-processing and basic ANN
classification it was shown that, if comparatively large num-
bers of pollen types are considered, stand-alone scattering-
and fluorescence-based recognition algorithms fail to pro-
duce reliable results for the majority of species. The combi-
nation of these algorithms performed better, exceeding 80 %
accuracy for 5 out of 11 species. Therefore, this combina-
tion can be considered the first-stage classification of pollen
types. It should be followed by more in-depth discrimination
efforts, also including lifetime of florescence in the classifi-
cation model.

The fluorescence spectra showed similarities among sev-
eral tested species ending up with three groups: (Alnus, Cory-
lus, Betula and Quercus), (Salix and Populus) and (Festuca,
Artemisia and Juniperus) — as identified from the Siauliai
data. The classification between the groups was compara-
tively easy. Attempts to distinguish between the species of
the same genus showed certain potential for some genera but
more work is needed.

The results obtained in Siauliai and Novi Sad with a very
similar experimental setup but independent analysis, showed
comparable results confirming the overall conclusions. They
also pointed out certain limitations of replicability of the raw
data features between the devices, which will require an addi-
tional conversion step to make them compatible. In this line,
the comparison performed at MeteoSwiss shows a reason-
able potential for automatic monitoring of important taxa;
however it is not clear to which extent algorithms can be
transposed from one device to another.
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The in-depth discussion and improvement of the method-
ology and the extension to more taxa goes beyond the scope
of this paper. We decided to communicate the current results
early, as well as the methods developed independently by the
three teams currently working with the Rapid-E counters, in
order to stimulate parallel developments by the user commu-
nity of the Rapid-E devices. The emergence of such a com-
munity is a good opportunity to address generalization and
replicability of the device-specific results. We also believe
that moving from expert supervision or calendar methods to
the approach presented here and based only on device out-
puts for elimination of false positive detections could be of
help for other automatic monitoring systems.

— Among the main challenges to be resolved in future
work, the most important ones are

— to obtain reliable recognition skills at least for the pollen
types that can be in the air at the same time

— to reach full replicability of the algorithms and results
across the different copies of the same monitors (we are
thankful to the Plair team for suggesting the scripts ad-
dressing this problem, which are now under evaluation)

— to resolve specific questions related to the algorithm
construction and training — including the minimal sam-
ple volume, problems of over- and underfitting, prepro-
cessing and pre-filtering of the data, false positive iden-
tifications, etc.

Successful resolution of these questions will open the way
for wide applications of the automatic particle counters for
pollen observations.
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