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Abstract. A new cloud identification and classification algo-
rithm named CIC is presented. CIC is a machine learning al-
gorithm, based on principal component analysis, able to per-
form a cloud detection and scene classification using a uni-
variate distribution of a similarity index that defines the level
of closeness between the analysed spectra and the elements
of each training dataset. CIC is tested on a widespread syn-
thetic dataset of high spectral resolution radiances in the far-
and mid-infrared part of the spectrum, simulating measure-
ments from the Fast Track 9 mission FORUM (Far-Infrared
Outgoing Radiation Understanding and Monitoring), com-
peting for the ESA Earth Explorer programme, which is
currently (2018 and 2019) undergoing industrial and scien-
tific Phase A studies. Simulated spectra are representatives
of many diverse climatic areas, ranging from the tropical to
polar regions. Application of the algorithm to the synthetic
dataset provides high scores for clear or cloud identification,
especially when optimisation processes are performed. One
of the main results consists of pointing out the high infor-
mation content of spectral radiance in the far-infrared region
of the electromagnetic spectrum to identify cloudy scenes,
specifically thin cirrus clouds. In particular, it is shown that
hit scores for clear and cloudy spectra increase from about
70 % to 90 % when far-infrared channels are accounted for
in the classification of the synthetic dataset for tropical re-
gions.

1 Introduction

At the end of 2017, the European Space Agency selected the
FORUM (Far-infrared Outgoing Radiation Understanding
and Monitoring) mission as one of the two instrument con-

cepts to compete for the Earth Explorer Fast Track 9 satellite
programme. FORUM is based on a far-infrared spectrome-
ter devoted to high spectral resolution (nominally 0.3 cm−1)
measurements from 100 to 1600 cm−1, thus including the
so-called far-infrared (FIR) region, spanning from 100 to
667 cm−1.

The FIR represents an important fraction of Earth’s out-
going longwave radiation, which contributes considerably to
the planetary energy balance. The atmospheric emission in
the FIR is driven by the rotational absorption band of the
water vapour molecules and is characterised by strong ab-
sorption lines interspersed by narrow regions (called “dirty
micro-windows”), where absorption is less intense. The
strong absorption features of water vapour roto-vibrational
lines cause atmospheric weighting functions in the FIR to
peak in the mid-troposphere and upper troposphere, thus
making the on-line upward emission particularly sensitive
to the atmospheric thermodynamic profile and water vapour
content of the highest tropospheric levels. Micro-window ra-
diance is highly sensitive to the water vapour mixing ratio
(Maestri et al., 2014) and also affected by the water vapour
continuum absorption, which is usually modelled through
observations (Mlawer et al., 2012; Serio et al., 2008). More-
over, the condensed phases of water, in the form of liquid
water and ice clouds, also affect Earth’s radiation budget sig-
nificantly (Sinha and Harries, 1995) and, in particular, the
presence of ice clouds causes lower-emitting temperatures
and, hence, a shift towards longer wavelengths (thus towards
the FIR) of the peak of the black-body emission distribution
function. For this reason, a detailed study of the Earth’s radia-
tion budget should account for global, accurate, all-sky con-
dition measurements of the exiting radiance, including the
FIR.
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As many recent studies have shown, due to the large sen-
sitivity of the upward radiance in the far-infrared part of the
spectrum to water vapour and clouds, the FIR can be used
to complement standard remote-sensing measurements per-
formed in the mid-infrared (MIR) part of the spectrum in or-
der to retrieve atmospheric water vapour profile, for cloud
detection, classification and property derivation. In Merrelli
(2012) it is demonstrated that the retrieval of cloud proper-
ties and water vapour mixing ratio in the middle and upper
troposphere is more accurate if FIR spectral information (i.e.
radiance) is considered. Moreover, in Palchetti et al. (2016)
it is shown that by using the full infrared emission spectrum
more information may be retrieved about cirrus cloud mi-
crophysical properties. In Maestri et al. (2019), it is shown
that the Radiation Explorer in the “Far InfraRed: Prototype
for Applications and Development” (REFIR-PAD) channels
hold additional information for cloud detection and cloud-
phase classification from ground-based measurements.

Along the lines of these recent research studies, in this
work an innovative cloud identification and classification
technique, with applications for infrared high spectral res-
olution synthetic data, including the far-infrared part of the
spectrum, is presented. Many different cloud detection tech-
niques exist and the majority of them exploit data spanning
from infrared to shortwave, which limits their applicability
to daytime hours only. An example of such a technique is
the principal component analysis (PCA)-based detection al-
gorithm presented by Ahmad (2012). Other techniques rely
on outgoing longwave radiation only; one example is the al-
gorithm presented in Serio et al. (2000), which is tailored
to work on water surfaces. Among the techniques exploit-
ing outgoing longwave radiation only and applied globally,
the cumulative discriminant analysis by Amato et al. (2014),
the European Centre for Medium-range Weather Forecasts
(ECMWF) scheme by McNally and Watts (2003), the Met
Office 1D-Var retrieval system (Pavelin et al., 2008), the
NCEP minimum residual method (Eyre, 1989) and the Cen-
tre de Météorologie Spatiale (CMS) cloud mask (Lavanant
and Lee, 2005) are mentioned. These methodologies are
applied to space-borne spectrometers and radiometers such
as the Atmospheric InfraRed Sounder (AIRS), the Infrared
Atmospheric Sounding Interferometer (IASI) and the Ad-
vanced Very-High-Resolution Radiometer (AVHRR). The
last three methodologies perform cloud detection and classi-
fication simultaneously. They also depend on ancillary infor-
mation regarding the atmospheric state derived from numer-
ical weather prediction models. McNally and Watts (2003),
for example, analyse the difference between simulated clear-
sky spectra and the measured spectra to detect the presence
of clouds, using the global model of the ECMWF to make a
short-term forecast of the atmospheric state.

Most cloud detection schemes rely on the definition of
some statistical parameter, which serves as a classifier, and
on a statistical technique used to assign a value to the clas-
sifier. Both the cumulative discriminant analysis and the Met

Office 1D-Var retrieval system seek the minimisation of a
cost function. This minimisation produces the classification
label of the spectrum and an estimate of the cloud fraction,
respectively.

Some of the detection algorithms used for cloud identi-
fication have been adapted for aerosol detection and some
innovative methodologies have been recently developed. A
comprehensive overview of the most widely used techniques
for aerosol detection and classification, such as feature de-
tection methods based on thresholds and brightness temper-
ature differences, spectral fitting minimisation methods, ap-
proaches based on look-up-tables and minimisation of the
Mahalanobis distance, and methods based on singular value
decomposition and PCA, is provided in Clarisse et al. (2013).

Taking the cue from existing cloud detection algorithms,
a cloud identification and classification (CIC) method is de-
veloped. CIC is a machine learning algorithm based on prin-
cipal component analysis, which performs an identification
and classification using a single threshold applied to a uni-
variate distribution of a newly defined parameter called the
similarity index (see Sect. 3.2), which determines relatedness
with a specific class (training set). It is partially based on
other works (see Malinowski, 2002; Turner et al., 2006, for
reference) and, with respect to previously described methods,
has the advantages of being easy to implement, user-friendly,
fast and efficient.

In this paper, the CIC algorithm is used to perform cloud
detection on a synthetic dataset consisting of infrared spec-
tra with wave numbers ranging from 100 to 1600 cm−1 and
a nominal resolution equal to 0.3 cm−1, created to simulate
satellite measurements of the FORUM mission. Cloud de-
tection is performed both using the MIR only or the full
spectrum (FIR and MIR), so that the detection performances
could allow an evaluation of far-infrared channels informa-
tion content in realistic conditions. The algorithm is applied
to simulated FORUM measurements from different climatic
areas in order to observe the influence of atmospheric condi-
tions on detection scores.

This paper is organised as follows. In Sect. 2 the synthetic
dataset is illustrated. Sect. 3 is dedicated to the CIC algorithm
description and functionalities. Section 4 deals with results
obtained from CIC application to FORUM synthetic data. A
brief summary is drawn in Sect. 5.

2 Synthetic dataset

A widespread dataset of simulated radiances for multiple at-
mospheric conditions is computed in order to test the cloud
identification and classification algorithms. The synthetic
dataset is built using a chain of codes to perform accurate
line-by-line multiple scattering computations as represented
in Fig. 1. The computational methodology is similar to the
one described by Bozzo et al. (2010) and the radiative trans-
fer equation is solved through an adding–doubling algorithm

Atmos. Meas. Tech., 12, 3521–3540, 2019 www.atmos-meas-tech.net/12/3521/2019/



T. Maestri et al.: Methodology for cloud classification and identification 3523

for a plane-parallel geometry and simulating the FORUM
satellite nadir view.

The line-by-line computations of layer spectral optical
depths are performed using the Line-by-Line Radiative
Transfer Model (LbLRTM) version 12.7 (Clough et al.,
2005), whose inputs are atmospheric vertical profiles and
spectroscopic gas properties. This model includes a re-
cently updated water vapour continuum parameterisation,
MT_CKD (Mlawer et al., 2012) version 3.0, and a consis-
tent spectroscopic database, AER version 3.5, built from HI-
TRAN2012 (Rothman et al., 2013). The atmospheric ther-
modynamic vertical profiles and gas mixing ratios (such as
those of H2O, CO2, CH4, O3 and for a total of 22 molecules)
are derived from different sources. The first one is the ERA-
Interim reanalysis (Dee et al., 2011), with a horizontal reso-
lution equal to 0.75◦ (approximately 80 km) and 60 vertical
levels from the surface up to 0.1 hPa. This database, which
provides four sets of data per day, is used to retrieve profiles
of temperature, pressure, specific humidity, ozone mixing ra-
tio and surface geopotential height from which the geomet-
ric surface and atmospheric level heights are computed. The
daily January, April, July and October 2016 ERA-Interim
reanalysis data are downloaded for the dataset generation
in order to reproduce the seasonal and daily variations in
the thermodynamic variables. Grid points from the tropics,
mid-latitudes and polar regions (Arctic and Antarctic) are se-
lected.

The second source of information is the initial guess cli-
matological database IG2 (Remedios et al., 2007), which in-
cludes atmospheric profiles for six latitude bands, four sea-
sons and two times of the day. This database spans from 2007
onwards, with a constant vertical resolution of 1 km from the
surface up to 120 km, and provides time-averaged data con-
cerning altitude, pressure, temperature and a wide range of
gas-mixing ratio profiles.

ERA-Interim reanalysis data are thus used to characterise
the daily variation in the main atmospheric parameters up to
approximately 60 km in height, and the IG2 is used to add
information in the highest atmospheric layers and to provide
information concerning minor gases mixing ratios.

Surface emissivity properties are selected in accordance
with geolocation by using the global database produced by
Huang et al. (2016). The database includes 11 types of spec-
tral emissivity in the infrared region of the spectrum repre-
sentative of rainforest; temperate deciduous forest; conifer
forest; grass; dry grass; desert; ocean; coarse, medium, and
fine snow; and ice.

The cloud microphysical properties are generated by in-
tegrating the Ping Yang database, consisting of single-
scattering properties of randomly oriented non-spherical ice
crystals (Yang et al., 2013), over a large set of gamma type
size distributions. Liquid water and mixed-phase spherical
particles radiative properties are derived through the Scat-
tNlay code (Peña and Pal, 2009) and subsequently used to
get bulk properties of particle size distributions. The mixed-

Table 1. Range of variability of the main cloud properties used
in the simulations. The habit type indicates the assumed pristine
shapes of the ice crystals. The mixed-phase water coating indicates
the percentage of liquid water coating with respect to the dimen-
sions of the assumed spherical particle.

Cloud property Range

Top height (km) 1.0–17.0
Geometrical thickness (km) 1.0–5.0
Optical depth 0.02–30.0
Habit type Plate, column,

bullet rosette, aggregate
Mixed-phase water coating 10 % and 20 %
Ice particle eff. dimension (µm) 4–100
Liquid water eff. radius (µm) 3–15
Mixed-phase eff. radius (µm) 3–15

phase spheres consist of a core of ice surrounded by a coating
of liquid water. This shell of liquid is modelled as a coat-
ing of 10 % or 20 % of the radius of the entire particle. In
the simulations, many cloud properties are varied: cloud top
height, geometrical thickness, optical thickness, particle size
distribution, mean effective dimension, particle shape and
phase (ice, liquid water and the two levels of mixed phase).
The cloud property inputs to the radiative transfer code are
modified over large ranges of values in order to account for
the largest possible variability encountered in nature. Some
datasets and recent studies are considered as baseline. The
International Satellite Cloud Climatology Project (ISCCP)
(Rossow and Schiffer, 1999; Hahn et al., 2001) is an ex-
ample. Cirrus clouds properties in the tropics and at mid-
latitudes are mostly based on what was found by Veglio and
Maestri (2011), while Antarctic cloud properties are obtained
from several sources (i.e. Adhikari et al., 2012; Bromwich
et al., 2012; Lachlan-Cope, 2010). In Table 1 the range of
variability of some key cloud properties is reported.

As illustrated in Fig. 1, for each selected atmospheric
condition, high spectral resolution optical depths of atmo-
spheric layers are computed using LbLRTM and the results
are passed as inputs to the radiative transfer X (RTX) and,
when in presence of clouds, the gas optical depths are merged
with those derived from cloud properties (see Bozzo et al.,
2010). RTX, which is based on the doubling and adding
method (Evans and Stephens, 1991) and is thus capable of
solving the full radiative transfer equation in multiple scat-
tering conditions, is then run to obtain the high spectral res-
olution radiances that are finally convoluted with an ideal
FORUM-like instrument line shape (ILS) that is assumed to
be a sinc function.

This operation produces unapodised spectra with 0.3 cm−1

spectral resolution over a spectral range spanning from 100 to
1600 cm−1, representative of FORUM mission noiseless ob-
servations. In a subsequent step, a nominal noise-equivalent
spectral radiance (NESR), as reported in the FORUM pro-
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Figure 1. Software architecture (schematic) of the simulation process used to build the synthetic dataset for FORUM-like observations.
Blue boxes are codes and red boxes are auxiliary datasets. OD stands for gaseous optical depths computed using the Line-by-Line Radiative
Transfer Model (LbLRTM) version 12.7 (Clough et al., 2005). The radiative transfer X (RTX) is described in Bozzo et al. (2010). The Fourier
transform spectroscopy and the simulation of FORUM noise are included in the RTX box.

Table 2. Random noise used to simulate the Fourier transform spec-
trometer of the FORUM mission.

Interval Noise
(cm−1) (mW (m2srcm−1)−1)

100–200 1.0
200–800 0.4
800–1600 1.0

posal RCEE9/027 to the ESA, is added to the simulated
radiances in order to produce a realistic FORUM obser-
vations dataset. The new dataset is computed by adding a
Gaussian wave-number-dependent noise to the noiseless ra-
diances. The spectral dependence and amplitude of the noise
are derived from the technical specification of the Fourier
transform spectrometer instrument described in the FORUM
proposal to the ESA (available on request) and reported in
Table 2. The NESR values reported in the table correspond to
a typical percentage noise of about 1 % in the 200–800 cm−1

wave number interval. The exact value depends on the spe-
cific wave number and observational conditions accounted

Table 3. Number of clear and cloudy simulated spectra for each lat-
itude belt. Indicated in brackets is the number of liquid water clouds
(liq), mixed-phase clouds (mixed), and ice clouds (ice) and, among
these, the number of sub-visible cirrus clouds (svc), consisting of
high-altitude cirri with optical depths less than 0.03, are shown in
parentheses.

Clear sky Clouds [liq/mixed/ice (svc)]

Tropics 704 986 [16/61/909 (212)]
Mid-latitudes 615 765 [96/48/621 (173)]
Polar regions 492 532 [00/48/484 (132)]

for. Below 200 cm−1 and above 1400 cm−1 the percentage
noise can be higher than 15 % due to the low radiance val-
ues.

A spectral random noise is computed for each spectrum.
The central limit theorem is used so that the sum of random
numbers (rtot) from a uniform distribution ranging from−0.5
to 0.5 (variance is 1/12) is used to generate a Gaussian vari-
able (rgauss) with a mean of 0 and a standard deviation, σν ,
assumed to be equal to the FORUM noise. The spectral ran-
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Figure 2. Brightness temperature (BT) sensitivity to a sub-visible
cirrus cloud (black line), a 3 K decrease in surface temperature (yel-
low line) and an increase of 10 % in water vapour mixing ratio at all
levels (blue line). The BT differences are obtained in reference to a
tropical clear-sky case over the ocean.

Figure 3. Brightness temperature sensitivity to cirrus cloud particle-
size-distribution effective dimensions. Dimensions values in the
legend are in µm. The assumed shape is the plate type, optical depth
is 1.5, the cloud thickness is 1 km and cloud top is at 14 km. The
BT differences are obtained in reference to a tropical clear-sky case
over the ocean.

dom noise is thus obtained by using the following formula:

rnoise =

√
12
rtot
· σν · rgauss.

A schematic summary of the whole dataset, comprised of
4244 simulated spectra, is presented in Table 3 for each lati-
tude belt and for the clear or cloudy class. Some examples of
spectra are shown in Figs. 2, 3, 4 and 5.

In Fig. 2, the brightness temperature sensitivity (with re-
spect to a reference clear-sky case) is shown for three dif-

Figure 4. Brightness temperature sensitivity to the particle phase.
A polar cloud is assumed made of a particle size distribution of
spheres of ice (black line), liquid water (red) and two mixed phases.
The mixed phase are spheres with an ice core and liquid water coat-
ing. The coating is, respectively, 10 % (yellow line) and 20 % (blue
line) of the total sphere radius. Cloud optical depth is 7, cloud thick-
ness is 1.5 km and cloud altitude is 5 km. The BT differences are
obtained in reference to an Antarctic clear-sky case over a snowed
surface.

Figure 5. Brightness temperature sensitivity to cirrus cloud crystal
habit. The crystal’s habits assumed are reported in the legend. The
simulated tropical cirrus cloud is 2 km thick, with optical depth 1
and with an effective dimension equal to 32 µm. The BT differences
are obtained in reference to a tropical clear-sky case over the ocean.

ferent cases in the tropical atmosphere: a sub-visible cirrus
cloud (black line), the clear-sky case with a 3 K decrease
in skin surface temperature (yellow line) and the clear-sky
case with an increase of 10 % along the vertical profile of
the water vapour mixing ratio (blue line). The cirrus is as-
sumed to be composed of plates with an effective dimension
of 20 µm, optical depth OD= 0.03 and geometrical thick-
ness 1 km. Results show distinctive spectral features due to
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the presence of the cirrus cloud in the satellite view. For the
tropical region in particular, the radiance signal in the FIR ex-
iting from the surface is masked by the strong absorption by
the water vapour rotational band (which is almost saturated
for wave numbers below 300 cm−1).

In Fig. 3 the large brightness temperature (BT) sensitiv-
ity to cloud particle-size-distribution effective dimensions is
highlighted for channels in the MIR window and for wave
numbers between 400 and 600 cm−1. Cloud properties are as
follows: OD is 1.5, geometrical thickness is 1 km and cloud
top is at 14 km.

Sensitivity to cloud particle phase is shown in Fig. 4. In
the computations a polar cloud (OD is 7, geometrical thick-
ness is 1.5 km and cloud top is at 5 km) made of spheres of
pure ice, liquid water or of two diverse mixed phases (see
figure caption for the details) is assumed. The results show
that the highest BT sensitivity to phase is found at FIR wave
numbers. Note also how the mixed-phase spheres resemble
the pure ice phase in the MIR window channel and the pure
liquid water in the FIR channels.

Finally, in Fig. 5 the sensitivity to crystal habit is shown.
Four different habits (aggregates, plates, bullet rosettes and
solid columns) are assumed in the simulation of four differ-
ent tropical cirrus clouds with the same features (OD is 1, ge-
ometrical thickness is 2 km, cloud top is at 15 km and the ef-
fective dimension is 32 µm). Habit sensitivity is much larger
in the FIR (about 5 K spread among the curves for different
shapes) than in the MIR windows (about 2 K). This is mostly
due to a minimum in the imaginary part of the ice refractive
index at around 410 cm−1 that implies a minimum in absorp-
tion at FIR wavelengths and a relatively large importance of
scattering processes that are related to crystal shape. This FIR
largest sensitivity is noted to increase with the dryness of the
atmosphere and thus amplified when moving towards higher
latitudes (not shown here).

3 Cloud identification and classification (CIC)

3.1 Algorithm description

CIC is an innovative classification algorithm based on prin-
cipal component analysis. The methodology relies on a ma-
chine learning algorithm that requires the definition of a cer-
tain number of training sets equal to the number of classes
used for the classification. A descriptive example of the iden-
tification process of clear and cloudy cases (cloud detection)
is first provided in order to facilitate the comprehension of
the rigorous mathematical treatment that follows this brief in-
troduction. In Fig. 6 a flowchart of the algorithm is depicted.

The first step requires the definition of a clear-sky training
set (TRcle), consisting of a number Tcle of clear-sky spec-
tra, and a cloudy-sky training set (TRclo), consisting of Tclo
cloudy-sky spectra. For each training set the principal com-
ponents (PCs) are computed and stored in a matrix. Each

Figure 6. Scheme of the dataflow used for the cloud detection pro-
cess.

spectrum of the test set (one at a time) is then added to the
TRcle, and thus an extended clear-sky training set (ETRcle)
is defined. ETRcle is a group of Tcle+ 1 spectra. The prin-
cipal components of the ETRcle are computed. Supposing
that the test set spectrum under consideration is a clear-sky
spectrum, it is expected that the PCs computed for ETRcle
are very similar to the ones computed for TRcle, which is to
say that the test set element has the same basic features as
the elements belonging to the training set (clear in the run-
ning example). In this case, it is also expected that the PCs
computed for the cloudy-sky training set TRclo differ from
the PCs obtained from the extended cloudy-sky training set
(ETRclo) that is obtained by adding the spectrum in consid-
eration (that is clear) to the cloudy-sky training set.

CIC evaluates the variation in the principal components
of the training sets due to the addition of a new spectrum
(from the test set). The association of a spectrum to a spe-
cific class is obtained by evaluating the similarity of PCs of
the extended training sets to those of the original training
sets: small changes in PCs are interpreted as that the spec-
trum belongs to the class while large changes suggest that
the spectrum belongs to a different class. The variations in
the PCs obtained for the extended training sets with respect
to the original ones are evaluated by means of a new param-
eter called similarity index.
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The notation for similarity indices is as follows:

SI(i,j), i ∈ {1,2}, j ∈ {1. . .J }, (1)

where i is the class label, j is the test set spectrum label and
J is the number of spectra in the test set to be classified. As
an example (that is used in the whole text), it is assumed that
the class label is 1 for clear-sky spectra and 2 for cloudy-sky
spectra.

The computation of the similarity indices are now de-
scribed mathematically. The first step is the definition of the
training set matrices.

TRi(ν, t) (2)
i ∈ {1,2}, t ∈ {1. . .Ti}, ν ∈ {1. . .νmax},

where t is the spectrum index, Ti is the number of spectra
in each training set i, ν is the wave number index that spans
from 1 to νmax, which is the highest wave number index.

The second step consists of the computation of the PCs of
each training set matrix by evaluating the eigenvectors (eig)
of their covariance (cov) matrix:

TREMi(ν,p)= eig(cov(TRi(ν, t))) (3)
i ∈ {1,2}, t ∈ {1. . .Ti},ν ∈ {1. . .νmax}, p ∈ {1. . .P },

where TREMi is the training eigenvector matrix, p indicates
the pth principal component and P =max(Ti,νmax) is the
total number of principal components.

Each row of this matrix contains normalised eigenvectors:

νmax∑
ν=1

TREMi(ν,p)
2
= 1, (4)

Given J spectra in the test set, a number of J new matrices
are defined for each class. These matrices are simply the con-
catenation of the training set matrices with each single spec-
trum (j ) from the test set and are called extended training
set matrices. The following matrix contains all of the spectra
from the test set.

TS(ν,j), 1< j < J

The extended training set matrices are defined as follows:

ETRi,j (ν, t ′)= [TRi(ν, t) ‖ rowj (TS(ν,j))] (5)
t ′ ∈ {1. . .Ti + 1},

where the notation ‖ indicates matrix concatenation. Note
that rowj (TS(ν,j)) is a single test set spectrum in a one-
dimensional array.

CIC evaluates the principal components of the extended
training set ETREMi,j as follows:

ETREMi,j (ν,p)= eig(cov(ETRi,j (ν, t))). (6)

The training and extended training eigenvector matrices are
used to compute the similarity indices (SIs) for each test set
spectrum (j ) and for each class (i):

SI(i,j)=

1−
1

2Po

Po∑
p=1

νtot∑
ν=1
|ETREMi,j (ν,p)

2
−TREMi,j (ν,p)

2
|,

(7)

where νtot is the number of features (channels) used for PCA
analysis and Po is the number of principal components that
are associated to the physical signal (real variability) char-
acterising the spectrum. Using the same weight (1/2Po) for
each term of the sum makes the SI very sensitive to any spec-
tral signature present in the spectrum.

The set of optimal principal components (Po) character-
ising the signal constitutes the information-bearing principal
components (IBECs). The Po elements are extracted by min-
imising the factor indicator function (IND) defined by Mali-
nowski (2002) and Turner et al. (2006) as follows:

IND(p)=
RE(p)
(P −p)2

, (8)

where RE(p) is defined, in Turner et al. (2006), as the real
error

RE(p)=

√∑P
i=p+1λi

Ti(P −p)
, (9)

where λi is the ith eigenvalue of the covariance of some of
the data matrices and Ti is the number of spectra in the train-
ing set i.

The natural number P0, obtained through this minimisa-
tion process, is the number of eigenvectors associated with
the physical signal corresponding to the number of IBECs.
In CIC, Po is computed separately for both training set ma-
trices (i = 1,2).

Once Po is determined, the similarity index can be calcu-
lated using Eq. (7). For consistency, the same value of Po is
used when the SI computation is applied to the two training
sets; the minimum value for Po is utilised.

Interpreting the eigenvectors as directions in the multi-
dimensional space, SI is an estimate of how much the princi-
pal components of the training set rotate after a new spectrum
is added to the set. For this reason, similarity indices do not
depend on eigenvalues but on eigenvectors: all the principal
components describing the physical signal are accounted for
with the same weight in Eq. (7), since all of them might be
important for classification.

Similarity indices defined in this way are normalised. In
fact, since the absolute value of the difference between the
square loadings of two eigenvectors is at most equal to 2, the
sum of Po differences can reach the maximum value of 2Po.
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And being an absolute value, the following is true:

0≤
Po∑
p=1

νtot∑
ν=1
|ETREMi,j (ν,p)

2
−TREMi(ν,p)

2
| ≤ 2Po,

(10)

therefore,

0≤ SI(i,j)≤ 1. (11)

With reference to Eq. (7), the largest value of the similarity
index (1) is obtained for identical TREM and ETREM matri-
ces, meaning that the analysed test set spectrum is not adding
any diverse physical information to the training set spectra.
An SI close to zero means that the two matrices are described
by very different PCA and the test set element is bringing ad-
ditional information to the original training set.

A graphical example of the similarity index is provided in
Fig. 7. The plot shows the SI computed for cloudy elements
of the tropical test set only in Fig. 7a and for clear-sky ele-
ments only in Fig. 7b. For cloudy-sky test set cases, when the
SI is computed using the cloudy training set (orange line), the
SI is very close to one, while the SI values are mostly lower
when the clear-sky training set is used. Thus, the inequal-
ity SI(clo,j) > SI(cle,j) holds for most cloudy-sky spec-
tra j . The situation is reversed when clear-sky elements of
the test set are used (Fig. 7a) showing that highest SI val-
ues are generally obtained when using the clear-sky training
set (blue line). CIC exploits results from both of the compar-
isons: SI computed using the clear-sky and the cloudy-sky
training sets.

3.2 Classification

3.2.1 Elementary approach

CIC classification requires that each test set element is used
for the computation of both similarity indices (one for each
training set of the two classes). Once the SIs for the extended
training sets (the one containing cloudy spectra and the one
for clear ones) are computed, a comparison is performed.
Continuing with the running example, when

SI(cle,j) > SI(clo,j),

then spectrum j is expected to be clear sky (cle). And, of
course, for

SI(clo,j) > SI(cle,j),

the spectrum j is expected to be cloudy (clo).
These two conditions may be unified in a compact index that
is defined as the similarity index difference (SID):

SID(j)= SI(clo,j)−SI(cle,j),

and thus

if SID(j) > 0, then j ∈ {cloudy spectra}, (12)
if SID(j) < 0, then j ∈ {clear spectra}. (13)

Spectra classification based only on the SID sign is defined
as the elementary approach: SID acts as a binary classifica-
tion parameter. Each spectrum is analysed sequentially and
independently from the other elements of the test set under
consideration. This elementary approach has the main advan-
tage of being very simple and straightforward and the disad-
vantage of being sensitive to the composition of the training
sets. In fact, results might be affected (and biased) if one of
the training sets is not well populated by spectra that are rep-
resentative of the variability within the class. An example of
the elementary classification is given in Fig. 8 where the SID
distribution for clear and cloudy-sky spectra is shown. In the
example, the cloudy-sky and clear-sky training sets are not
well characterised (some unbalance is observed) since even
if all the cloudy spectra show positive SIDs (as expected), a
large number of clear-sky spectra also has positive SIDs, and
thus those spectra are potentially misclassified. It is therefore
shown that the elementary approach requires an accurate def-
inition of the training sets to work properly.

3.2.2 Distributional approach

A distributional approach can be adopted for the classifica-
tion in which the distribution of the SIDs of the training set
is analysed before performing the classification.

A perfect classifier would ideally generate a bimodal SID
distribution. Thus, the transition from one mode to the other
could be associated to a binary classification parameter that
changes sign in the transition point. In order to accomplish
this task a new index is defined called the corrected similarity
index difference (CSID).

The elements of the training set (both the clear and cloudy
spectra) are used to mathematically define CSID, which is
simply a shifted SID:

CSID(j)= SID(j)− shiftopt, (14)

where shiftopt is the optimal value of the parameter “shift”
that maximises a function that can potentially forecast the
performance of the algorithm (a performance forecasting
function, PFF). This function is called consistency index
(CoI) and is defined below:

CoI(shift)= 1−max
(

FPcle

Tcle
,

FPclo

Tclo

)
, (15)

where the clear and cloudy false positives (FP) are counted
as follows:

FPcle(shift)= card({t ∈ Tcle | SID(j)− shift> 0}), (16)
FPclo(shift)= card({t ∈ Tclo | SID(j)− shift< 0}). (17)

In the above formula, the card operator denotes the number
of elements of the set, while Tcle and Tclo are the number of
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Figure 7. Similarity indices computed using tropical cloudy spectra only (a) or clear-sky spectra only (b). In orange the SI is computed using
the cloudy-sky training set and in blue using the clear-sky training set. The tropical case is accounted for. The full spectrum is used in the SI
computations. Details on the training sets are provided below in the text.

Figure 8. SID occurrence distribution for a subset of tropical spec-
tra. The SIDs are computed based on specific (not optimised) train-
ing sets. Test set clear-sky spectra are in blue, while cloudy-sky
spectra are in red. Cirrus clouds show very small, positive values of
the SID, comparable with values obtained for some clear-sky spec-
tra. Class membership of test set spectra is known a priori since the
dataset is synthetic.

clear and cloudy training set elements, respectively. The con-
sistency index measures the representativeness of the train-
ing sets and in particular it computes how many training set
elements would be classified correctly if they were part of
the test set. The consistency index is large (close to 1) only
if both clear and cloudy false positives (FP in the equations
above) are rare, i.e. when the training sets are composed of
elements that accurately represent the variability within the
specific class.

The new CSID parameter operates as the SID parameter:
if it is positive, the spectrum is considered cloudy, and if it
is negative, the spectrum is considered clear. The following

formulae are used for this purpose:

if CSID(j) > 0, then j ∈ {cloudy spectra}, (18)
if CSID(j) < 0, then j ∈ {clear spectra}. (19)

The use of the distributional approach significantly improves
the performance of the algorithm, as will be shown later in
the text.

3.3 Unclassified spectra

Each element of the test set is classified in accordance with
the sign of the classifier (SID or CSID). For practical pur-
poses, it can be useful to define some thresholds or limits that
determine a set of “unclassified” elements characterised by
values of the classifier belonging to a limited interval around
0 (that is the ideal point separating the two modes of the
distribution). The simplest way to set this interval is to let
the user define two parameters, 21 (positive) and 22 (neg-
ative), representing the inner limits of a confidence interval.
Any spectrum wherein the classifier falls within the inter-
val [22,21] is considered “unclassified”. The 22 and 21
parameters should be defined in accordance with the exper-
imental conditions and sensor performances and their quan-
tification is beyond the scope of this work. For this reason,
and since we rely on a synthetic test set, all the classifica-
tions performed will be binary, i.e. each element is classified
either clear or cloudy.

3.4 Scores

There is no unique metric to define the performances of a
cloud classification algorithm since their assessment is linked
to the goal of the study. For this reason, the set of parameters
(i.e. scores) used to evaluate the algorithm performance in
this section are somewhat arbitrary. As a general rule, any
metric should measure a better performance if more spectra
are classified correctly.
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In this regard, an element of the test set that undergoes
a classification process falls into one of the following cate-
gories.

1. True Positive, TP. The element is a class i member and
is correctly classified.

2. False Positive, FP. The element is not a class i member,
but it is classified as belonging to class i.

3. False Negative, FN. The element is a class i member but
is not correctly classified as such.

4. True Negative, TN. The element is not a class i member,
and it is not classified as belonging to class i.

It is possible to define the classification performance using
two or more of these sets.

A possible definition of performance is provided by the a
priori classification score, here referred to as PRISCO:

PRISCO(i)=
TP(i)

TP(i)+FP(i)
, (20)

where TP(i) is the number of class i true positives and FP(i)
is the number of class i false positives. The PRISCO is
known as hit rate in the literature (see Wilks, 2006). This
score ranges between 0 and 1. It is maximised for FP(i)= 0,
occurring when all the spectra classified by the algorithm as
class i actually belong to class i.

This score can be viewed as an a priori probability, i.e. the
likelihood that a spectrum labelled as a member of class i
actually belongs to class i:

PRISCO(i)= P(L(i)|B(i)), (21)

where L(i)= TP(i)+FP(i)
CTE is the fraction of spectra labelled

as class i, and B(i)= TP(i)+FN(i)
CTE is the fraction of spectra

belonging to class i. The variable CTE represents the number
of elements of the test set.

The a posteriori probability, i.e. the likelihood that a spec-
trum belonging to class i is correctly classified by the al-
gorithm, is defined by the classification score here called
POSCO:

POSCO(i)=
TP(i)

TP(i)+FN(i)
= P(B(i)|L(i)), (22)

where FN(i) is the number of class i false negatives. This
score is useful to estimate the percentage of correctly clas-
sified spectra per each class: in fact, the sum of class i true
positives and false negatives (TP(i)+FN(i)) is equal to the
total number of class i spectra.

The two scores are complementary and are related by the
following equation:

POSCO(i)B(i)= PRISCO(i)L(i). (23)

In this paper, detection performance (DP) is defined as the
minimum value of the two PRISCO scores relative to the
classes under examination:

DP=min(PRISCO(class 1),PRISCO(class 2)), (24)

where

0≤ DP≤ 1. (25)

The PRISCO is preferred to POSCO since no a priori as-
sumption can be made about class membership when clas-
sification is performed on real data. In the definition of the
detection performance the minimum PRISCO value is cho-
sen because the classification performance is considered high
only if hit rates for both classes are high.

4 Results

In this section the performance of the CIC cloud detec-
tion algorithm is evaluated for multiple atmospheric condi-
tions. The additional information content of the FIR part of
the spectrum is also studied. Classifications are performed
both by using the mid-infrared (MIR) channels only or by
using channels spanning over the full FORUM spectrum
(FIR + MIR).

A first result is anticipated in Fig. 9; the details of the com-
putations will be described in the next paragraph. Multiple
couples of training sets (clear and cloudy), made up of 100
elements in total for each couple, are used to perform a clas-
sification applied to the simulations for the tropical case. For
each training set (60 in the example), CIC is applied and the
consistency index and the detection performance are com-
puted and plotted as scatterplots. This allows the relation
of the final classification scores (evaluated by DP) with the
composition of the training set (whose characterisation is as-
sociated to the CoI). The CIC algorithm is run using both the
MIR only or the full spectrum: 129 channels in the FIR and
129 in the MIR. The selected channels range in the [371.1–
1300] cm−1 interval and are selected with a fixed sampling
except for a small interval at around the 667 cm−1 ν2 vibra-
tional CO2 band that is not used. Results show that the scores
(indicated by DP) are generally larger when the full spectrum
is exploited. In fact, it is computed that the average values
of the DP move from 0,60 to 0.79 (for the elementary ap-
proach, Fig. 9a) and from 0.67 to 0.86 (for the distributional
approach, Fig. 9b) when using features from the full FORUM
spectra instead that those from the MIR only.

These preliminary computations suggest the following
conclusions.

1. Better results are obtained for the distributional ap-
proach (Fig. 9b) with respect to the elementary one
(Fig. 9a).

2. A correlation between the CoI and the DP exists.
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Figure 9. Scatterplots relating the consistency index (CoI) and detection performance (DP) for multiple tropical training set pairs (clear and
cloudy). CIC results are shown for both the elementary (a) and the distributional approach (b). Blue circles represent classification results
obtained using features in the MIR only, while red stars represent classification results exploiting the full spectrum.

The points above are taken into account in order to maximise
the performances of the CIC algorithm when applied to a
test set. In particular, it is suggested that the distributional
approach is preferred over the elementary one and that an
optimal training set can be arranged before the classification
is actually performed since CoI is computed for training set
elements.

Thus, a strategy for the application of CIC to the synthetic
dataset is defined and the evaluation of the information con-
tent in the FIR is planned.

– A reference training set (called RETS and consisting of
a clear and a cloudy training set) is defined using an op-
timisation methodology based on the CoI values. The
RETS is used as a reference to perform a test set classi-
fication with a variable number of features.

– The performance of the algorithm is studied when using
features from the MIR only or when exploiting also an
increasing number of FIR channels up to cover the full
FORUM spectrum.

4.1 Reference training set (RETS)

In this paragraph, a strategy for the definition of an optimised
reference training set, RETS (intended as a set of clear and a
set of cloudy spectra), is outlined. The optimisation applies
when the training set elements are randomly chosen from a
large subset of the whole dataset. Results could be different if
training set elements are manually selected in order to cover
the natural variability of the cloudy- and clear-sky spectra
encountered for each latitudinal belt and season.

The strategy is based on the correlation between CoI and
the CIC performances (measured by the DP parameter). As
stated above, the CoI measures how well the training set ele-
ments would be classified if they were part of the test set.

For simplicity, only the CIC applications to the tropical
dataset are reported in this section but the same process is
also applied to mid-latitudes and polar cases (not shown).
The tropical dataset includes 352 clear-sky and 817 cloudy-
sky spectra, for a total of 1169 spectra. Out of these, 315 are
used as a test set. The other spectra are exploited to define
multiple training sets: 100 elements at a time for each train-
ing set pair (clear and cloudy). This strategy is followed in
order to have multiple training sets with different combina-
tions of spectra. Of course the optimisation process is partic-
ularly important when there are many spectra that need to be
classified. The operation is also important in reducing com-
putational cost (see Sect. 4.4). In fact, the TREM matrices
and the SID distribution of the optimised training set can be
saved in a file, reducing the running time of both the elemen-
tary and the distributional approach.

The training set elements (100 per each training set pair)
are randomly chosen from a set of 854 simulations in clear
and cloudy sky but with a constraint on the number of clear
and cloudy components. Three different training set number
configurations (TraNCs) are used:

Tcle(1)= 70, Tclo(1)= 30, (26)
Tcle(2)= 50, Tclo(2)= 50, (27)
Tcle(3)= 30, Tclo(3)= 70. (28)

A total of 20 different training sets are constructed for each
TraNC. Both an elementary and a distributional-approach-
based classification are provided for each training set.

CIC is run on the test set elements and a binary classi-
fication (each element is classified clear or cloudy) is per-
formed by exploiting the full spectrum. The scores (and DP)
are computed. The results are presented in Fig. 10 where the
DP is plotted as a function of the CoI.

On average, the most accurate performances are obtained
for TraNCs in which Tcle is larger than Tclo. The worst results
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Figure 10. Scatterplot of DP and CoI for multiple training sets
(grouped into the three TraNC reported in the legend). Results are
shown when using both the elementary approach (a) and the distri-
butional approach (b). For each group an average value of the DP is
computed and reported in the plot.

are obtained for Tclo greater than Tcle. The average DP values
for the three groups of TraNCs are reported in the plots of the
figure.

Figure 10 shows that a correlation exists between the DP
and CoI in the sense that, on average, large values of DP are
obtained for large values of CoI. It is also shown that, on
average, the DP computed using the distributional approach
is larger than for results obtained using an elementary ap-
proach.

This correlation is significant because it is observed even
when CIC computes these two parameters totally indepen-
dently, i.e. when the elementary approach is followed. For
this reason the CoI can be used as a performance forecasting
parameter, i.e. a parameter estimating the quality of the clas-
sification. Nevertheless, a quantification of the performances
cannot be provided a priori from the application of the algo-
rithm since it also depends on the spectra of the test set to be
analysed.

Table 4. Number of cloudy spectra, as a function of cloud OD inter-
val, for elements belonging to the cloudy set of the RETS and to the
test set for the tropical case. In the second column, in parentheses,
the percentage value with respect to the total number of elements in
the test set for the same OD interval is reported.

Training and test set cloud ODs

Range RETS Test set

OD≤ 0.1 8 (6.3 %) 126
0.1< OD≤ 0.5 3 (2.3 %) 131
0.5< OD≤ 1 1 (5.3 %) 19
1< OD≤ 3 14 (4.5 %) 308
3< OD≤ 10 0 (0 %) 21
OD> 10 4 (6.8 %) 59

Total 30 (4.5 %) 664

If a positive correlation between the DP and the CoI is as-
sumed to exist, then the best performances are expected for
training sets with the highest CoIs. For this reason, the RETS
is defined as the training set with the highest CoI among
those considered. In our case, the best performing training
set is composed of 70 clear-sky and 30 cloudy-sky spectra.

The above configuration is selected as the tropical RETS
to be used in the analysis shown in the next paragraphs. Sim-
ilarly, RETS for mid-latitudes and polar latitudes are con-
structed. The RETS for clear sky consists of a set of spectra
able to catch the seasonal (and thermal) variability reported
in the synthetic dataset which is created to reproduce global
conditions for all four of the seasons.

The cloud ODs accounted for in the cloudy RETS for the
tropics range from 0.05 to 21.8, while the test set ranges from
0.02 to 23; the RETS’s ice cloud top heights range from 9 to
16 km, and in the test set they span from 4 to 16 km. A sum-
mary of the clouds OD used in the RETS for the tropical case
is reported in Table 4. It is shown that a large number of ele-
ments consists of optically thin clouds. This choice was per-
formed in order to challenge the CIC capability of detecting
clouds in very difficult conditions.

4.2 Evaluation of FIR contribution to cloud
identification

Multiple classifications using a variable number of features
(FORUM channels) and accounting both for the full spec-
trum and the MIR only are performed. The classifications
account for a fixed number of MIR channels, while the num-
ber of FIR channels changes to assess if the FIR part of the
spectrum is capable of bringing additional information con-
tent that significantly improves the algorithm’s performance.

In order to speed up calculation and to avoid channels with
a low signal-to-noise ratio, the chosen MIR wave numbers
only range from 667 to 1300 cm−1, while the FIR ranges
from 100 to 640 cm−1. Thus, the full spectrum spans over
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Table 5. The lowest wave number as a function of the number
of FIR channels. The sampling rate is constant and set equal to
2.1 cm−1. The highest FIR wave number is equal to 639.9 cm−1.

Number of FIR Lowest channel
channels (cm−1)

12 616.8
17 606.3
23 593.7
33 572.7
46 545.4
65 505.5
91 450.9
129 371.1
182 259.8
257 102.3

Figure 11. CIC cloud detection performance as a function of the
number of FIR features (channels) for the tropical case. A total of
256 MIR channels are used. The black and red dots indicate the
distributional and elementary approach, respectively.

the 100–1300 cm−1 spectral range with the exception of a
limited wave number interval in the ν2 CO2 band centred at
around 667 cm−1.

Channels are selected by using a constant sampling with
no optimisation criteria applied. The number of selected
channels in the FIR is defined by the following formula:

Nfeat = floor(8 · 2
n
2 )+ 1, n ∈ 1. . .10. (29)

In this way, Nfeat spans over 2 orders of magnitude.
In Table 5 the number of features used in the FIR is

reported. The upper (starting) channel in the FIR is at
639.9 cm−1 and the other FIR channels are sampled toward
smaller wave numbers every 2.1 cm−1. Thus, the data re-
ported in the table should be interpreted as follows: 12 chan-
nels means that 12 channels between 639.9 and 616.8 cm−1

are accounted for and the same is true with the other larger
numbers of channel until they cover the full FIR part of the
spectrum.

In Fig. 11, the results obtained for 11 different classifi-
cations are shown in terms of detection performance. DP is
plotted as a function of the number of FIR features used in
the classification applied to the tropical case. At the value 0
on the x axis of the figure, only the MIR part of the spec-
trum is accounted for (256 channels in this case), while in
the other 10 cases the FIR part of the spectrum is also ex-
ploited with an increasing number of channels, indicated by
the x axis values.

Results show that performance gradually improves for in-
creasing numbers of FIR channels. In particular, there is a
slight decrease in performance after adding the 12 channels
closest to the CO2 ν2 band centre that are mostly insensi-
tive to cloud parameters due to strong absorption of the car-
bon dioxide. The decrease is gradually offset by improve-
ments obtained when channels in the [238.8–545.4] cm−1

wave number range are added. The DP slightly decreases
if channels in the [102.3–238.8] cm−1 range are included
probably due to a reduced radiance sensitivity to surface and
cloud features at those wave numbers.

In the classifications, both the distributional approach
(black line in the figure) and the elementary approach (red
line) are followed. For the tropical case, the elementary and
distributional approach provide DPs as high as 0.9. Note that
both methodologies take advantage of the optimised selec-
tion of the RETS and that the information content critical
for DP improvements derives from channels spanning the
[238.8–545.4] cm−1 range.

In Fig. 12, the cloud detection of the tropical test set is
plotted to the function of the CSID value and cloud optical
depth. Two classifications are performed: one using the MIR
(Fig. 12a) and another using the full spectrum (Fig. 12b). The
number of MIR channels used in the process is kept the same
(128) for both configurations. The considered FIR channels,
when using the full spectrum, are 129 and span from 371.1
to 639.9 cm−1. For visual purposes the plotted clear-sky test
set elements are associated to OD= 10−8, while all the other
OD values are for cloudy sky. Results shown in Fig. 12 are
obtained using the RETS.

True positives (correct classification) for clear and cloudy
spectra are, respectively, orange circles and red asterisks.
False positives are blue circles for clear spectra and green
asterisks for cloudy spectra. Figure 12a shows that the num-
ber of misclassified cloudy spectra grows for decreasing op-
tical depth when using the MIR only. Clear-sky cases are all
well classified in this configuration. If CIC is run exploit-
ing the full spectrum (Fig. 12b) the overall detection perfor-
mance is enhanced even if a clear-sky case is misclassified
(green cross). Nevertheless, most cirrus clouds are now cor-
rectly classified, with the exception of only few cases with
an optical depth of less than 0.5. Note that the DP value is
the minimum between the hit rate computed for cloudy-sky
cases and clear-sky cases (see Eq. 24) and thus is indicative
of the CIC ability to correctly classify either clear and cloudy
spectra.
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Figure 12. Classification of the tropical test set as a function of the optical depth of the elements (a value of 10−8 is used to plot the clear-sky
cases). Data are plotted as a function of the corrected similarity index difference (CSID) and cloud optical depth (OD). (a) CIC run using 128
MIR channels. (b) CIC run using the 128 MIR and 129 FIR channels. For both cases the distributional approach is assumed. Colour codes
are reported in the legend.

Table 6. MIDWIN, POLWIN, and POLSUM datasets. For clear and
cloudy conditions the table columns report the total number of sim-
ulations (spectra), the number of spectra used to define the training
sets and the number of cases used as test sets.

MIDWIN POLWIN POLSUM

Clear 305 244 248
Train. set clear 205 164 168
Test S. clear 100 80 80

Cloudy 405 284 248
Train. Set cloudy 177 174 201
Test S. cloudy 228 110 47

4.3 Mid-latitudes and polar regions

The CIC code is applied to the mid-latitudes and polar
datasets to test the algorithm performances in different atmo-
spheric conditions. The results obtained using the MIR only
and using the full spectrum are again compared. Since de-
tection performances are dependent on the analysed datasets
(test sets) the results cannot be interpreted in an absolute
sense but only in reference to the configuration parameters.

Mid-latitude winter (MIDWIN), polar winter (POLWIN)
and polar summer (POLSUM) cases are presented. The
TraNCs used are generated with the same methodology out-
lined for the tropical case; thus, they are composed of 70
clear-sky spectra and 30 cloudy-sky spectra randomly chosen
from a large subset of the full dataset. Spectra used to define
the training sets are not inserted in the test set. In Table 6 a
summary of the total number of clear and cloudy spectra for
each case study is provided. In the table the number of clear
and cloudy simulations used for defining the training sets and
for the test sets is also reported.

The capability of extracting information content from the
FIR is evaluated by applying the same procedure as before
(see Sect. 4.1 and 4.2).

Classification results obtained using 60 different train-
ing sets are shown in Fig. 13 for the three considered
cases (MIDWIN, POLWIN and POLSUM, respectively,
from Fig. 13a, b and c). Only results using the distribu-
tional approach are presented since CIC, on average, pro-
duces higher scores when run in this configuration.

It is shown that the classification scores increase by adding
FIR channels to the MIR ones; average DP values are re-
ported in the plots. However, the correlation between CoI
and DP is less significant for the present cases with respect to
what was found for the simulations in the tropics. The DPs
obtained for the MIDWIN, POLWIN, and POLSUM cases
are also lower than the ones obtained for the tropical case.
This result might be caused by the mean larger temperature
differences between high tropical cirrus clouds and the sur-
face with respect to what found for mid-latitude and polar
cases. It should be also considered that the polar regions (es-
pecially in winter season) present surface features (ice and
snow on the ground) that have radiative properties similar to
ice clouds, thus making the clear or cloudy identification ex-
tremely challenging, in particular when analysing a test set
containing a large number of thin cirrus clouds.

The POLSUM case (Fig. 13c) show an evident correla-
tion between the DP and CoI when the full spectrum is ac-
counted for. Moreover, in this case, DP values are on average
larger than 0.7 when CoI are larger than 0.85. Therefore, a
RETS is chosen for this case to be used in testing the abil-
ity of CIC to correctly classify clouds with different optical
depths. In Fig. 14 all the cloudy cases present in the POL-
SUM test set are classified using features in the MIR only or
from the full FORUM spectrum. Results of the classification
are plotted as a function of the CSID and of the cloud optical
depth. It is noted that the majority of the cloudy cases (also
for optically thick clouds) are missed by CIC when relying
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Figure 13. Clear and cloudy classification DP using the distribu-
tional approach for the MIDWIN case (a), the POLWIN case (b)
and POLSUM (c). Data are plotted as function of CoI, and 60
TraNC are used for each case.

on MIR channels only (Fig. 14a). The scores improve signif-
icantly when the full spectrum is accounted for (Fig. 14b).
Nevertheless, optically thin clouds (mostly sub-visible cirrus
clouds with OD< 0.03) are still misclassified. The misclas-
sified cases do not show any relation with the type of polar
surfaces accounted for in the simulations (fine snow, medium
snow, coarse snow or ice).

4.4 Computational time

In this section, a study of the computational time required
to calculate the CoI is performed. The CoI computational
time is a good indicator of the speed of the core algorithm,
since its computation requires the SI computation of all train-
ing set elements and the additional optimisation needed for
the distributional approach. Moreover, the CIC classification
subroutine is the only core routine with a duration that de-
pends on the number of features used for the classification.
The current version of CIC algorithm is implemented in the
MATLAB programming language (https://www.mathworks.
com/products/matlab.html, last access: 21 June 2019).

When the elementary approach is selected, the CoI compu-
tation is not necessary. For this reason, the sensitivity study
made in this section can also be interpreted as a study of the
distributional-approach computational cost and results repre-
sent an upper limit of the computational time for a classifica-
tion process in any configuration.

In Fig. 15a results concerning the computational time of
CoI as a function of the number of features (Nfeat) and of the
number of training set elements (here indicated with Ttot =

Tclear+ Tcloudy) are reported. Times are referred to computa-
tions performed on a machine with a Intel i5 processor (four
cores) and 4 GB RAM. It is shown that the computational
time increases non-linearly with Nfeat.

The algorithms for solving linear algebra problems can-
not have a linear time complexity (computational complexity
describing the time to run the algorithm). Raz (2003) shows
than a lower bound for time complexity of matrix multiplica-
tion isO(n2 log(n)) and Demmel et al. (2007)) demonstrated
that the same time complexity bound applies to most other
linear algebra problems, including eigenvector computation,
as performed by CIC.

CoI computation consists of three main subroutines: fac-
tor indicator function computation and its minimisation (see
Eq. 8), the SI computation (see Eq. 7), and shiftopt determina-
tion (Eq. 17). Among the three, the computational cost of the
SI is the highest, since the other two only perform a limited
and fixed number of cycles involving simple arithmetic oper-
ations. This subroutine computes the similarity indices for all
Ttot training set elements. SI computation requires the costly
calculation of the TREM matrices (see Eq. 3). TREM matri-
ces need covariance computation, whose time complexity is
�(NfeatT

2
tot), and eigenvector computation, whose time com-

plexity is�(T 3
tot). Therefore, SI computation has an approxi-

mate time complexity of �(N2
featT

2
tot+NfeatT

3
tot). The results
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Figure 14. Correctly classified (red asterisks) and misclassified (blue circles) cloudy-sky spectra from the polar summer (POLSUM) test set.
Data are plotted as a function of the corrected similarity index difference (CSID) and cloud optical depth (OD), and the distributional approach
is considered. In panel (a) only the MIR features are accounted for while in panel (b) the full spectrum is exploited in the classification.

Figure 15. CoI computational time (a) and SI computational
time (b) as functions of training set size (Ttot) and of the number
of features used (Nfeat). A non-linear relationship between the vari-
ables is observed.

of the computation of the SI parameter as a function of Ttot
and for different numbers of Nfeat are reported in Fig. 15b.

The running time of the remaining two routines (the one
that computes the indicator function minimisation and the
one that finds the shiftopt parameter) is very limited and less

than 0.3 s for any of the configurations accounted for Nfeat
and Ttot.

Note that the Fourier transform spectrometer of the FO-
RUM mission will perform one measurement about every
12 s (as stated in the FORUM proposal for Earth Explorer
Mission EE-9 “Fast Track” Earth Observation Envelope Pro-
gramme June 2017), and thus the CIC algorithm could be run
operatively on mission data.

5 Conclusions

A new methodology for cloud spectra detection and classi-
fication (named cloud identification and classification, CIC)
is presented. CIC is a very fast machine learning algorithm
based on principle component analysis that depends on a lim-
ited number of user-defined free parameters.

The algorithm exploits a training set composed of two
groups of spectra (each group is a class). The training set
elements should represent the observed variability within the
classes and thus should include a sufficient number of spectra
capable of characterising the radiative features encountered
in the area of study. At the same time, they should be “sensi-
tive” to the addition of new elements with spectral character-
istics that are not present in the training set groups. Typically
a total number of 100 spectra is sufficient to well characterise
the clear-sky and cloudy-sky training set groups for each lat-
itudinal belt (tropics, mid-latitudes, poles) and season. Math-
ematically the algorithm evaluates the similarity of each test
set spectrum with each class and thus provides a classifica-
tion. CIC, firstly, computes the eigenvectors of the covariance
matrix of each training set class. Secondly, a test set element
is analysed by adding it to each training group (the clear and
cloudy sky). The new eigenvectors of the extended covari-
ance matrix (formed by the training set elements of one class
plus the test set element) are computed. An index of simi-
larity is derived for the test set spectrum with respect to the
two groups of the training set. It is assumed that a clear-sky
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spectrum, added to the set of spectra defining the clear-sky
training set, does not significantly modify the group’s princi-
pal components while some significant modifications will be
detected if the clear-sky spectrum is added to the cloudy-sky
training set. The opposite is true for a cloudy-sky spectrum
of the test set. Similarity indexes are thus defined to quantify
the modification of the principal components of the training
set when a new element (of the test set) is added. Based on
these indexes, the element is associated to one of the two
considered classes.

CIC can be run by adopting two approaches: the elemen-
tary or the distributional approach. The first one is more in-
tuitive and straightforward: the classification for each test set
spectrum is done by comparing the similarity indexes com-
puted with the two classes of the training set. The second one
requires an additional a priori optimisation process, at very
low computational extra cost (Sect. 4.4). The optimisation is
based on the definition of the consistency index (CoI) that is
related to the detection performance of the algorithm applied
to the training set itself. Therefore, if the training set repre-
sents natural variability sufficiently well, the CoI serves as a
performance forecaster. When optimisation is applied, higher
scores are obtained, as measured by the increased detection
performance (DP; see Sect. 4) parameter that can reach val-
ues as high as 0.95.

The CIC is tested against a large synthetic dataset com-
puted to simulate high spectral resolution radiance from
satellite, specifically as possibly observed by the Earth Ex-
plorer Fast Track 9 candidate mission FORUM (Far-Infrared
Outgoing Radiation Understanding and Monitoring). The
measured FORUM radiance covers the 100–1600 cm−1

spectral bands (thus including the under-explored far-
infrared part of the spectrum) with a nominal spectral resolu-
tion of 0.3 cm−1 and a goal noise of 0.4 mW (m2 sr cm−1)−1

in the 200–800 cm−1 interval and 1 mW (m2 sr cm−1)−1 on
the outside. The simulations are performed by using multiple
surface properties, atmospheric profiles and different cloud
features for liquid, mixed-phase, and ice clouds (including
multiple ice habits). Simulations show that the far-infrared
part of the spectrum is particularly sensitive to many atmo-
spheric parameters, such as upper tropospheric temperature
and water vapour and to cloud geometrical and microphysi-
cal properties.

The dataset is divided in subsets in accordance with the lat-
itudinal belt (and season for the mid-latitudes) and the CIC
is applied by accounting for different configurations. Results
show that the CoI can be used to optimise the training set and
that, statistically, the distributional approach performs better
than the elementary one. The code is also used to assess the
additional information content derived from the analysis of
the far-infrared part of the spectrum with respect to the mid-
infrared only. In this regard, it is shown that the overall de-
tection performances increase when the radiance spectra in
the far infrared are accounted for. In particular, the radiance
exiting at 238–545 cm−1 improves the cirrus detection per-

formances in almost all the atmospheric conditions (latitudi-
nal belt and season). Very thin cirrus clouds (i.e. sub-visible
cirrus) are better detected when exploiting the full FORUM
spectrum than the mid-infrared part of the spectrum only. The
hit scores for cirrus clouds with an optical depth less than
0.06 moves from about 25 % when using the mid-infrared
only to about 60 % when exploiting also the FIR part of the
spectrum. It is shown that, in tropical regions, the overall de-
tection performances exploiting the full spectrum can be very
high (higher than 0.9 for the present dataset, which is very
challenging for the large presence of sub-visible cirri) when
the appropriate training set is selected. It is finally noted
that clear and cloudy spectra identification performances de-
crease when moving from the tropics to the poles, mostly
due to the decreased sensitivity of cloudy spectra because
of the colder atmospheric and surface temperatures and the
increased similarities in the surface and cloud radiative prop-
erties.

In the present work, CIC functionalities are illustrated for
cloud detection application in presence of high spectral reso-
lution far- and mid-infrared radiance observations. Neverthe-
less, the same algorithm can, in principle, be implemented to
work with different kinds of data (i.e. low spectral resolution
data) and also to perform sub-classifications, such as cloud-
phase identification. The CIC algorithm is easily adaptable
to different viewing geometries and diverse high spectral
resolution sensors. Currently, it is being tested against in-
terferometric data in the far- and mid-infrared parts of the
spectrum collected by the airborne Tropospheric Airborne
Fourier Transform Spectrometer (TAFTS, Canas et al., 1997)
and the Airborne Research Interferometer Evaluation Sys-
tem (ARIES, Wilson et al., 1999) during the 2015 CIRC-
CREX (Cirrus Coupled Cloud-Radiation Experiment) cam-
paign (Pickering et al., 2015) and ground-based data col-
lected by the REFIR-PAD interferometer since 2012 from the
Dome C (Concordia) station on the Antarctic Plateau (http:
//refir.fi.ino.it/refir-pad-domeC, last access: 21 June 2019).

Code and data availability. The CIC source code version used in
the present paper is available by request from Iacopo Sbrolli, who
is the software developer of the algorithm. Advanced versions of the
code are available on request to the corresponding author.
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Appendix A: List of acronyms

BT Brightness temperature
CoI Consistency index
CIC Cloud identification and classification
CSID Corrected similarity index difference
DP Detection performance
ETR Extended training set
ETREM Extended training set eigenvector matrix
FIR Far infrared
FN False negative
FP False positive
FORUM Far-infrared Outgoing Radiation Understanding and Monitoring
IBEC Information-bearing principal component
IG2 Initial guess database no. 2
ILS Instrumental line shape
IND Indicator function
LbLRTM Line-by-line Radiative Transfer Model
MIDWIN Mid-latitude winter
MIR Mid-infrared
MT_CKD Mlawer, Tobin, Clough, Kneizys and Davies water vapour continuum model
NESR Noise-equivalent spectral radiance
OD Optical depth
PCA Principal component analysis
POLSUM Polar summer
POLWIN Polar winter
POSCO A posteriori classification score
PRISCO A priori classification score
RE Real error
REFIR-PAD Radiation Explorer in the Far InfraRed: Prototype for Applications and Development
RETS Reference training set
RFTS REFIR Fourier transform spectrometer
RTX Radiative transfer X
TN True negative
TP True positive
TR Training set
TraNC Training set number configuration
TREM Training set eigenvector matrix
TROSUM Tropical summer
TROWIN Tropical winter
SI Similarity index
SID Similarity index difference
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