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Abstract. The GNSS data assimilation is currently widely
discussed in the literature with respect to the various ap-
plications for meteorology and numerical weather models.
Data assimilation combines atmospheric measurements with
knowledge of atmospheric behavior as codified in computer
models. With this approach, the “best” estimate of current
conditions consistent with both information sources is pro-
duced. Some approaches also allow assimilating the non-
prognostic variables, including remote sensing data from
radar or GNSS (global navigation satellite system). These
techniques are named variational data assimilation schemes
and are based on a minimization of the cost function, which
contains the differences between the model state (back-
ground) and the observations. The variational assimilation is
the first choice for data assimilation in the weather forecast
centers, however, current research is consequently looking
into use of an iterative, filtering approach such as an extended
Kalman filter (EKF).

This paper shows the results of assimilation of the GNSS
data into numerical weather prediction (NWP) model WRF
(Weather Research and Forecasting). The WRF model offers
two different variational approaches: 3DVAR and 4DVAR,
both available through the WRF data assimilation (WRFDA)
package. The WRFDA assimilation procedure was modified
to correct for bias and observation errors. We assimilated
the zenith total delay (ZTD), precipitable water (PW), ra-
diosonde (RS) and surface synoptic observations (SYNOP)
using a 4DVAR assimilation scheme. Three experiments
have been performed: (1) assimilation of PW and ZTD for
May and June 2013, (2) assimilation of PW alone; PW, with

RS and SYNOP; ZTD alone; and finally ZTD, with RS and
SYNOP for 5–23 May 2013, and (3) assimilation of PW or
ZTD during severe weather events in June 2013. Once the
initial conditions were established, the forecast was run for
24 h.

The major conclusion of this study is that for all analyzed
cases, there are two parameters significantly changed once
GNSS data are assimilated in the WRF model using GP-
SPW operator and these are moisture fields and rain. The
GNSS observations improves forecast in the first 24 h, with
the strongest impact starting from a 9 h lead time. The rela-
tive humidity forecast in a vertical profile after assimilation
of ZTD shows an over 20 % decrease of mean error start-
ing from 2.5 km upward. Assimilation of PW alone does not
bring such a spectacular improvement. However, combina-
tion of PW, SYNOP and radiosonde improves distribution
of humidity in the vertical profile by maximum of 12 %.
In the three analyzed severe weather cases PW always im-
proved the rain forecast and ZTD always reduced the humid-
ity field bias. Binary rain analysis shows that GNSS param-
eters have significant impact on the rain forecast in the class
above 1 mm h−1.

1 Introduction

The data assimilation in weather forecasts is one of the key
components in all prediction systems as it is an initial value
problem and the quality of the initial field has a large impact
on the forecasts. Currently, the leading weather agencies as-
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similate operationally dozens of observation data types such
as radiosonde (RS) profiles, radiances from satellite observa-
tions, SYNOPs, refractivities from radio occultations, pilot
reports and many others (Barker et al., 2004). With the advent
of European Cooperation in Science & Technology (COST)
actions 716 (1999–2004), 1206 (2013–2017), as well as the
project funded in the fifth framework program “Targeting
Optimal Use of GPS Humidity Measurements in Meteorol-
ogy” (TOUGH), the adoption of the ground based global
navigation satellite systems (GNSS) observations to the op-
erational forecasts by most of the weather services in Europe
become a fact. In this study the term GNSS covers all nav-
igation systems used world-wide, whereas the term Global
Positioning System (GPS) is related to only one source of
observations – the US based GPS. There are many publica-
tions related to either (1) performance of large-scale weather
forecast systems augmented with many observations includ-
ing GNSS, (2) added value of GNSS observations in now-
casting services, or (3) case-based studies showing the im-
pact of GNSS data in particular cases. The following three
approaches are discussed below.

A very comprehensive study done by Poli et al. (2007)
on the global forecast model Arpage using four dimensional
variational assimilation (4DVAR) shows that the impact of
GPS zenith total delay (ZTD) on forecasts is different in win-
ter (improving pressure), spring (reducing surface humid-
ity root mean square error) and summer (positive impact on
wind, geopotential and precipitation, negative on humidity).
A similar, very detailed study was done by Bennitt and Jupp
(2012), where the authors discussed the operational assimi-
lation of GPS ZTD in MetOffice into the North Atlantic and
European 12 and 24 km model in spring, summer and au-
tumn. The results were mixed: for all cases the introduction
of GPS ZTD increased the humidity bias, however the im-
provements of clouds forecasts were observed. Bennitt and
Jupp (2012) also identify no clear benefit of 4DVAR against
3DVAR. Lindskog et al. (2017) in their study in the Nordic
countries of GNSS ZTD impact on forecasts, confirmed that
the forecasts are sensitive to thinning distance. Shorter dis-
tance between stations (below 100 km) leads to a larger hu-
midity bias in the lower troposphere, which may explain the
humidity bias in the Bennitt and Jupp (2012) solution. Lind-
skog et al. (2017) showed that the humidity forecast is better
when the GNSS ZTD is assimilated with other meteorolog-
ical observations such as the Advanced Microwave Sound-
ing Unit (AMSU) or Infrared Atmospheric Sounding Inter-
ferometer (IASI) radiances. The authors also showed that the
adopted bias correction strategy and GNSS ZTD estimation
procedure have marginal impact on the forecasts. All studies
run in large weather forecasting systems suggests that the as-
similation of GNSS ZTD, either 3D or 4DVAR, on average
has a mostly neutral impact on the forecast if the system is
already saturated with meteorological observations.

Another branch of weather models are those used in now-
casting, such as the (legacy) rapid update cycle RUC 20 km

and RUC 40 km (Benjamin et al., 2002) or currently opera-
tional rapid refresh (RAP) (Benjamin et al., 2016) that are
targeting short 12 and 24 h predictions for decision making
and safety operations with a large number of observations as-
similated every hour. One of the first experiments using GPS
precipitable water (PW) in nowcasting service in the USA
(RUC model 60 km) (Smith et al., 2000), showed a 1 % im-
provement of the relative humidity forecast in the bottom part
of the atmosphere. However, in specific cases related to ac-
tive frontal weather, the improvement was much larger: 14 %
in the moistening and 24 % in the drying stage of the ad-
vection. The increased spatial resolution to 20 km of RUC20
(Smith et al., 2007) shows stronger improvements in humid-
ity field and convective available potential energy, CAPE,
than with RUC40. The 850 hPa relative humidity (RH) fore-
casts improve more in the nighttime, and in the colder season
than that in the warmer season. The current RAP model, run-
ning on a 13km grid, continuously assimilates GPS PW every
hour from 300 stations across the US (Benjamin et al., 2016).
It shows that there is clear benefit in using GPS observations,
especially for short term (nowcasting) predictions.

The third type of studies that are appearing in the lit-
erature are case based, showing the impact of GNSS on
particular weather events. One of the first to test the im-
pact of GPS based ZTD observations in Europe was Cucu-
rull et al. (2004). The authors used the NCAR/Penn State
Mesoscale Model 5 (MM5) ZTD 3DVAR assimilation for
a case of a snow storm on 14–15 December 2001 over the
western Mediterranean Sea. They found that there are reduc-
tions of root mean square error (RMSE) of wind by 1.7 %,
temperature by 4.1 % and surface humidity by 17.8 %. The
authors also noted that the forecasts work better if the ground
based automatic weather stations were used in the same as-
similation run. Another example of an early stage case-based
research is the assimilation of GPS PW by Nakamura et
al. (2004) with a 4DVAR scheme into a mesoscale Japanese
Meterological Agency (JMA) model for summer intensive
rain cases. The assimilation of GPS data improved the pre-
cipitation location, but the statistics did not show large im-
provement. One of the first GPS 4DVAR ZTD studies in the
US was by De Pondeca and Zou (2001), who ran assimi-
lation of GPS observations in MM5 together with the wind
profiler data and radio acoustic sounding system (RASS) vir-
tual temperature. Five 12 h experiments for California’s De-
cember frontal system passage were performed. It was found
that the ZTD assimilation corrects the underestimation of ac-
cumulated rain by 33.15 % and 25.08 % for 6 and 12 h re-
spectively. Adding the wind profiler improves the forecast by
88.26 % and 32.53 % and adding further RASS observations
increases the performance to 93.21 % and 50.58 %, respec-
tively. In a more recent study by Boniface et al. (2009), the
GPS ZTD was assimilated (3DVAR) for 280 stations over
15 days into the high-resolution (2.5 km) AROME model.
The results were positive for poorly predicted precipitation
and neutral for well predicted ones. More recently, Tilev-
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Tanriover and Kahraman (2014) studied the impact of the
GPS PW assimilation in the Weather Research and Forecast-
ing (WRF) model in a 2 day case of intense snowfall fore-
casts in the central Anatolia. The authors performed three
experiments: base run, cold start and cycling all with PW
3DVAR operator. Results show that the cycling assimila-
tion mode decreases the temperature and humidity biases,
whereas the cold start performs worse than the control run.
Saito et al. (2016) studied the impact of ensemble predic-
tion that did not produce enough precipitation. They found
that even downscaling from 10 to 2 km still does not improve
locations of precipitation’s cores. Finally, the 4DVAR PW
assimilation into a non-hydrostatic model improved the loca-
tion of scattered intensive rain. In summary, most of the liter-
ature reported a substantial increase in the quality of the fore-
cast of humidity, rain location and sometimes also the rain
accumulated total amount. Less significant improvement was
achieved for wind speed and temperature. All studies that
used additional observations, especially these resolving ver-
tical structure of the water vapor and temperature, comple-
mented GNSS observations and improved the forecast even
more.

The literature review shows that the impact of the GNSS
ZTD/PW assimilation depends on the number of already as-
similated observations and applied preprocessing (Bennitt
and Jupp, 2012; Lindskog et al., 2017; Poli et al., 2007) as
well as on the type of weather conditions. The main aim of
this paper is to quantify the impact of the GNSS data, both
ZTD and PW, gathered operationally in Poland, in weather
forecasting. The study is based on the WRF model with a
high spatial resolution of 4 km× 4 km supported with the
WRF data assimilation (WRFDA) package. We show the im-
portance of the GNSS data assimilation for cases of various
meteorological conditions observed in May and June 2013,
which is a benchmark period for COST Action ES1206. To
our best knowledge, no GNSS ZTD/PW assimilation experi-
ment was carried out in Poland yet. Moreover, we found only
one publication (Tilev-Tanriover and Kahraman, 2014) deal-
ing with the assimilation of GPS ZTD and PW into widely
adopted WRF model using the WRFDA package. We present
a study showing the impact of GNSS ZTD and PW observa-
tions on the forecasts for a longer time period – 2 months
(May 2013 – calm weather conditions and June 2013 – ac-
tive stormy weather), followed by quantifying improvements
of adding RS and SYNOP data into the assimilation system
already run with GNSS observations, and finally we veri-
fied impact of GNSS observations on prediction for specific
cases.

The paper has following structure: after the introductory
section a short overview of used data and methodology is
presented in Sects. 2 and 3, respectively. These sections are
followed by the experiment setup description and results
(Sect. 4). The paper is closed with a conclusion section.

Figure 1. The WRF model configuration (the inner square repre-
sents the nested domain with 4 km× 4 km resolution). Colors de-
note the orography of the terrain (m a.s.l.).

2 Data

The GNSS PW/ZTD data are assimilated into the NWP WRF
model. The chosen period covers May and June 2013, with
a special focus on 5–23 May 2013 and three shorter cases:
(a) 29–31 May, (b) 17–19 June and (c) 24–26 June 2013.
The period is chosen in accordance with the COST Action
ES1206 GNSS meteorology benchmark (Douša et al., 2016).

2.1 WRF model

In this study the WRF model is used, it is numerical weather
prediction system designated for simulation of multiscale,
spatial and temporal atmosphere flows. The WRF configu-
ration (Kryza et al., 2013) is based on two nested model
domains. The first domain covers the European area with
a 12 km× 12 km grid spacing. The second, nested domain
covers Poland and Central Europe with a 4 km× 4 km grid
spacing (Fig. 1).

Initial and boundary conditions are taken from the Na-
tional Center for Environmental Prediction Final Analysis,
Operational Model Global Tropospheric Analyses (NCEP
FNL) database (National Centers for Environmental Predic-
tion, 2000). The data are available with 1◦× 1◦ horizontal
and 6 h temporal resolution and with 26 vertical levels from
1000 to 10 hPa. The WRF model for Poland is calculated and
provided by the Department of Climatology and Atmosphere
Protection of the University of Wrocław. The details of the
WRF configuration are presented in Table 1. Data assimila-
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Table 1. The WRF configuration used in the experiment.

Parameters Domain 1 Domain 2

Spatial resolution 12 km× 12 km 4 km× 4 km
Vertical levels 48 48
Microphysics Thompson (Thompson et al., 2004) Thompson (Thompson et al., 2004)
Cumulus Kain–Fritsch (Kain, 2004) –
Longwave radiation RRTM (Mlawer et al., 1997) RRTM (Mlawer et al., 1997)
Shortwave radiation Dudhia (Dudhia, 1989) Dudhia (Dudhia, 1989)
Surface layer MM5 (Paulson, 1970) MM5 (Paulson, 1970)
Planetary boundary layer Yonsei University scheme (Hong et al., 2006) Yonsei University scheme (Hong et al., 2006)

tion was run using a 4DVAR WRF DA system, only for in-
ner domain (d02). Prediction model was started once a day,
at 00:00 UTC. Assimilation window was centered around
00:00 UTC. Background error covariance (BE) was selected
for regional application (cv_options= 5) (BE depends on the
WRF domain). BE was constructed based on a forecast for
convection events in the first week of May 2013.

Quality control was selected for SYNOP and RS data in
observation processor (obsproc) and in WRFDA. For ZTD
and PW data, quality control was conducted before process-
ing, followed by obsproc verification and the last step in
4DVAR assimilation. The WRF configuration was based on
the best ensemble members (ens1) with a small modification
from ensemble system dedicated to Poland during summer-
time (Guzikowski et al., 2015).

2.2 GNSS data

The GNSS data are calculated by the GNSS and Meteo
working group from the Institute of Geodesy and Geoinfor-
matics, Wrocław University of Environmental and Life Sci-
ences (http://www.igig.up.wroc.pl/igg, last access: 17 Au-
gust 2018). The PW and ZTD values are calculated at 106
stations of the European Position Determination System Ac-
tive Geodetic Network (ASG-EUPOS, http://www.asgeupos.
pl, last access: 17 August 2018) in Poland and adjacent areas
(Fig. 2).

The GNSS parameters are calculated from GPS data only,
using the Bernese GNSS Software version 5.0 (Dach et al.,
2007). The parameters (coordinates and troposphere) are es-
timated in a near-real time (NRT) regime, 30 min after each
full hour, without the gradient estimation. The dry tropo-
sphere a priori model is taken from Saastamoinen (1972),
mapped with dry Niell MF (Niell, 2000) and the ZTD rel-
ative constraining of 3 mm is applied. International GNSS
Service (IGS) ultra-rapid orbits, clocks and Earth rotation
parameters are used. These parameters are now altered to fit
the more recent version of Bernese (5.2) (Dach et al., 2015;
Dymarska et al., 2017), but this study uses NRT data, orig-
inally processed in 2013. In this way, our impact study will
show the minimum potential of GNSS data assimilation in
weather model exactly. More details on the GNSS data pro-

cessing and quality monitoring of the data can be found in
Bosy et al. (2012). Fifteen of the stations are a part of the
EUREF Permanent Network (EPN) and provide the tropo-
spheric parameters with the accuracy required by NWP data
assimilation (Dymarska et al., 2017), i.e., the standard de-
viation between GNSS ZTD and WRF ZTD is 10 mm and
the standard deviation between radiosonde ZTD and WRF
ZTD is 14 mm. In the inter-comparison study using multi-
ple techniques (Wilgan et al., 2015), the discrepancy between
GNSS observations and radiosonde was found to be 10 mm.
According to the EGVAP requirements (Offiler, 2012), this
accuracy of the GNSS data is sufficient for the assimilation
in NWP models.

2.3 Model evaluation

The WRF model runs are compared with surface meteorolog-
ical measurements of air temperature, relative humidity, wind
speed and precipitation, radiosonde temperature and relative
humidity profiles in three locations across Poland, GNSS ob-
servations in 106 locations.

For the SYNOP, measurements are available every hour
at 66 SYNOP stations, evenly distributed over the area of
Poland, operated by the Institute of Meteorology and Wa-
ter Management – National Research Institute. Model eval-
uation is performed only for the nested domain. Four error
metrics are calculated to assess the forecast performance.

– Mean error (ME), which describes the model tendency
of overestimation (ME > 0) or underestimation (ME < 0)
of the given meteorological parameter. The ME (bias)
is calculated as a mean difference between the modeled
and observed values for all stations (domain wide). The
units are the same as for the analyzed meteorological
parameters.

– Root mean square error (RMSE), which takes only non-
negative values. The RMSE (scatter) is calculated as a
root of the squared differences between the modeled and
observed values for all stations. The units are the same
as for the analyzed meteorological parameters.
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Figure 2. Location of the GNSS, SYNOP and radiosonde stations in Poland.

– Pearson correlation coefficient (corr), which takes val-
ues from −1 to +1, and the expected value is 1. Corr is
unitless.

– Index of agreement (IOA), developed by Willmott
(1981) as a standardized measure of the degree of model
prediction error. IOA varies between 0 and 1, and 1 in-
dicates a perfect match.

Model performance verification is done using observations
for rainfall, wind speed, relative humidity and air tempera-
ture at 2 m. The model evaluation is done for each simulation
considering the entire period and for different lead times and
for selected days during which severe weather was observed
(case studies). For rainfall forecasts, binary evaluation is also
presented using performance diagrams (Roebber, 2009), sep-
arately for five different precipitation intensity thresholds.
The closer data set is towards the upper-right corner of the
plot the better performance of the forecasts.

Additionally, the model performance for air temperature
and relative humidity was compared with radiosonde data,
available with a high vertical resolution for three stations lo-
cated in Poland: Łeba, Warsaw and Wrocław, For the May

and June case (large data set) we provide (Fig. 4) profile
mean error with standard deviation multiplied by 1.96 (p =
0.05), for other cases (much fewer observations) only mean
errors are provided (Figs. 6, 10, 12). A similar comparison
was done by Guerova et al. (2005). The model based PW
and ZTD are also compared to the GNSS based retrievals.
Bias and standard deviation of the residual WRF based PW
and ZTD minus GNSS observed PW and ZTD are calculated
for 106 stations.

3 Methodology

The variational assimilation is based on the Bayesian proba-
bility theory and it states that the model analysis is inferred
from two probabilities: background and observations. These
can also be expressed as a minimization of a cost function,
with two major components: background B and observations
R error covariance (Ide et al., 1997; Lorenc, 1986; De Pon-
deca and Zou, 2001) in the 4DVAR implementation:

J [x (to)]=
1
2

[
x (to)− x

b (to)
]T
B−1

0

[
x (to)− x

b (to)
]
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+
1
2

∑n

i=0

(
Hi [x (ti)]− yoi

)
R−1
i

(
Hi [x (ti)]− yoi

)
, (1)

where x (ti), xb, x (to), are model state vectors at the time
ti , and background vector and model initial conditions t0,
respectively. In general cases, there are N kinds of obser-
vations y defined at discrete times ti from to to tn, where
the assimilation window spans from the lowest to the high-
est ti . The Hi [x (ti)] is a forward operator that transforms
parameters from the model space to the observation space.
The 3DVAR differs to 4DVAR by taking ti equal to obser-
vation time and analysis time. Minimization of the Eq. (1)
requires also finding adjoint (ADJ) and tangent linear (TLM)
operators, each related to the observation type and forward
operator Hi [x (ti)]. For more details, the readers are referred
to, e.g., Barker et al. (2004) or Huang et al. (2009).

3.1 GPSPW operator

The WRFDA system employed in this study hosts varia-
tional (VAR) 3D/4D as well as hybrid variational ensemble
algorithms (Barker et al., 2012). Currently, the system sup-
ports the assimilation of surface, radiosonde, aircraft, wind
profile observations, as well as atmospheric motion vec-
tors, radar reflectivities, spectrometric, GPS radio occulta-
tion and GPS ground-based data. The latter is linked di-
rectly to the GPSPW operator (the National Center for At-
mospheric Research and WRF Model Users’ Page, 2017).
The operator defines the forward, tangent linear and adjoint
of H for the 4DVAR and 3DVAR case for both ZTD and
PW. The operator also defines the observation covariance
R; in here diagonal matrix is assumed, with no correlation
between observations, which requires spatial and temporal
thinning (Bennitt et al., 2017; Bennitt and Jupp, 2012). The
ZTD forward operatorH reads as follows (Vedel and Huang,
2004) with further corrections made by Yong-Run Guo (from
da_transform_xtoztd module of GPSPW):

ZTD(i,j)= ZHD(i,j)+
∑k=kte

k=kts

(
wdk1p(i,j,k)q(i,j,k)

t (i,j,k)

+
wdk3p(i,j,k)q(i,j,k)

t2(i,j,k)

)
1h

aew
, (2)

where ijk are indices of model nodes, p is a pressure, q is
specific humidity, t is temperature, 1h is a height difference
between two consecutive model layers, aew = 0.622 is a con-
stant, wdk1 = 2.2110−7, wdk3 = 3.7310−3 are compress-
ibility constants, ZHD is a zenith hydrostatic delay computed
according to the (Saastamoinen, 1972) explicitly given in
Eq. (6).

The PW forward operator is formed similarly to the ZTD
operator (following da_integrat_dz module of GPSPW oper-
ator):

PW(i,j)=
∑k=kte

k=kts
(ρ(i,j,k)q(i,j,k)1h), (3)

where ρ is air density.

3.2 GNSS data preprocessing

Two kinds of GNSS data are accepted by WRFDA package:
ZTD and PW. In order to prepare the GNSS estimates for
GPSPW, a preprocessing is required. The ZTD data are pro-
cessed according to the following steps.

1. Calculation of the GNSS ZTD using Bernese software
for all the stations.

2. Assimilation of the GNSS ZTD obtained in step (1) us-
ing the 3DVAR scheme.

3. Calculation of average ‘background’ corrections from
the WRF model for each station to reduce the system-
atic error between WRF and GNSS data and subtract-
ing the corrections from the GNSS ZTD obtained in the
step (1).

In the first step, we adjust the formal errors of GNSS ZTD by
multiplying them by a factor of 10.5 mm, in which is the stan-
dard deviation of differences between WRF ZTD and GNSS
ZTD according to Dymarska et al. (2017). Next, we remove
the observations, which errors exceed 20 mm, which is the
standard procedure in GNSS data assimilation (Bennitt and
Jupp, 2012).

In the second step, the GNSS data are assimilated in the
3DVAR procedure in order to calculate the corrections that
come from the “background”, which is the WRF model. The
corrections for each day are expressed as O−B, where O is
the “observation” ZTD (in this case same as ZTDGNSS from
the first step), and B is “background” ZTD, i.e., the WRF
ZTD. The corrections are then averaged over the entire con-
sidered period to obtain one value (O −B)av for each station.

In the third step, the corrected ZTDs are calculated as fol-
lows:

ZTDcorr = ZTDGNSS− (O −B)av. (4)

The PW data are processed in a similar way.

1. Calculation of the GNSS PW from GNSS data.

2. Assimilation of the GNSS PW obtained in the step
(1) using the 3DVAR scheme.

3. Calculation of “background’‘ corrections and subtract-
ing them from the GNSS PW obtained in the step (1).

From GNSS processing, we can only estimate ZTDs. The
PWs in step (1) are calculated in a standard way from GNSS
and WRF data as follows:

PW=Q · (ZTDGNSS−ZHDWRF), (5)

where ZHDWRF is the hydrostatic delay calculated using
Saastamoinen (1972) formula from pressure from WRF
model pWRF, height h and latitude ϕ of a GNSS station:

ZHDWRF =
0.0022767pWRF

1− 0.00266cos(2ϕ)− 0.00000029h
. (6)
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The proportionality factor Q is calculated as follows:

Q=
106

Rw (k3/Tm+ k2′)
(7)

whereRw = 461.525 [J (K kg)−1] is the gas constant of a wet
air, k2

′
= 22.9726 [K hPa−1] and k3 = 375463 [K2 hPa−1]

are the “best average” refractivity constants from Rueger
(2002) and Tm is the mean temperature calculated from TWRF
as follows:

Tm = 70.2 + 0.72 · TWRF. (8)

After calculation of GNSS PW, the processing in steps (2)
end (3) is analogical to GNSS ZTD.

4 Case studies

All cases presented in this study are selected from the period
of May–June 2013 in Central Europe covering the bench-
mark campaign of COST Action ES1206 (Douša et al.,
2016). The following experiments are considered (Fig. 3):
(1) assimilation of ZTD or PW for all of May and June 2013,
(2) assimilation of ZTD or PW and ZTD or PW with sup-
port of RS and SYNOP for 5–23 May 2013, (3) case stud-
ies a, b and c, showing impact of assimilation of ZTD or
PW in severe weather cases which took place during May
and June 2013. The mean and standard deviation of ZTD
from GNSS and from WRF are presented in the Fig. 3. The
overall agreement between GNSS and WRF traces are high;
however, the WRF model is negatively biased with respect to
the observations and shows fewer variations. Moreover, few
cases of significant departure of WRF ZTD from GNSS ZTD
are visible in June, two are collocated with case b and case c
investigated in this study.

According to synoptic analysis presented in Douša et
al. (2016), the beginning of May 2013 was characterized by
a cyclonic field over 500 hPa, which in turn resulted in pre-
cipitation and convection development, moving from west to
east. The mid-May weather in the region was developing un-
der the influence of an upper-level cyclone (500 hPa) that
brought the cold advection from west. Towards the end of
May, a series of Atlantic cyclones approached Europe. The
end of the month brought a stop to the advection of cold air
by the upper-east ridge, which pushed the cyclones more to
the south and brought humid and warm air to Central Europe.
In June, three flooding events were recorded in the Czech Re-
public, which were associated with baroclinic instability de-
veloping over the area of interest, with a first one (1–3 June)
event unexpected and of disastrous nature while two latter
(9–11; 23–26 June) less severe and better predicted. As in
this work, we use Poland as a study region, there is a time
shift between the events recorded in Czech Republic (de-
scribed by Douša et al., 2016) and Poland and also the pre-
cipitation effects were not as disastrous.

The first severe weather case study (case a) was observed
in 29–31 May 2013. The weather event is related to an un-
usual, low-pressure regions: (1) that developed over Hungary
and moving towards Czechia, and (2) that developed over
Moldova and moving towards the east of Poland. In these
two lows, in the presence of stratified clouds, the cumulonim-
bus clouds develop and form a supercell. It brought intensive
rain and hail, however the precise location of such supercells
is not easy to predict (http://www.meteo.pl, last access: 17
August 2018).

The second analyzed case (case b) occurred in 17–
18 June 2013 and is related to two weather systems: (1) high
pressure system with a center in Belarus affecting northern
part of Poland, (2) low pressure system over the Bay of Bis-
cay. Cold weather is observed in the north (20 ◦C) and hot
and humid in the south (above 30 ◦C). The thermic contrasts
and warm unstable air result in the occurrence of convective
cells located southeast of the region. These cells merged in
the late afternoon and formed a supercell storm that moved
southward to the Moravia region (http://www.meteo.pl).

The third case analyzed was 24–25 June 2013. The
weather in Europe was driven by high pressure system lo-
cated over the Atlantic Ocean, as well as large and shallow
trough extending north to Norway from a weak low centered
over the northern part of the Adriatic Sea (with the atmo-
spheric pressure of around 1010 hPa). Secondary cyclogene-
sis is organized over central Poland in the form of a thermal
asymmetric low pressure system. A quasi-stationary anabatic
cold front spread along this trough changing its position very
slowly and bringing cold air from the north (in the western
part of Poland), and warm, humid and unstable air masses
from the south (in the eastern part of Poland). These condi-
tions are prone to developing strong precipitation, thunder-
storms and hail in central Poland (http://www.meteo.pl).

4.1 Assimilation of GNSS observations

The full period of 2 months is used as a first approach to
validate the impact of PW or ZTD data on weather forecasts
using radiosonde, GNSS and SYNOP observations.

4.1.1 Comparison to radiosonde profiles

It is expected that the ZTD and PW assimilation first will af-
fect the 3D distribution of humidity and temperature. This is
summarized in Fig. 4. and Table 2. In the case of relative hu-
midity, assimilation of ZTD significantly improves the model
performance in the layer from 2.5 to 10 km, with a 22 % im-
provement over the base simulation. At the same time, this
assimilation increases the model error for air temperature,
but only in the range 2.5–5.0 km and above 10 km. Assim-
ilation of PW has a small impact on both relative humidity
and air temperature, and the errors, both in terms of the value
and vertical distribution is very similar if PW and base runs
are compared (Fig. 4 and Table 2). The assimilation of PW
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Figure 3. Time evolution of mean ZTD in the study domain for WRF (red) and GNSS (blue) data (solid lines). Filled area marks standard
deviation spread around mean values. Arrows represent the time and duration of analyzed cases.

Figure 4. Vertical distribution of mean error for base, PW and ZTD
for May and June 2013 for relative humidity (a) and air tempera-
ture (b). The errors are calculated for the lead time 12 h.

result in significant increase of errors (by 20 %), only in the
2.5–5.0 km section of troposphere.

4.1.2 Comparison to GNSS observations

The assimilation of the GNSS products should also have
an impact on the PW and ZTD estimates from the WRF
model. We compare the PW and ZTDs calculated from WRF
using formulas (2) and (3) respectively using NCAR com-
mand language (NCL) (NCAR, 2018), before the assimi-
lation (“base”) and after the assimilation of both PW and
ZTDs. The comparisons are performed for the GNSS data
before the processing described in Sect. 3.1. Thus, the pre-
sented biases for the base run are removed from the GNSS
to better fit the observations to the model. Station by station

Table 2. Mean error for RH and T calculated for selected height
classes for May and June 2013. Lead time is 12 h. Font denotes
improvement (bold), deterioration (bold/italic) or no impact (italic)
on the forecast with the use of GNSS data.

RH mean error [%] T mean error [K]

Height Base PW ZTD Base PW ZTD

< 2.5 km 3.35 3.47 3.85 0.25 0.26 0.19
2.5–5.0 km 2.26 2.74 2.01 0.04 0.06 0.14
5.0–10.0 km 7.55 7.71 5.94 −0.03 −0.02 0.02
> 10.0 km 2.32 2.25 2.14 0.00 0.00 0.04

Table 3. Bias and standard deviation for PW and ZTD calculated
for all GNSS stations in the experiment for May and June 2013.
Lead time < 24 h. Font denotes improvement (bold), deterioration
(bold/italic) or no impact (italic) on the forecast with the use of
GNSS data.

Parameter Run Bias [mm] std [mm]

PW Base 2.6 4.9
PW 2.5 4.7
ZTD 2.6 4.7

ZTD Base −8.3 26.5
PW − 8.8 25.7
ZTD −8.1 26.0

comparison (not shown) produces similar results across all
stations, hence mean statistics is calculated (Table 3).

In general, the assimilation of the GNSS does not bring a
huge improvement in the WRF estimates. For PW, the bias,
averaged from all stations equals to 2.6 mm for the base run,
and is slightly improved by 0.1 mm the PW assimilation and
remains same for ZTD assimilation. The average standard
deviations for the estimates after assimilation improves by
0.2 mm for both PW and ZTDs. For the ZTD assimilation,
there is degradation of the ZTD biases after the assimilation
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of PW (by 0.5 mm) but also improvement in the case of ZTD
assimilation (by 0.2 mm). The assimilation of both PW and
ZTD brings an improvement of the ZTD standard deviations
for almost all of the stations, therefore the average standard
deviations decrease for both PW and ZTD assimilation.

4.1.3 Comparison to SYNOP

Further forecast verification is based on 66 SYNOP stations
distributed evenly across Poland (Fig. 2). Table 4 summarizes
model forecast performance using ME, RMSE, corr and IOA.
The statistics are calculated for lead times from 1 to 24 h for
the following parameters: rain intensity (rain), wind speed
(wspd), relative humidity (rh2) and temperature (T 2).

The overall accuracy of the rain forecast is low, i.e., the
base run prediction correlates with the observations in less
than 15 %, while the same parameter for wind speed is close
to 60 %, whereas corr for relative humidity is 82 % and for
temperature 95 %. As the assimilation changes the initial
conditions of parameters directly linked with the adjoint op-
erator (a transpose of forward operator), the impact while us-
ing ZTD should be visible in pressure p (Eq. 2) (and thus also
wind speed), specific humidity q (and thus relative humidity)
and temperature t . Whereas PW should have impact mostly
on specific humidity q (Eq. 3) and thus on the rh2 parameter.
Rain as a parameter linked with physical parameterization
and many other variables such as humidity, vertical and hori-
zontal motion, or temperature profile are also sensitive to the
GNSS data assimilation.

The results (Table 4) confirm that the assimilation of PW
over the whole period of 2 months affects the forecasts only
slightly, the assimilation increases the relative humidity scat-
ter and has negative or neutral impact on the rain ME and
RMSE, neutral or positive impact on wind speed and nega-
tive or neutral impact on temperature. Similarly, there is no
gain for rainfall forecasts if ZTD is assimilated for the entire
period. It has a negative impact on wind speed, but there are
considerable improvements for the relative humidity forecast
(15 % reduction of ME).

The negative impact of ZTD on the wind speed forecast
could be linked to the representation of ZHD as a parame-
ter related only to ground-based observations of temperature
and pressure (Eq. 2), whereas in reality the ZHD is an in-
tegral of pressure and temperature across the whole tropo-
sphere (Vedel and Huang, 2004).

If the rainfall forecasts are analyzed more closely using the
binary verification with data stratification according to rain-
fall intensity (Fig. 5), it is clear that the PW run is very similar
to the base run, regardless of the rainfall intensity. The ZTD
assimilation leads to an overall decrease of the probability of
detection.

Figure 5. Performance diagram for assimilation of ZTD and PW for
May and June 2013 (lead time < 24 h). The various colors represent
rain intensity classes, whereas the shapes represent data sets.

4.2 Assimilation of GNSS, RS and SYNOP
observations

In the second experiment, we focus on a short time span cov-
ering May with moderate precipitation and standard cyclonic
weather, as opposed to June, with the occurrence of major se-
vere weather events (analyzed in Sect. 4.3). This experiment
is prepared to assess the impact of using RS and SYNOP to-
gether with GNSS data in 4DVAR assimilation.

4.2.1 Comparison to radiosonde profiles

Comparison to radiosonde data (Fig. 6, Table 5) shows that
largest impact on RH is visible in relatively high levels of
troposphere 7–10 km, however improvements to this param-
eter are also present for 2.5–5.0 km range. Assimilation of
PW+SYNOP+RS result in highest gain of quality (in the
section 5–10 km by 10 %). In the lower part this impact is
less visible (for any observation type), however below 2.5 km
assimilation of PW and ZTD alone increase ME (8 % for PW
and 2 % for ZTD). The impact on temperature is noted only
in the 12.5–15 km sector. Use of SYNOP and RS data im-
proves forecast in all cases but largest increase is visible in
the PW observations and in the 2.5–10 km section.

4.2.2 Comparison to GNSS observations

Comparing all active GNSS stations ZTDs and PWs to the
WRF based ZTDs and PWs (Table 6), one notice no im-
pact on the PW for ZTD and PW assimilation (both bias
and std), whereas for the same experiments ZTD bias in-
creased but scatter decreased considerably (reduction of std
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Table 4. Impact of assimilation of PW and ZTD using 4DVAR operators, validated against SYNOP observations for June and May (lead
time < 24 h). Font denotes improvement (bold), deterioration (bold/italic) or no impact (italic) on the forecast with the use of GNSS data.

Run rain wspd rh2 T 2

me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA

Base May and June −0.680 2.567 0.123 0.380 0.055 1.522 0.589 0.760 −2.098 10.643 0.823 0.903 −0.351 2.244 0.918 0.956
PW −0.684 2.559 0.124 0.381 0.057 1.520 0.590 0.760 −2.104 10.658 0.822 0.902 −0.352 2.246 0.918 0.956
ZTD −0.720 2.570 0.122 0.380 0.083 1.526 0.584 0.756 −1.765 10.577 0.823 0.904 −0.409 2.243 0.919 0.956

Table 5. Mean error for RH and T calculated for selected height classes for 5–23 May 2013. Lead time is 12 h. Font denotes improvement
(bold), deterioration (bold/italic) or no impact (italic) on the forecast with the use of GNSS data.

RH mean error [%] T mean error [K]

Height Base PW PW+SYNOP ZTD ZTD+SYNOP Base PW PW+SYNOP ZTD ZTD+SYNOP
+RS +RS +RS +RS

< 2.5 km 5.05 5.49 5.19 5.19 5.18 −0.04 −0.12 −0.10 −0.15 −0.15
2.5–5.0 km 3.16 3.31 2.92 2.99 3.06 −0.04 −0.04 −0.05 −0.02 −0.02
5.0–10.0 km 6.47 6.43 5.72 6.05 6.35 −0.07 −0.08 −0.10 −0.07 −0.06
> 10.0 km 2.15 2.05 2.01 2.04 2.03 0.01 0.02 0.03 0.02 0.02

Figure 6. Vertical distribution of mean error for the base, PW,
PW+SYNOP+RS, ZTD and ZTD+SYNOP+RS for 5–23 May for
relative humidity (a) and air temperature (b). The errors are calcu-
lated for the lead time 12 h.

by 1.2 mm). The combination of PW+SYNOP+RS and
ZTD+SYNOP+RS if PW field is considered no different to
the base run, whereas in the case of ZTD being used as a
diagnostic variable, the PW+SYNOP+RS provides best so-
lution from all assimilation cases, in terms of bias (only by
0.1 mm). Also mean station deviation is lower for assimilated
cases than for base simulation.

Table 6. Bias and standard deviation for PW and ZTD calculated for
all GNSS stations in the experiment for 5–23 May 2013. Lead time
< 24 h. Font denotes improvement (bold), deterioration (bold/italic)
or no impact (italic) on the forecast with the use of GNSS data.

parameter run bias std
[mm] [mm]

PW Base 6.3 5.2
PW 6.3 5.2

ZTD 6.3 5.3

PW+SYNOP+RS 6.3 5.2

ZTD+SYNOP+RS 6.3 5.2

ZTD Base −2.0 25.1
PW − 2.9 23.9
ZTD − 2.8 23.9
PW+SYNOP+RS − 2.1 24.6
ZTD+SYNOP+RS − 2.4 24.6

4.2.3 Comparison to SYNOP

The MEs for base run forecasts in May (Table 7) are lower
than for May and June, e.g., rain ME is approx.−0.5 whereas
May and June is approx. −0.7, May relative humidity ME
is approx. 0.4 % and May and June is approx. −2.1 %. Wind
speed errors are similar or slightly higher in May than in May
and June. A similar statement is correct for temperature er-
rors. The overall correlation between observations and fore-
casts is in the range from 13 % to over 17 % for rain, 56 % for
wspd, 82 % for rh2 and 91 % for T 2, which is a few percent
lower than in the May and June run (except for rain).
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Table 7. Impact of assimilation of PW, ZTD, RS and SYNOP using 4DVAR operators, validated against SYNOP observations, for 5–
23 May 2013 (lead time < 24 h). Font denotes improvement (bold), deterioration (bold/italic) or no impact (italic) on the forecast with the
use of GNSS data.

Rain wspd rh2 T 2

Run me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA

Base May −0.475 2.027 0.132 0.383 0.046 1.551 0.565 0.742 0.352 10.987 0.819 0.903 −0.668 2.333 0.914 0.952
PW −0.509 1.933 0.171 0.419 0.080 1.563 0.557 0.737 0.771 10.855 0.825 0.906 −0.743 2.332 0.916 0.952
ZTD −0.543 1.903 0.166 0.417 0.082 1.554 0.559 0.738 0.729 10.938 0.822 0.904 −0.734 2.343 0.915 0.951
PW+ SYNOP+RS −0.494 1.990 0.150 0.401 0.043 1.556 0.554 0.735 0.697 10.875 0.824 0.906 −0.749 2.336 0.916 0.952
ZTD+SYNOP+RS −0.528 1.939 0.159 0.413 0.079 1.558 0.557 0.737 0.717 10.940 0.822 0.904 −0.751 2.336 0.916 0.952

Table 7 shows comparison to SYNOP stations and it con-
firms that the assimilation of either PW or ZTD has a nega-
tive impact on rain forecast in terms of mean error, however
positive on all other statistics. The largest improvements are
for relative humidity, where all the statistics, except the ME,
are improved if compared to base. Surprisingly, adding more
observations, i.e., SYNOP and RS data, does not improve
rain or relative humidity forecast in the case of ZTD assimila-
tion, but rather decreases the forecast’s quality. Assimilation
of both PW and ZTD deteriorates the model performance for
wind speed. There is small but positive impact on the T 2
forecast in terms of correlation coefficient, but, similarly to
RH, mean errors are increased if compared to base run.

As two forecasted parameters are improved, that is rel-
ative humidity and rain (see Table 7), we investigate the
lead time differences between the base run and four as-
similation setups: namely PW, PW+SYNOP+RS, ZTD,
ZTD+SYNOP+RS (Fig. 9).

The Fig. 7 ME (left panel) of rain forecast varies signifi-
cantly over 24 h, especially in the lead time 10 to 24 h and is
relatively stable between 1 to 9 h (nighttime). In the scattered
section of Fig. 9, the ZTD+SYNOP+RS solution seems pos-
itive most of the time, while it is negative in the first 9 h of
forecast. In the first 9 h of the forecast PW+SYNOP+RS re-
duces the forecast bias. PW and ZTD alone are rarely ob-
served to improve ME of rain forecast. The RMSE pictured
on the right panel of Fig. 7 shows, similar to ME, scat-
tered and compacted sections, however there is clear pos-
itive impact of assimilating GNSS observations, especially
ZTD+SYNOP+RS in the short run (until 24 h). Overall, the
RS and SYNOP data helps to improve RMSE of rain fore-
cast.

Less variation between the four scenarios is observed for
relative humidity errors (Fig. 8). Both ME and RMSE are re-
duced while assimilating each data type, with an exception
of lead time 15 h, when RMSE increases (more when ZTD
is used, less when PW is used). Moreover, the highest reduc-
tion of ME is noticed between 12 and 18 h of lead time for
PW+SYNOP+RS scenario, but other scenarios also shows a
positive impact. It is also worth mentioning that the rh2 fore-
cast RMSE is reduced after 12 h lead time whereas bias is
constantly reduced starting from the first hour of forecast.

Binary rain analysis shows that the impact of data assim-
ilation on rainfall forecasts changes with rainfall intensity
(Fig. 9). For the rainfall intensity above 0.1 mm h−1, there
are small improvements for all the model runs if compared
to the base run in terms of success ratio, but the probability
of detection is smaller. The positive impact of data assimila-
tion is much stronger for higher rainfall intensities. For the
thresholds exceeding 1.0 mm h−1, both probability of detec-
tion and success ratio are improved if compared to the base
run. The improvement is especially large for PW data assim-
ilation and threshold > 5.0 mm h−1.

4.3 Severe weather cases

The final test is performed using selected three cases with
strong instabilities and supercell storms. The overall impact
of GNSS data in all cases is similar: if there is any reduction
in uncertainty it is visible mostly in the rain and relative hu-
midity forecast, with a small negative or neutral impact on
the wind speed and temperature forecasts.

4.3.1 Case (a) 29–31 May 2013

The comparison of WRF-based RH and T with radiosonde
shows that for case (a) (Fig. 10) the impact of ZTD assimi-
lation introduces large change into the initial conditions and
forecast. This impact is RH positive in the first 2 km and be-
tween 6 and 10 km and might be negative close to 2.5 km.
Temperature show mixed results, with stronger influence of
ZTD and weaker for PW, but across the whole profile this im-
pact is small but positive. Moreover ZTD increase agreement
between model and RS in the bottom 2 km of temperature
profile.

Comparing the forecast with assimilation of ZTD and PW
with GNSS observations (Table 8), shows that both data re-
duce scatter of the observations but ZTD is also reducing sys-
tematic effects, while PW is increasing bias.

According to Table 9, which presents a comparison to
SYNOP data, mixed results are observed for case (a). The
rain forecast shows better performance if PW is compared
to base run. Assimilation of ZTD for this case deteriorates
model performance except for mean error. Humidity forecast
(rh2) is improved, in terms of RMSE and corr, when ZTD
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Figure 7. Performance of rain intensity forecast with respect to lead time (positive – improvement with respect to the base run, negative –
deterioration with respect to the base run): (a) ME, (b) RMSE.

Figure 8. Performance of rh2 forecast with respect to lead time: (a) ME, (b) RMSE.

is assimilated. For PW assimilation, model performance is
worse if compared to base.

Binary analysis depicted in Fig. 11 shows the posi-
tive impact of assimilating of PW in a rainfall rate above
0.5 mm h−1, and ZTD above 2.5 mm h−1.

4.3.2 Case (b) 17–18 June 2013

The comparison of WRF-based RH and T with radiosonde
shows that for case (b) (Fig. 12) the impact of ZTD assim-
ilation introduces large change to the initial conditions and
forecast, while PW has almost no impact. The ZTD impact is
negative in RH in the first 5 km and positive from 7 to 10 km.
The temperature profile shows positive results, with stronger
influence of ZTD and almost none for PW. It is visibly posi-
tive in the bottom part of the troposphere (first 1 km).

Comparing forecast with assimilation of ZTD and PW
with GNSS observations (Table 8), shows that both data re-
duce the scatter of the observations. The bias for PW param-
eter slightly increases for both types of assimilated observa-
tions, however ZTD bias is reduced.

Comparison to SYNOP data (Table 9) shows that, the as-
similation of PW does not change model performance for

rainfall, except for ME reduction. The model performance
for other parameters is similar or slightly worse than base.
ZTD assimilation has small positive impact on RMSE, corr
and IOA of rain intensity forecast, but negative on ME. Rela-
tive humidity ME is reduced by assimilation of ZTD by 43 %,
all other measures are better for base run. In the local type of
rain in southeastern Poland, as in this case, it is impossible to
present statistically sound results for 5 rainfall classes, hence
we did not provide binary rain analysis for this case.

4.3.3 Case (c) 24–25 June 2013

The comparison of WRF-based RH and T with radiosonde
shows that for case (c) (Fig. 13) the impact of ZTD assim-
ilation introduces large change to the initial conditions and
consequently to the forecast. This impact is RH positive in
the first 1 km, negative close to 2.5 km and clearly positive at
5 km. Temperature shows mixed results, however it is worth
pointing out that from 2.5 to 5 km there is positive bias in-
troduced to the forecast by both PW and ZTD. Temperature
is improved once ZTD is assimilated in the bottom part of
troposphere (first 1 km).
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Figure 9. Performance diagram for assimilation of PW,
PW+SYNOP+RS, ZTD+SYNOP+RS and ZTD for May 2013
(lead time < 24 h). The various colors represent rain intensity
classes, whereas the shapes represent data sets.

Figure 10. Vertical distribution of mean error for the base, PW, and
ZTD for case (a) in 29–31 May 2013 for relative humidity (a) and
air temperature (b). The errors are calculated for the lead time 12 h.

Comparing forecast with assimilation of ZTD and PW
with GNSS observations (Table 8), shows that both data re-
duce scatter of the observations. The bias for PW parameters
slightly increases (ZTD assimilation) or is neutral (PW as-
similation). The bias for ZTD decreases for PW assimilation
and slightly increases for ZTD assimilation.

The third case, once compared to the SYNOP, also shows
a small but positive impact of ZTD, especially in PW data as-
similation on rainfall forecasts, except for mean error. Errors
statistics are also improved for wind speed. In the case of the

Table 8. Bias and standard deviation for PW and ZTD calculated for
all GNSS stations in the experiment for selected cases (case a) 29–
31 May 2013; (case b) 17–19 June 2013; (case c) 24–26 June 2013.
Lead time < 24 h. Font denotes improvement (bold), deterioration
(bold/italic) or no impact (italic) on the forecast with the use of
GNSS data.

Parameter Run Bias [mm] std [mm]

PW Base (case a) −0.6 2.9
PW (case a) −0.6 2.8
ZTD (case a) −0.4 2.7
Base (case b) −0.7 2.7
PW (case b) − 0.8 2.4
ZTD (case b) − 0.8 2.4
Base (case c) 0.4 3.4
PW (case c) 0.4 3.2
ZTD (case c) 0.5 3.2

ZTD Base (case a) −14.6 23.6
PW (case a) − 15.2 23.3
ZTD (case a) −14.2 23.3
Base (case b) −11.0 22.0
PW (case b) −10.6 21.1
ZTD (case b) −10.6 20.8
Base (case c) −34.9 23.9
PW (case c) −34.7 23.6
ZTD (case c) − 35.0 23.7

Figure 11. Performance diagram for assimilation of PW and ZTD
for case (a) (lead time < 24 h). The various colors represent rain
intensity classes, whereas the shapes represent data sets.

PW run, there is also a gain for relative humidity, while for
ZTD error statistics are worse if compared to the base run.

In the performance diagram in Fig. 14, the rain rate fore-
casts are improved with PW with respect to the base forecast,

www.atmos-meas-tech.net/12/345/2019/ Atmos. Meas. Tech., 12, 345–361, 2019



358 W. Rohm et al.: 4DVAR assimilation of GNSS zenith path delays

Table 9. Impact of assimilation of PW, ZTD, RS and SYNOP using 4DVAR operators, validated against SYNOP observations, for selected
cases (case a) 29–31 May 2013; (case b) 17–19 June 2013; (case c) 24–26 June 2013 (lead time < 24h). Font denotes improvement (bold),
deterioration (bold/italic) or no impact (italic) on the forecast with the use of GNSS data.

rain wspd rh2 T 2

Run me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA me RMSE corr IOA

Base (case a) −1.233 3.412 0.020 0.327 0.416 1.870 0.569 0.722 −3.049 10.760 0.811 0.891 −0.102 2.506 0.862 0.923
PW (case a) −1.166 3.360 0.036 0.353 0.429 1.872 0.566 0.720 −3.130 10.807 0.810 0.891 −0.093 2.517 0.861 0.923
ZTD (case a) −1.155 3.609 −0.006 0.313 0.463 1.916 0.555 0.710 −2.774 10.623 0.811 0.893 −0.169 2.484 0.864 0.924

Base (case b) −2.016 4.626 −0.082 0.331 0.152 1.324 0.466 0.680 −0.597 10.197 0.826 0.907 −0.501 2.155 0.930 0.957
PW (case b) −2.012 4.626 -0.082 0.330 0.155 1.326 0.467 0.681 −0.566 10.244 0.824 0.906 −0.510 2.159 0.929 0.957
ZTD (case b) −2.026 4.625 −0.061 0.332 0.175 1.362 0.427 0.656 −0.092 10.286 0.823 0.906 −0.614 2.204 0.927 0.955
Base (case c) −0.701 3.240 0.223 0.490 −0.065 1.864 0.575 0.750 −4.444 10.970 0.760 0.842 −0.004 2.210 0.865 0.929
PW (case c) −0.739 3.135 0.250 0.510 −0.064 1.859 0.577 0.751 −4.455 10.913 0.764 0.843 −0.004 2.205 0.866 0.929
ZTD (case c) −0.803 3.167 0.250 0.508 −0.030 1.835 0.576 0.750 −4.433 11.066 0.760 0.841 −0.044 2.216 0.868 0.930

Figure 12. Vertical distribution of mean error for the base, PW and
ZTD for case (b) 17–18 June, for relative humidity (a) and air tem-
perature (b). The errors are calculated for the lead time 12 h.

but worse when ZTD is assimilated. This effect is visible for
all rain rates lower than 1 mm h−1 and this discrepancy disap-
pears for rain rates in the 2.5 mm h−1 class, where both ZTD
and PW have positive impact, whereas no impact is noticed
for rainfall rates above 5 mm h−1.

5 Summary and conclusions

In this study, we have analyzed 2 months (May and
June 2013) of 4DVAR assimilation of GNSS ground-based
observations in WRF model from over 100 stations in
Poland. Two major approaches were investigated using GP-
SPW operator: assimilation of PW and ZTD. For a shorter
time period of 18 days in May additional data were assimi-
lated: namely RS and SYNOP observations across Poland.
Moreover, three different case studies related to severe

Figure 13. Vertical distribution of mean error for the base and PW
for case (c) 24–26 June, for relative humidity (a) and air tempera-
ture (b). The errors are calculated for the lead time 12 h.

weather occurrence were investigated. All were linked to a
supercell development and intense rain.

The major conclusion of this study is that for the ana-
lyzed time period, with more than 100 stations involved in the
experiment, there are two parameters significantly changed
once GNSS data are assimilated in the WRF model using
GPSPW operator and these are the moisture field and rain.
Other parameters such as pressure or temperature field are
not changed from initial conditions significantly. The GNSS
observations improves forecast in the first 24 h but with
strongest impact starting from 9 h lead time. It is worth notic-
ing that even moderate quality NRT estimates used in this
study (ZTD discrepancy ∼ 10–15 mm) are improving rela-
tive humidity forecast, moreover the impact of ZTD is posi-
tive in the vertical profile (over 20 % decrease of mean error)
starting from 2.5 km upward. Even if the humidity forecast
in lower part of troposphere (below 2.5 km) after GNSS data
assimilation deteriorates, the SYNOP observations confirms
that ZTD has positive impact on the rh2 parameter. Assim-
ilation of PW has less significant impact on both humidity
and rain forecasts in the vertical profile and on the ground,
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Figure 14. Performance diagram for assimilation of PW and ZTD
for case (c). The various colors represent rain intensity classes,
whereas the shapes represent data sets.

it improves slightly rain forecast and deteriorates the humid-
ity prediction by a few percent. The best results for use of
integrated water vapor information are produced by adding
radiosonde and SYNOP data to the assimilation system as
it improves distribution of humidity in the vertical profile.
In the three analyzed severe weather cases, PW always im-
proved the rain forecast and ZTD always reduced the humid-
ity field bias. Binary rain analysis shows that GNSS parame-
ters have a significant impact on the rain forecast in the class
above 1 mm h−1, while adding more observations such as ra-
diosonde and SYNOP result in a larger increase of quality.
In each case however the impact of GNSS data was different,
therefore below we provide a brief summary for each case.

The May and June case results showed that in the lead
time of 24 h, the assimilation of GNSS data (both ZTD
and PW) had a varying impact on a number of parameters.
The assimilation of PW over the whole period of 2 months
marginally diverted the humidity and temperature 3D perfor-
mance, which is seen on the radiosonde profiles. It also im-
proves the agreement between WRF model based and GNSS
based PW observations by 0.1 mm. Assimilating PW slightly
increased correlation of daily rainfall rates, increased relative
humidity scatter and had positive impact on the rain RMSE,
neutral impact on wind speed and negative or neutral on tem-
perature. However, the binary analysis of rain rate in five in-
tensity classes revealed that the forecasts with assimilation
of PW improves forecast scores in high intensity rain above
2.5 mm h−1.

Assimilation of ZTD had a large impact on the vertical
profile of both temperature and humidity, as retrieved from
comparison to radiosonde data especially in the range 5 to

10 km. It reduced bias by 0.1 mm and std by 0.5 mm between
the base run and assimilation run for WRF derived ZTD and
GNSS derived ZTD. Assimilation of ZTD reduced the ME
for humidity by 16 %, while it had a slight negative impact on
rain, temperature and wind speed bias. The binary analysis
of rain rate in five intensity classes revealed that the forecasts
with assimilation of ZTD improve forecast scores only in the
highest rain rate class.

The more detailed study focused on 5–23 May (with non-
severe weather events) and showed that the assimilation
of either PW or ZTD reduced mean error in the humid-
ity forecast in the vertical direction, most successfully for
PW+SYNOP+RS data. It had a positive impact on the rain
forecast and relative humidity forecast. The assimilation of
PW improved rain rate RMSE by 5 % and had negative im-
pact on bias (7 % increase). The relative humidity forecast
bias was doubled with assimilation, however RMSE was re-
duced by minimum of 1 %. The assimilation of ZTD im-
proved rain rate RMSE by 6 % and had a negative impact
on bias (14 % increase). The relative humidity forecast bias
was doubled with assimilation and RMSE was reduced by
less than 1 %. Adding SYNOP stations and radiosonde did
not bring any further improvements in forecasting humidity
or rain but reduced the errors in wind speed and temperature
data. Furthermore, the analysis of lead time with respect to
the errors revealed that for rain rate ME error varies in time
(both negative and positive impacts are present), whereas the
RMSE for data with assimilation is considerably improving
with time. In the case of relative humidity, both ME and
RMSE are reduced when GNSS data are assimilated, the
largest gain in quality is observed for PW+SYNOP+RS data
set. The binary analysis show positive impact of GNSS data
assimilation especially for rain rates above 1 mm h−1

In the analyzed severe rain cases, the assimilation of
GNSS in case (a), (b) and (c) brings reduction of ME and
RMSE or at least RMSE for key sensitive parameters such as
rain rate, relative humidity. Binary rain rate forecast perfor-
mance analysis shows that the intensive rain is better pre-
dicted once GNSS data are assimilated. Further research,
based on a larger number of cases, is required to investigate
what the reasons of different impacts of GNSS data are on
model forecasts.

Data availability. GNSS data used in this study are available from
the Institute of Geodesy and Geoinformatics data base MaGDA,
access can be granted to any individual by contacting Jan Sierny
at: jan.sierny@igig.up.wroc.pl. Meteorological data were provided
by the Institute of Meteorology and Water Management – National
Research Institute. NCEP FNL Operational Model Global Tropo-
spheric Analyses were used as a boundary and initial conditions for
the model run.
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