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Abstract. The Mineral Aerosol Profiling from Infrared Radi-
ances (MAPIR) algorithm retrieves vertical dust concentra-
tion profiles from cloud-free Infrared Atmospheric Sound-
ing Interferometer (IASI) thermal infrared (TIR) radiances
using Rodgers’ optimal estimation method (OEM). We de-
scribe the new version 4.1 and evaluation results. Main dif-
ferences with respect to previous versions are the Levenberg–
Marquardt modification of the OEM, the use of the loga-
rithm of the concentration in the retrieval and the use of
Radiative Transfer for TOVS (RTTOV) for in-line radiative
transfer calculations. The dust aerosol concentrations are re-
trieved in seven 1 km thick layers centered at 0.5 to 6.5 km.
A global data set of the daily dust distribution was generated
with MAPIR v4.1 covering September 2007 to June 2018,
with further extensions planned every 6 months. The post-
retrieval quality filters reject about 16 % of the retrievals, a
huge improvement with respect to the previous versions in
which up to 40 % of the retrievals were of bad quality. The
median difference between the observed and fitted spectra
of the good-quality retrievals is 0.32 K, with lower values
over oceans. The information content of the retrieved profiles
shows a dependence on the total aerosol load due to the as-
sumption of a lognormal state vector. The median degrees of
freedom in dusty scenes (min 10 µm AOD of 0.5) is 1.4. An
evaluation of the aerosol optical depth (AOD) obtained from
the integrated MAPIR v4.1 profiles was performed against
72 AErosol RObotic NETwork (AERONET) stations. The
MAPIR AOD correlates well with the ground-based data,

with a mean correlation coefficient of 0.66 and values as
high as 0.88. Overall, there is a mean AOD (550 nm) posi-
tive bias of only 0.04 with respect to AERONET, which is
an extremely good result. The previous versions of MAPIR
were known to largely overestimate AOD (about 0.28 for
v3). A second evaluation exercise was performed compar-
ing the mean aerosol layer altitude from MAPIR with the
mean dust altitude from Cloud–Aerosol LIdar with Orthog-
onal Polarization (CALIOP). A small underestimation was
found, with a mean difference of about 350 m (standard devi-
ation of about 1 km) with respect to the CALIOP cumulative
extinction altitude, which is again considered very good as
the vertical resolution of MAPIR is 1 km. In the comparisons
against AERONET and CALIOP, a dependence of MAPIR
on the quality of the temperature profiles used in the retrieval
is observed. Finally, a qualitative comparison of dust aerosol
concentration profiles was done against lidar measurements
from two ground-based stations (M’Bour and Al Dhaid) and
from the Cloud–Aerosol Transport System (CATS) instru-
ment on board the International Space Station (ISS). MAPIR
v4.1 showed the ability to detect dust plumes at the same
time and with a similar extent as the lidar instruments. This
new MAPIR version shows a great improvement of the accu-
racy of the aerosol profile retrievals with respect to previous
versions, especially so for the integrated AOD. It now offers
a unique 3-D dust data set, which can be used to gain more
insight into the transport and emission processes of mineral
dust aerosols.
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1 Introduction

Aerosols are solid or liquid particles such as desert dust, sea
salt, volcanic ash, sulfate, black carbon and particulate or-
ganic matter which are suspended in Earth’s atmosphere. Of
all aerosol types, windblown mineral dust is the one with the
highest mass burden, originating from soils in arid and semi-
arid regions. These small particles can be transported over
large distances to be finally deposited back on the surface of
the Earth (Knippertz and Stuut, 2014).

The presence of mineral dust in the atmosphere has conse-
quences for a wide range of aspects of life on Earth as it can
cause respiratory diseases, reduce visibility and act as a fertil-
izer both on ocean and land. But it can also alter the radiative
budget and have an impact on cloud microphysics, weather
and climate dynamics and atmospheric chemistry (Knippertz
and Stuut, 2014). Dust particles alter the radiative budget of
the Earth through the aerosol direct and indirect effect. The
direct effect is caused by the thermal emission of the dust
particles and most importantly by the absorption and scatter-
ing of the solar shortwave and thermal longwave radiation by
these particles. Dust aerosols can also act as cloud conden-
sation nuclei and alter the lifetime and properties of clouds,
thereby influencing the hydrological cycle and having an in-
direct effect on the radiation budget of the Earth (Boucher
et al., 2013). Moreover, mineral dust affects the temperature
profiles in the troposphere, which may impact the general
atmospheric stability in the boundary layer and free tropo-
sphere. All effects of aerosols on Earth’s climate are deter-
mined by a combination of their composition, size distribu-
tion and vertical distribution.

To better assess the role of mineral dust in the climate
system, it is therefore necessary to observe its composition
and distribution, vertically as well as horizontally, and an-
alyze its transport and emission processes. Ground-based
measurement stations typically offer high-quality observa-
tions of these aerosol parameters but have poor horizontal
resolution. Due to the high spatial and temporal variability of
mineral dust events, remote sensing from space is the most
adequate tool to daily monitor them at global scale.

A large effort has already been made to develop satel-
lite products for retrieving aerosol properties. The total
aerosol columnar load, expressed in aerosol optical depth
(AOD) or optical thickness (AOT), is a parameter that
many sensors provide, such as Moderate Resolution Imag-
ing Spectroradiometer (MODIS; Remer et al., 2005; Levy
et al., 2013), Advanced Along-Track Scanning Radiometer
(AATSR; Veefkind et al., 1998), POLarization and Direc-
tionality of the Earth’s Reflectances (POLDER; Deuzé et al.,
2001), Ozone Monitoring Instrument (OMI; Torres et al.,
2013) and Visible Infrared Imaging Radiometer Suite (VI-
IRS; Jackson et al., 2013). They measure in the UV, vis-
ible or near-infrared and typically report the AOD around
550 nm. Generally, these instruments also offer additional in-
formation on aerosol size, type or optical properties. How-

ever, measurements made in the UV, visible or near-infrared
are limited to daytime observations and often have difficul-
ties retrieving aerosol properties over bright surfaces such as
deserts (Xu et al., 2018). Moreover they do not provide in-
formation on the effect of mineral dust on longwave thermal
radiation, crucial for understanding the total aerosol radiative
forcing.

Hence, recently, infrared sensors have also been used to
retrieve aerosol properties. Further, these sensors allow ob-
servations to be made at nighttime. Currently, global long-
term data sets of AOD are available from infrared sen-
sors like the Atmospheric InfraRed Sounder (AIRS) and the
Infrared Atmospheric Sounding Interferometer (IASI), on
board the polar-orbiting Aqua and MetOp satellites, respec-
tively (DeSouza-Machado et al., 2010; Capelle et al., 2018;
Clarisse et al., 2019; Popp et al., 2016). They can additionally
provide dust layer mean altitude because infrared channels
are sensitive to different levels of the atmosphere. Vanden-
bussche et al. (2013) have developed a strategy to retrieve
aerosol profiles at seven distinct heights using thermal in-
frared (TIR) radiances from the hyperspectral IASI sensor,
thereby providing additional information on the daily 3-D
dust distribution on a global scale. This retrieval algorithm is
called MAPIR (Mineral Aerosol Profiling from Infrared Ra-
diances, Popp et al., 2016) and is based on Rodgers’ optimal
estimation method (Rodgers, 2000). Also Cuesta et al. (2015)
developed a method to derive dust extinction profiles with
1 km resolution at 10 µm from IASI. The main differences
between MAPIR and this alternative study are that Cuesta
et al. (2015) follow an auto-adaptive Tikhonov–Phillips-type
approach and their method has until now only been applied
to a very limited number of dust events, while MAPIR pro-
vides a global data set over a long time period using optimal
estimation. However, higher-resolution aerosol profiles are
only available with the use of active lidar instruments, such
as the Cloud–Aerosol LIdar with Orthogonal Polarization
(CALIOP) on board CALIPSO. This two-wavelength (532
and 1064 nm) polarization-sensitive lidar provides products
of aerosol backscatter and extinction with a vertical resolu-
tion of 30 m below 8.2 km and a horizontal footprint of 70 m.
Due to this small footprint, it takes 16 d to scan the whole
globe once, and therefore the spatial and temporal coverage
of CALIOP is unfortunately much more limited than that
of IASI, which offers almost global coverage twice a day.
Thus, with CALIOP it is highly likely that many mineral dust
events are missed, and it is therefore important to keep invest-
ing in the improvement of passive remote sensing retrievals.

Previous versions of the MAPIR algorithm often failed to
retrieve mineral dust over desert surfaces with low emissiv-
ity due to non-convergence or quality issues. To cope with
these weaknesses and to make the processing less costly, a
new version of MAPIR has been developed: version 4.1. In
this paper the updated algorithm is presented and evaluated,
and the work is organized as follows. First an introduction
to the IASI instrument is given in Sect. 2, together with a
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description of the instruments that were used to evaluate the
retrieved profiles. Section 3 contains the theoretical descrip-
tion of the retrieval method, the input parameters and the for-
ward model used. Afterwards, in Sect. 4 the results of the
processing of more than 10 years of IASI measurements are
discussed together with an error analysis, followed by a com-
parison with measurements from other instruments in Sect. 5
to provide a quality assessment.

2 Instruments

This study uses the data of various instruments. The spec-
tra on which the retrievals are carried out are from IASI.
The evaluation of the retrieved profiles in Sect. 5 uses prod-
ucts derived from AErosol RObotic NETwork (AERONET),
CALIOP, Cloud–Aerosol Transport System (CATS) and two
ground-based lidar instruments. In this section we describe
these instruments and their data selection.

2.1 IASI

The Infrared Atmospheric Sounding Interferometer (IASI)
is a high-resolution TIR Fourier transform spectrometer on
board MetOp-A, MetOp-B and MetOp-C satellites, launched
in October 2006, September 2012 and November 2018, re-
spectively. It is set up to provide detailed observations of the
global atmosphere for a period up to 15 years. Moreover, the
IASI-NG instrument, which will have higher resolution and
better signal-to-noise ratio, will be on board the MetOp-SG
satellites which are to be launched between 2021 and 2035,
guaranteeing continuous data up to 2040. They are on a po-
lar sun-synchronous orbit about 817 km above Earth, with an
Equator crossing time at 09:30 (21:30) mean local solar time
in descending (ascending) mode, leading to almost global
coverage twice a day per instrument. IASI is a nadir-viewing
instrument with a swath width of 2200 km (off-nadir mea-
surements with a viewing angle up to 48.3◦ on both sides of
the satellite track) that scans in 30 elementary fields of view,
each composed of four circular pixels of 12 km ground di-
ameter at nadir and up to an ellipse of 39 km by 20 km at the
extremities of the swath. It measures radiances over a spec-
tral range that extends from 645 to 2760 cm−1 with a spectral
resolution of 0.5 cm−1 after apodization and has a radiomet-
ric noise of 0.2 K in the TIR atmospheric window (Clerbaux
et al., 2009). Each spectrum is sampled every 0.25 cm−1,
providing a total of 8461 radiance channels. In the TIR part
of the IASI spectrum, as far as aerosols are concerned only
mineral dust and volcanic ash have a significant spectral sig-
nature (e.g., Maes et al., 2016).

2.2 AERONET

AERONET (AErosol RObotic NETwork) is a worldwide net-
work of around 400 permanently running ground-based sun
photometers established by NASA and PHOTONS (LOA–

CNRS) which measure atmospheric aerosol properties (Hol-
ben et al., 1998). The Cimel Electronique CE318 sun pho-
tometers perform measurements of sun irradiance in eight
spectral bands (340, 380, 440, 500, 670, 870, 940 and
1020 nm) every 15 min. For our comparisons in Sect. 5.1
we use the version 3 level 2.0 (cloud-screened and quality-
assured) Spectral Deconvolution Algorithm (SDA) retrieval
of the coarse-mode AOD at 500 nm. There is currently no
aerosol type specification in the AERONET product, and the
coarse mode mainly contains mineral dust, sea salt and/or
volcanic ash.

2.3 CALIOP

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) is an instrument on the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) plat-
form (Winker et al., 2009), launched in 2006. CALIPSO is
one of the six satellites in the A-train constellation, which
are on a sun-synchronous polar orbit at about 705 km above
Earth with an Equator crossing time at around 13:30 local
time. CALIOP has two simultaneous co-aligned lasers at 532
and 1064 nm, with a horizontal footprint of 70 m. It pro-
vides high-resolution vertical profiles of aerosol attenuated
backscatter and depolarization of which numerous data prod-
ucts can be derived, such as aerosol extinction profiles for
six aerosol types (clean marine, dust, polluted continental,
clean continental, polluted dust and smoke). For the analy-
sis in Sect. 5.2, the 5 km profile product from CALIOP data
version V4-10 is used.

2.4 M’Bour lidar

The monoaxial Cimel Micro-Pulse lidar has been contin-
uously operating at the M’Bour site (14.39◦ N, 16.96◦W)
close to Dakar, Senegal, since 2005. This site is situated in a
nature reserve, less than 100 m from the Atlantic Ocean. The
lidar provides attenuated backscatter profiles at 532 nm up
to a height of 30 km, with a vertical resolution of 15 m. The
extinction profiles are then calculated with 15 min averaged
backscatter profiles constrained by the measurements of a
co-located sun photometer, which is included in AERONET
(AErosol RObotic NETwork). Hence, the lidar ratio can be
retrieved and the related uncertainty reduced. More details on
the instrument and the inversion method used can be found
in Mortier et al. (2016).

Only cloud-free data are used for the analysis in
Sect. 5.3.1, and in order to separate dust profiles from others
we only use those profiles for which the Ångström exponent
is lower than 0.4. Indeed, in Johnson and Osborne (2011) it
is shown that the Ångström exponent is typically lower than
0.2 for dust during the GERBILS campaign over the western
region of the Sahara but with measured values up to 0.6. Our
selected threshold of 0.4 is a good compromise to be con-
servative enough but avoid the fine-mode biomass burning
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and smoke aerosols which are plausible in M’Bour during
the winter.

2.5 Al Dhaid lidar

The Multi-wavelength Raman polarization lidar PollyXT
performed continuous measurements from March to April
2018 at the Al Dhaid site (25.24◦ N, 55.98◦ E) in the United
Arab Emirates. This is a rural site located in a desert area,
about 70 km east of Dubai and 10 km from the city of Al
Dhaid. To the east the site faces some hills and mountains
(20 km away), and the sea (Gulf of Oman) is about 40 km
away.

PollyXT enables the retrieval of aerosol optical proper-
ties at three wavelengths, with an initial vertical resolution
of 7.5 m along the line of sight and an initial temporal reso-
lution of 30 s. More details of the instrument can be found in
Althausen et al. (2009) and Engelmann et al. (2016).

To evaluate the MAPIR profiles in Sect. 5.3.2, the Klett in-
version method (Klett, 1981) is applied to retrieve the aerosol
backscatter coefficients and aerosol extinction coefficients
at 355 and 532 nm, using lidar ratios of ∼ 45 and ∼ 35 sr,
which are derived using Raman inversion for nighttime li-
dar measurements (method description in Ansmann et al.,
1990; Shang et al., 2018). The volumetric depolarization ra-
tio (VDR) and linear particle depolarization ratio (PDR) at
355 and 532 nm are also derived following the procedure de-
scribed in Chazette et al. (2012).

We separate the optical properties of desert dust and
non-dust particles as a function of height, by applying the
methodology proposed by Tesche et al. (2009). According to
the literature (e.g., Groß et al., 2015; Tesche et al., 2009 and
references therein), the PDR of dust is assumed to be 0.30 at
355 nm and 0.35 at 532 nm, with a non-dust PDR of 2 % and
3 %, respectively. Due to the lidar overlap effect, the lower
range limit is at ∼ 180 m (bin 24) (Engelmann et al., 2016);
the values below are filled with the average of the 23rd to
25th bin. The final dust optical properties used in the com-
parisons were vertically smoothed by the sliding averaging
of 11 bins (∼ 82 m) and temporally averaged by 1 h.

2.6 CATS

CATS is a lidar instrument on board the International Space
Station (ISS) which provided vertically resolved cloud and
aerosol properties at 1064 nm from March 2015 until Oc-
tober 2017 (Yorks et al., 2016). CATS orbited between 375
and 435 km above Earth’s surface at a 51.6◦ inclination with
nearly a 3-day repeat cycle (McGill et al., 2015). Due to this
unique orbit path, the same location is not measured at the
same local time every day by CATS, unlike sun-synchronous
orbiting satellites like MetOp or CALIPSO.

For the study in Sect. 5.3.3, the operational level 2 extinc-
tion profiles between 0 and 5 km from version 3.00 are used,
thereby selecting only the dust aerosol types (dust, dust mix-

ture and marine mixture). Quality filtering of the CATS data
is done similarly to that in Lee et al. (2018).

3 Retrieval algorithm

This section presents the technical details of MAPIR v4.1,
which is implemented in Python. MAPIR retrieves vertical
profiles of desert dust concentration. It is an application of
Rodgers’ optimal estimation method (OEM), which is briefly
described in Sect. 3.1. Afterwards, the choice and setup of
the forward model is described, followed by a summary of
how the state vector and observation vector are composed,
together with their prior constraints.

3.1 Method

We use the notation and concepts of the optimal estimation
approach as described by Rodgers (2000). The IASI observa-
tions are represented by an m-dimensional vector y and the
unknown atmospheric state by an n-dimensional vector x.
The details of vectors x and y will be discussed in Sect. 3.3
and 3.5, respectively. The relationship between x and y can
be expressed as

y = F(x,b)+ ε, (1)

where F is the forward model, b a set of fixed model pa-
rameters and ε an error vector representing both model and
measurement errors. When a description of the atmospheric
state is given, the forward model computes the radiances at
the top of the atmosphere as it would be measured by the
IASI instrument. The radiative transfer model used here is
Radiative Transfer for TOVS (RTTOV), which will be de-
scribed in more detail in Sect. 3.2. The inverse problem con-
sists of finding a state vector that matches the observation
well enough. By comparing the simulated spectra with the
observed, a solution x̂ for the inverse problem can be found.
Since the inversion problem is ill-determined, additional con-
straints on the prior information are necessary, and x̂ is found
by minimizing a cost function χ2 determined by

χ2
= [y−F(x,b)]T S−1

ε [y−F(x,b)]

+ [x− xa]
T S−1

a [x− xa]. (2)

In the above expression, xa is the a priori state vector, Sa the
corresponding n×n covariance matrix and Sε them×mmea-
surement covariance matrix. As the forward model F(x,b)
is a complicated and nonlinear function of x, an iteration
method is required to obtain the minimum of this cost func-
tion. To ensure we reach closer to the minimum in each it-
eration step, the Levenberg–Marquardt modification of the
Gauss–Newton method is adopted (Rodgers, 2000; Leven-
berg, 1944; Marquardt, 1963). This is a new aspect with re-
spect to previous MAPIR versions, for which the ordinary
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Gauss–Newton iteration method was used. Each step can
then be described as follows:

xi+1 = xi +
(
(1+ γ )S−1

a +KT
i S−1

ε Ki

)−1

(
KT
i S−1

ε (y−F(xi))−S−1
a (xi − xa)

)
, (3)

where γ is a damping parameter that changes every itera-
tion step, and K is the weighting function matrix or Jaco-
bian, K= ∂y

∂x
. The parameter γ starts at a value of 1 and is

adapted in every step: if the cost function of the new state
vector xi+1 has increased relative to the cost function at the
previous step (χ2(xi+1) > χ

2(xi)), then the iteration step is
repeated with γ ′ = 10γ . In the case that the new cost func-
tion has decreased, the new state vector will be accepted, and
γ will be reduced by a factor of 2.

The iterations are stopped when the steps both in state
space and measurement space are small enough or after 20
steps, whereby the retrieval is signalled as unsuccessful. The
convergence criteria on the step sizes are taken from Rodgers
(2000, p. 90), with ε = 10−1.

3.2 The forward model

The optimal estimation method requires a forward model that
defines the relation between the state vector x and the ob-
servation y. The radiances as measured by the IASI instru-
ment can be simulated by the fast radiative transfer model
RTTOV v12.1 (Radiative Transfer for TOVS), developed by
the EUMETSAT Satellite Application Facility on Numerical
Weather Prediction (NWP SAF). It consists of a predictor-
based regression scheme, generated from a database of accu-
rate line-by-line transmittances computed for a set of diverse
atmospheric profiles (Saunders et al., 2017). The coefficients
for the optical depths regressions are stored in instrument-
specific coefficient files. We use the IASI v9 predictor coeffi-
cients calculated on 101 levels. The aerosols effect is calcu-
lated with the discrete ordinate method (DOM). As RTTOV
is fast and easy to use and allows for the computation of the
Jacobians (the gradient of the radiances with respect to the
state vector), it is very suitable for our retrieval approach.
In particular, it is much faster than LIDORT (Spurr, 2008),
which was used in previous MAPIR versions. The inputs to
the radiative transfer model are presented below.

To compute the top-of-the-atmosphere radiances in each
of the IASI channels, atmospheric profiles of temperature,
water vapor and aerosols are needed together with surface
parameters and a viewing geometry. The profiles of other at-
mospheric gases are taken from the suitable reference pro-
files that RTTOV provides.

The atmospheric profiles of temperature and water vapor
are taken from operational IASI level 2 products from EU-
METSAT. As no full reprocessing has been done yet, these
data are available in different versions (4 to 6), with ver-
sion 5 and 6 starting on 14 September 2010 and 30 Septem-
ber 2014, respectively. From version 6 a new retrieval method

was used which additionally includes microwave informa-
tion. It should be noted that we have observed large qual-
ity differences in our retrieved aerosol profiles between these
versions, as will be further discussed in Sect. 4. Indeed, as
the temperature profile is an essential parameter in infrared
retrievals, it has a major impact on our results.

The aerosol a priori concentrations are discussed in
Sect. 3.4. In addition, the radiative transfer model requires
some microphysical properties of the aerosols. We have cho-
sen to maintain the parameters used in previous versions of
MAPIR (Vandenbussche et al., 2013): a lognormal particle
size distribution (PSD) with a median radius of 0.6 µm and
a geometric standard deviation of 2, corresponding to an ef-
fective radius of 2 µm, and the spatially invariant and time-
constant refractive index of the GEISA–HITRAN dust-like
data set, gathered by Massie (1994) and Massie and Gold-
man (2003) from measurements by Volz (1972, 1973) and
Shettle and Fenn (1979) on transported Saharan dust.

MAPIR v4.1 is based on thermal infrared radiances; there-
fore the surface parameters – surface emissivity and surface
temperature – are of considerable importance for the mod-
eled spectrum, especially over desert areas. The surface tem-
perature is included in the retrieval (Sect. 3.3), while the sur-
face emissivity is taken from two different databases, one for
ocean and one for land surface. The ocean is very close to be-
ing a blackbody, whereby its surface emissivity is close to 1,
with a slight spectral variation. In that case, we use the emis-
sivity of Newman et al. (2005). However, over land, there is
a bigger variability. The surface emissivity varies spectrally
and slowly as a function of time, depending on the surface
composition, humidity and vegetation. Therefore, the emis-
sivity database of Zhou et al. (2011), updated in 2015, is cho-
sen for land surfaces. It is a monthly climatology at 0.25◦

horizontal resolution, obtained from IASI spectra. To retrieve
the surface emissivity, Zhou et al. (2011) assume that the
clear sky spectra (no clouds and no aerosols) coincide with
the higher radiances within a month. It is therefore highly
probable that, for places and times where dust is almost al-
ways present, the obtained emissivity is biased to low values.

3.3 State vector

The state vector contains the input parameters of the forward
model that will be optimized to fit the observation. As men-
tioned in the above section, the surface temperature is in-
cluded in the state vector because this is a dominant parame-
ter for TIR radiation. Together with the aerosol load relative
to the a priori concentration in the lowest seven layers of the
troposphere, more specifically at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5
and 6.5 km, they form the state vector of parameters we want
to retrieve from the IASI measurements. The aerosol abun-
dances are represented by their mid-layer altitudes with re-
spect to sea level. In cases in which the surface elevation is
higher than the mid-layer altitude, the corresponding abun-
dances are put to zero.
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To avoid nonphysical negative concentrations during the
iteration process, which can not be handled correctly by RT-
TOV, MAPIR v4.1 uses the logarithm of the relative aerosol
load in each layer in the iterations, which is transformed to
absolute aerosol concentrations (particles cm−3) after con-
vergence. This was not done in previous versions of MAPIR,
in which they were manually put to zero. It induces differ-
ent underlying constraints as now lognormal statistics are
assumed instead of normal. Consequently, retrievals starting
at low a priori concentrations will be more constrained then
when starting at higher concentrations (Deeter et al., 2007).
This also means that the calculation of the information con-
tent parameters will be impacted by the dust load, as will be
seen in Sect. 4.2.

3.4 A priori state vector

To retrieve a unique solution, the OEM requires a priori in-
formation of the state vector. This information is a crucial
constraint to make the inverse problem soluble.

For the dust aerosol retrievals, a monthly climatology de-
rived from CALIOP measurements between 2007 and 2014
by the National Observatory of Athens (Amiridis et al., 2013,
2015) is used. This 3-D database provides high-resolution
dust extinction profiles at 532 nm globally on a 1◦× 1◦ hor-
izontal grid. The extinction at 532 nm is then converted to
concentration (particles cm−3) using an extinction cross sec-
tion computed with Mie code and the PSD and refractive in-
dex described above. To assure data in each grid cell and con-
tinuity between adjacent cells, a running mean of the data set
is calculated along 5◦× 5◦.

The additional constraints on the inverse problem require
an a priori covariance matrix Sa. The diagonal elements are
represented by the square of the standard deviation of the
individual elements of the state vector x. These standard de-
viations are taken to be 50 % of the a priori concentrations,
and the off-diagonal elements are filled according to a verti-
cal Gaussian correlation of 1 km length.

The a priori surface temperature (Ts) is taken from IASI
level 2 data, or the ECMWF ERA-Interim reanalysis skin
temperature for dates before 14 September 2010 as the IASI
temperatures were too unrealistic before, in level 2 version
4. Due to the difference in the heat capacity of land and
ocean, the surface temperature over land varies much more
over time. This effect is even greater in arid regions where
the temperatures fluctuate highly during the day. Therefore
we believe existing databases of ocean Ts are more reliable
than land Ts, and the standard deviation of Ts is set at 15 K
over land and at 5 K over ocean surfaces.

3.5 Observation vector

The observation vector y contains the radiances as observed
by IASI, in brightness temperature. To save computation
time, y does not hold the complete spectrum but only the

radiances in three spectral bands: 905–927, 1098–1123 and
1202–1204 cm−1. The selection of these wave numbers is
based upon the sensitivity to retrieve mineral dust profiles
and is discussed in Vandenbussche et al. (2013). Together
with the observation vector, a measurement covariance ma-
trix Sε is defined. Although the reported spectral noise is
0.2 K (Clerbaux et al., 2009), we increase this instrumental
error by a factor of 5 and thus use Sε = I to also take into
account the uncertainties of the forward model and input pa-
rameters which are currently not modeled.

Only cloud-free observations can be used for the retrieval.
To filter out the cloud spectra, the operational IASI level 2
cloud product is used with a threshold limit of 10 %. We
have observed that dense aerosol scenes are occasionally
misflagged as clouds within this product, for example the
center of a big dust plume. It is important to note that this
will lead to some discarded IASI scenes in which there was
actually a huge amount of dust.

4 Results

In the context of the C3S aerosols project, more specifically
Copernicus Climate Change Service C3S_312a Lot 5, more
than 10 years of IASI data has been processed. This data set
starts on 25 September 2007, ends on 30 June 2018 and al-
lows us to assess the quality of MAPIR v4.1. The processing
is continued within C3S_312b Lot 2, every 6 months. For
example, the retrievals until December 2018 will be deliv-
ered in February 2019. For technical reasons linked to the
unavailability of the IASI spectra under the principal com-
ponent score format before 22 February 2011, only a part of
the globe has been processed for that period: the so-called
“dust belt”, with longitudes between 80◦W and 120◦ E and
latitudes between 0 and 40◦ N. From that date on, the IASI
spectra are available in principal component scores, and the
whole globe is processed. However the latitudes above 60◦ N
and below 60◦ S, where generally no desert dust aerosols
are present, were neglected to save computational resources.
Currently, only the data from IASI on MetOp-A have been
processed.

To additionally reduce the computational power needed
for this large data set, we applied a dust filter before under-
taking the retrievals. To avoid missing too many dust events,
we ran all retrievals in the dust belt area given in Fig. 1 and
defined as follows: latitude between 5◦ S and 45◦ N, longi-
tude between 20◦W and 120◦ E and latitude between 5◦ S
and 30◦ N, longitude between 80 and 20◦W.

Outside this area we always performed the retrieval when
the surface emissivity was below 0.85 in any channel because
those are potential desert areas. When the surface emissivity
was higher than 0.85 the MAPIR retrievals were only per-
formed when the following criterion on the slope of the spec-
trum was met:

BT1155−1160−BT1082−1087 > 0.5K, (4)
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Figure 1. Map of the world with the red box defining the dust belt area where all MAPIR retrievals are undertaken (if cloud fraction is
smaller than 10 % and no problem with input level 1 and level 2 data is detected).

where BT stands for brightness temperature, and
BT1155−1160 is the average BT between 1155 and 1160 cm−1,
and this is similar for the second wave number range.

This large set of almost 11 years of MAPIR data allows
us to perform reliable statistics to determine the value of the
updated retrieval algorithm MAPIR v4.1. In the following
the general performance of the retrieval will be discussed,
followed by an analysis of the information content and an
example of MAPIR v4.1 output.

4.1 General performance of the retrieval

The quality of the retrievals can be described using different
parameters. Here we will evaluate the quality filter, conver-
gence rate and the spectral residuals to get an idea of the
overall performance of MAPIR v4.1.

To discard unreliable results, we apply a post-retrieval
quality check with the following criteria: the root mean
square of the spectral residuals (RMSSR), being the differ-
ence between the modeled spectrum with the final state vec-
tor and the observed spectrum, must be smaller than 1 K
(which is about 5 times the IASI radiometric noise in the
TIR), the 10 µm AOD must be below 5 and the retrieved sur-
face temperature (Ts) should be between 200 and 350 K. The
criteria on AOD and Ts are mainly to avoid cloudy scenes
which were not detected by the operational IASI level 2
cloud product. We find that 84 % of the retrievals pass the
post-retrieval quality check and thus are said to be of good
quality. There is good coverage of the Sahara and Sahel re-
gions, while this was one of the main shortcomings in ear-
lier MAPIR versions. Indeed, when we apply the same qual-
ity filter on the data set produced with MAPIR v3 under the
European Space Agency Climate Change Initiative Phase 2
(Popp et al., 2016), only 59 % is accepted. Even though this
previous data set covers only the dust belt region up to De-

cember 2016, it is clear that MAPIR v4.1 performs better.
Further, we observe an increase of quality through the time
series, with a yearly ratio of good-quality retrievals between
71 % and 85 % until 2014 and above 90 % after 2014. This
is probably due to the different versions (and quality) of the
EUMETSAT IASI l2 products for temperature profiles that
are used for the retrievals (see in Sect. 3.2) of which the most
recent, version 6, starts on 30 September 2014. Indeed, the
temperature profile is crucial for computing the radiative im-
pact of dust aerosols, and biased temperature profiles cer-
tainly lead to biased dust aerosol profiles.

As previously mentioned, we want the iteration scheme to
find convergence within 20 steps. If this is not the case, the
retrieval is killed and flagged as failed. We do this mainly
for computational reasons but also because in these cases it
is very likely that the assumed ancillary data, such as surface
emissivity, temperature or aerosol properties, are too far from
reality. The convergence rate was improved in MAPIR v4.1
by including the Levenberg–Marquardt modification. We see
that only 0.6 % of all attempted retrievals have to be stopped
after 20 iterations, which is less than the 0.78 % with MAPIR
v3. Those that fail are likely cloudy scenes that were not cor-
rectly filtered out or scenes in which the real situation was
not well enough represented by the used parameters. The re-
trievals were usually completed after two iteration steps. For
the good-quality retrievals, we observe an average number
of iterations of 2.93 and a median of 2. Only 5 % of the re-
trievals that pass the quality filter needed more than six iter-
ation steps to converge.

To assess the quality of the converging retrievals that pass
our aforementioned quality filter, we look at the values of the
RMSSR. Due to the quality filter, they are all between 0 and
1 K, but there are more residuals close to 0 K as the median
RMSSR is 0.32 K. Furthermore we see a mean of 0.39 (σ 2

=
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0.05). Overall, the observed spectra are well reproduced by
the simulated spectra, within error bounds.

4.2 Information content

To correctly interpret and use this data set of dust profiles,
it is necessary to also consider the averaging kernels and de-
grees of freedom. The averaging kernels (AKs) represent the
vertical sensitivity of the retrieved profiles, while the degrees
of freedom (DOF), which is the trace of the AK matrix, give
an estimate of the number of independent pieces of informa-
tion that is contained in the measurement.

Rodgers’ OEM provides a way to calculate the AK matri-
ces (Rodgers, 2000), but as we implemented the Levenberg–
Marquardt (LM) method, this computation has to be adapted.
Ceccherini and Ridolfi (2010) give a detailed description of
how to deal with the AK matrix in such cases. It takes into
account both the LM damping term γ and all the iteration
steps that were required to reach the minimum of the cost
function. They are calculated as follows:

A= TrK, (5)

where K is the Jacobian matrix of the forward model with
respect to the state vector in the true profile, and Tr is a recur-
sively calculated matrix which depends on the path in the pa-
rameter space followed by the minimization procedure. The
recursive formula for the matrices Ti is given by{

T0 = 0
Ti+1 = SiKT

i S−1
ε +

(
I−SiKT

i S−1
ε Ki −SiS−1

a
)

Ti
, (6)

with Si = S−1
a +KT

i S−1
ε Ki and Ki the Jacobian with respect

to the state vector at step i.
The shape of the averaging kernels is quite variable; an

example is given in Fig. 2. Two profiles are given, together
with their a priori profile, averaging kernels and degrees of
freedom.

The shape of the AKs includes information on the ver-
tical resolution of the retrieval. In Fig. 2 we see they are
quite broad, with overlapping peak altitudes, which suggests
that adjacent retrieved aerosol concentrations are correlated.
In addition, the peaks of the AK clearly coincide with the
retrieved aerosol peaks. Indeed, as noted by Deeter et al.
(2007), the averaging kernels tend to be smaller when there
are low concentrations and larger at high aerosol concen-
trations, as a consequence of using a logarithmic state vec-
tor. When summing up the diagonal elements of A, we get
a value for the degrees of freedom for signal. It describes
the number of independent pieces of information that can be
retrieved from the observation. However, due to the differ-
ent underlying constraints when performing lognormal re-
trievals, retrievals in very dusty regions are less constrained
by the a priori profile and relatively more sensitive to the true
profile, thereby increasing the DOFs (Deeter et al., 2007).
Indeed, in the more dusty scenes we observe a median DOF

of 1.4 and a mean of 1.43 (σ 2
= 0.15). In clear regions, the

DOFs can be very low, as also illustrated in the next section .

4.3 Global distribution

MAPIR v4.1 results for both the morning and evening over-
pass on 9 June 2018 are presented in Fig. 3. Maps of the
AOD at 10 µm are plotted together with the corresponding
DOF and RMSSR. Areas on the AOD maps with missing
data correspond to areas which were identified as cloudy by
the operational IASI level 2 cloud product, areas where the
retrieval did not pass our quality filter or where there were no
IASI data. On the DOF and RMSSR maps, areas that were
not treated due to our complex dust filter discussed in the in-
troduction of this section are also omitted. In the AOD map,
these areas are considered to have an AOD of 0.

To calculate the MAPIR 10 µm AOD, we sum the aerosol
concentrations (particles cm−3) in each layer multiplied by
its thickness and multiply this by the extinction cross section
at 10 µm as calculated with Mie theory. In Fig. 3a and b we
can observe several dust events occurring on that day. Major
amounts of dust are emitted in the center of the Sahara, while
a plume is being transported from the Sahara over the At-
lantic Ocean. The apparent discontinuity along the west coast
of Africa (which can be better seen in Fig. 4) is probably
caused by the shape of the dust plume itself. This event ob-
served by MODIS shows similar patterns (the data can be vi-
sualized at https://worldview.earthdata.nasa.gov, last access:
3 July 2019). However, a small area near the south coast of
Mauritania, where the MAPIR AOD is low compared to its
surroundings, shows relatively high RMSSR values almost
reaching our quality filter of 1 K. This could indicate that
MAPIR slightly underestimates the dust load in that partic-
ular area. Near the coast of Oman, in the northern part of
the Arabian Sea, another transported plume is visible on the
AOD plots. Additionally, we also observe dust emissions in
northern India and the Taklamakan desert during daytime and
around the southern part of the Red Sea during nighttime.

In Fig. 3c and d the DOFs are plotted for each retrieved
aerosol profile. They are clearly connected to the AOD val-
ues: in areas with a high dust load the degrees of freedom go
up to 2, while in clear areas we observe values close to 0. In-
deed, as mentioned before, the averaging kernels and DOFs
are linked with the retrieved aerosol loads because of the con-
straints associated with using a lognormal state vector.

In Fig. 3e and f the global distribution of the RMSSR of
the good-quality retrievals on 9 June 2018 is presented. These
values seem to be randomly distributed over the globe, not re-
lated to the dust load. However, the RMSSR is clearly smaller
over ocean than over land. This is most likely due to the lower
uncertainty on ocean surface properties compared to land.

Figure 4 shows a cross section of the retrieved dust distri-
bution on the morning of 9 June 2018 to have more detail on
the events detected in Fig. 3a. The plume over the Atlantic
Ocean is indeed transported dust, at an elevated altitude of
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Figure 2. Averaging kernels and associated retrieved profile at two different locations: (a, b) 14.97◦ N, 23.7◦ E on 12 March 2016 and (c,
d) 28.99◦ N, 5.3◦ E on 27 May 2016. Degrees of freedom (DOFs) are also given.

approximately 3–4 km. Over the Sahara, big amounts of min-
eral aerosols are emitted in the troposphere up to 5 km, with
the highest load near the surface. This suggests that these ar-
eas are possible dust sources. Finally, the plume near the Gulf
of Oman is spread over different altitudes. It is likely that the
dust was emitted over land near the coastline (around 60◦ E)
and then transported both over the Arabian Sea and landward
over the Arabian Peninsula.

5 Evaluation

To evaluate the MAPIR v4.1 dust profiles, comparisons with
recognized independent data sets are needed. First we exam-
ine the AERONET data set, comparing the integrated profiles
resulting in the AOD, as this is the most common reported
dust feature. Second, we compare the mean altitude of the
aerosol layer from MAPIR (i.e., altitude for which half the
aerosols are below and half above) to the mean altitude of
the dust aerosols from measurements by CALIOP on board
CALIPSO. As there is a time lag of 3 to 5 h between IASI
and CALIOP overpass times, a transport model is used to
model the air mass movement during that time. However,
over dust source areas, this might not be sufficient, as an
emission event could occur at the IASI overpass time and
be finished at the CALIOP overpass time, with a part of the
dust quickly deposited and a part transported. In that case,
the two instruments would observe completely different air
masses and vertical profiles of dust, and the transport model
may not be sufficient to account for that difference. There-
fore, as a final exercise, we provide a qualitative compari-

son of MAPIR dust profiles with other lidar measurements,
close to dust source areas, for which a shorter time differ-
ence is possible (1 h). These lidar measurements are from
two ground-based instruments at M’Bour (Senegal) and Al
Dhaid (United Arab Emirates) and from the Cloud–Aerosol
Transport System (CATS) instrument on board the Interna-
tional Space Station (ISS).

5.1 AOD evaluation with AERONET

We compare the MAPIR 10 µm AOD with in situ measure-
ments at AERONET sites. As AERONET provides only day-
time measurements of AOD in the visible range of the spec-
trum, we have to be careful when comparing them to our
thermal infrared AOD values. Therefore only the IASI mea-
surements at local morning are used here, and the MAPIR
AOD values at 10 µm are converted to a visible equivalent
at 550 nm using the ratio of extinction cross sections at both
wavelengths. The values of these extinction cross sections
are calculated according to Mie theory with the aerosol char-
acteristics as mentioned in previous sections and are thus de-
pendent on the chosen microphysical properties. As we as-
sume spherical particles with a fixed size distribution and
refractive index, these microphysical properties can devi-
ate from reality, and significant uncertainty is introduced by
this conversion. Indeed, a sensitivity analysis performed by
Capelle et al. (2014) shows the impact of the dust aerosol mi-
crophysical properties on the infrared to visible conversion.

Comparisons are then made for the AERONET stations
for which there are enough data to match the IASI measure-
ments. There should be at least 100 matches over the whole
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Figure 3. (a, b) Maps of the aerosol optical depth (AOD) at 10 µm on 9 June 2018, calculated by integrating the retrieved aerosol profiles
and multiplying them by the extinction cross section. (c, d) Maps of the degrees of freedom (DOF), June 2018. (e, f) Maps of the root mean
square of the spectral residuals (RMSSR). Daytime (nighttime) measurements on the left (right) correspond to a mean local solar time of
09:30 (21:30) when crossing the Equator.

period (from 25 September 2007 until 30 June 2018). The
matches should be close both in time and space and are found
as follows: we take those IASI measurements which are
within 0.25◦ of an AERONET station, and for each of them
we take the AERONET measurement closest in time with
a maximum 1 h time difference. Furthermore, and as also
done by Capelle et al. (2018), we eliminate those matches
for which the measured differences are beyond the 97th per-
centile as we believe these are caused by bad input data. By
removing these questionable data we can better assess the
true quality of the retrieval.

Finally, we considered only sites for which the median of
the AERONET coarse-mode AOD at 500 nm over the con-
sidered time period is higher than 0.05. As mentioned in
Sect. 2.2, the coarse-mode AOD contains all coarse-mode
aerosols, i.e., mainly dust, sea salt and volcanic ash. The se-
lection therefore does not ensure the presence of only dust
at the selected AERONET sites. This leads to a set of 72
stations spread over different regions. A list of the sites in-
cluding their coordinates can be found in Appendix A.

For each of the 72 stations, we calculated the Pearson
correlation coefficient between the AERONET AOD and
the MAPIR AOD. Figure 5 shows the stations on a map
with their corresponding correlation in color; the exact val-
ues can be found in Appendix A. Overall we see a strong
agreement between MAPIR-retrieved AOD and AERONET-
measured AOD. More than 93 % of the matched AERONET
stations have a moderate ([0.4, 0.59]), strong ([0.6, 0.79]) or
very strong ([0.8, 1.0]) positive correlation with the MAPIR-
retrieved AOD. Moreover we see a mean Pearson correla-
tion coefficient of 0.66 for all stations. The coastal stations
where the presence of sea salt aerosols plausibly impacts
the AERONET coarse-mode AOD and its correlation with
MAPIR dust AOD are indicated with an asterisk in Table A1.

In the northern part of India all stations have a strong
or very strong Pearson correlation coefficient, ranging from
0.71 at Pantnagar to 0.86 at Gual Pahari, with a mean of 0.78
over 14 stations.

The region just north and south of the Sahara covers sta-
tions with an overall good correlation. There is for instance
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Figure 4. Cross section of MAPIR dust profiles on 9 June 2018. The first plot gives a map of the retrieved daytime 10 µm AOD on a 0.5◦

by 0.5◦ grid over the region we are interested in. The black line represents the locations along which the cross section in the second plot is
given. Each profile of the cross section is an average of all profiles within 0.5◦ of the transect line.

a very strong correlation of 0.86 at São Tomé. However, two
stations in the center of the Sahara and Sahel region only
have a moderate positive correlation, with a coefficient of
0.41 and 0.49 at Tamanrasset and Zinder Airport, respec-
tively. The Tamanrasset AERONET station is located in the
south foothills of the Hoggar Mountains in Algeria at al-
most 1400 m altitude and at the northeast limit of a main
source area (Schepanski et al., 2012; Ashpole and Washing-
ton, 2013; Todd and Cavazos-Guerra, 2016). It is therefore
surrounded by very different air masses in different direc-
tions, which is expected to lead to noisy comparisons when
using our simple criterion of distance between a IASI foot-
print center and the AERONET station. Zinder, on the other
hand, is a city in the south of Niger, and we see no reason
concerning the location of the Zinder AERONET station to
justify the lower correlation. However, the station at Zinder
seems to have almost only AERONET measurements dur-
ing dust seasons and big events and very few from back-
ground situations, which can lead to biased statistics. Still
it remains unclear why the retrieval shows such weak perfor-
mance at higher aerosol loads near Zinder. As both Taman-
rasset and Zinder AERONET stations are situated in the Sa-
hara and Sahel, this mismatch between AERONET AOD and
MAPIR AOD could also point to an incorrect surface emis-
sivity there, as the data set of Zhou et al. (2011) used might
be biased by the presence of aerosols in dusty regions.

The transport of the Saharan desert dust across the Atlantic
Ocean is observed at several stations in the Caribbean, such
as Camagüey, Guadeloupe, Cape San Juan and La Parguera.
With correlation coefficients ranging from 0.54 to 0.73, they
show a moderate to strong correlation between AERONET
and MAPIR AOD of coarse-mode transported dust. How-
ever, these are coastal stations where the coarse mode prob-
ably contains sea salt aerosols with a possible impact on the
AERONET coarse-mode AOD.

Three of the sites with a weak or very weak correlation
are situated in the North and South American continents, in
areas not known for the presence of dust: Arica, Bakersfield
and UPC-GEAB-Valledupar. Arica is a coastal station, po-
tentially experiencing sea salt aerosols. For the other 2 sta-
tions, the reason for the discrepancy is not clear.

Another AERONET station with a weak correlation is
Kuwait University. As there is a second AERONET station
very close by, Shagaya Park, which has a strong correla-
tion of 0.66, it is not immediately a sign of incorrect per-
formance of the MAPIR retrieval. Moreover, the AERONET
data at Shagaya Park are from the period between 2015 and
2016, while the data at Kuwait University are from 2008 to
2010. This means this discrepancy could also be caused by
the quality improvement of the water vapor and temperature
profiles of the operational IASI l2 data over that time pe-
riod. Indeed, the co-located retrievals at Shagaya Park use
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the better IASI l2v6 temperature profiles, while the retrievals
at Kuwait University were computed using profiles from the
IASI l2v4 product.

Apart from the Pearson correlation coefficient, we calcu-
lated a linear regression line for every station of which the
slope and intersection of the y axis can be found in Ap-
pendix A. We see that overall the slope is around 1, or slightly
below, with a median of 0.71. These lower values for the re-
gression slope might indicate an underestimation of the con-
version factor used for transforming the infrared AOD to its
visible equivalent. The y interception is close to 0 almost ev-
erywhere, with a median value of 0.06.

To illustrate the similarities and differences between
MAPIR AOD and AERONET AOD in an alternative way,
Fig. 6 shows time series for the AOD at four AERONET
stations. The dates that are plotted are those for which
AERONET data are available at that particular station. In
agreement with the good correlation coefficients, we see
that the MAPIR AOD reproduces the AERONET AOD well
throughout the year at these sites. At sites like Masdar Insti-
tute and Koforida, the big AOD variation is reproduced by
the MAPIR AOD. At Tunis Carthage, where there is in gen-
eral a lower AOD, MAPIR sometimes misses a peak in AOD,
leading to a small underestimation of the AOD by MAPIR at
that station. Another way of showing this are the plots in the
second column of Fig. 6. It presents a scatter plot of the AOD
differences in function of the size of the AERONET AOD.
Additionally, the data per station are split into AOD bins of
equal quantity. Binned medians (black dots) and interquartile
ranges (IQRs; vertical black lines) of the AOD differences
are shown on the plots. For example at Tunis Carthage, we
see in the AOD difference scatter plot that most of the obser-
vations are low AOD cases with small positive bias; four out
of the five AOD bins are situated below 0.1. The AOD bin of
larger AOD values shows a slightly negative bias; thus they
are generally underestimated. This negative trend, a positive
bias for low AOD and a negative bias for higher AOD, is to
some extent present at the other stations in Fig. 6 too.

Figure 7a shows the same kind of plot but for all
AERONET stations combined and split up into 10 bins of
equal size. The total number of points used for these statis-
tics is 76 976, for the whole time period over the 72 se-
lected AERONET stations. The binned medians show that
the low AOD cases (AOD< 0.1) have a small positive bias,
the cases with AERONET AOD between 0.1 and 0.4 have
almost no bias, though a bigger spread, and the most dusty
scenes (AOD> 0.4) show a small negative bias. The imag-
inary line that is visible in the lower left part of the scatter
plot is due to the positivity constraint on the AOD values.
This constraint is probably the main cause for the small posi-
tive bias for low AOD cases. Moreover, as the distribution of
AOD is skewed to the right, it will affect the overall bias.

When calculating the mean difference of all matched AOD
measurements, we observe a small positive bias of only 0.04
(σ = 0.16) with respect to AERONET. In Fig. 7b the asso-

ciated difference histogram is given. The root mean square
error (RMSE) between all matched AOD values is 0.17, and
more than 70 % of the absolute differences fall below 0.1.
These numbers show that AOD values retrieved by MAPIR
v4.1 are quite reliable, and most importantly, MAPIR is im-
proved with respect to its previous versions. Indeed, in Popp
et al. (2016) a similar comparison with AERONET AOD
was done using MAPIR v3. With a bias of 0.28, MAPIR
v3 showed a significant overestimation, which is now almost
gone.

5.2 Altitude evaluation with CALIOP

The aerosol altitude from the updated MAPIR algorithm
was evaluated by comparing it with altitudes from CALIOP.
The fact that the MAPIR a priori profiles are obtained from
CALIOP measurements does not invalidate the MAPIR eval-
uation with CALIOP data. A monthly climatology over
8 years is used for the a priori profiles (i.e., for each month,
the mean profile from the same month from 8 years of
CALIOP data), with a running mean over 5◦ latitude and lon-
gitude as detailed in Sect. 3.4, while the evaluation is done
by comparing single co-located measurements. The com-
parison was made following the methodology described in
Kylling et al. (2018). Within the region of interest the closest
CALIOP swaths in time and space to the MAPIR dust pixels
were identified. Due to different Equator crossing times be-
tween the CALIPSO and MetOp satellites and the possible
transport of dust, a co-location criterion of maximum 5 h and
500 km was used for a first selection of CALIOP data. Only
CALIOP data with vertically continuous dust profiles and
cloud discrimination values between−100 and−20 (Winker
et al., 2013) were retained for further analysis. CALIOP
dust altitudes were calculated for the remaining profiles and
moved in time and space to the IASI overpass time using
the FLEXTRA trajectory model (Stohl et al., 1995). Finally,
co-location of the CALIOP and MAPIR dust altitudes was
checked, and maximum differences of 20 km were allowed.
CALIOP profiles do not provide a unique dust altitude. Here
we use the same CALIOP altitudes as Kylling et al. (2018),
namely the purely geometric mean altitude (mean of the bot-
tom and top altitudes of the dust layer) and the cumulative
extinction altitude (dust altitude set to altitude at which the
cumulative extinction at 532 nm is half of the total extinc-
tion column). The 5 km profile product from CALIOP data
version V4-10 was used for the comparison. The compari-
son is made for two periods. The first period is identical to
the same time and region used by Kylling et al. (2018): 18–
27 March, 22 May–1 June, 1–12 July and 14–20 Septem-
ber in 2010, totalling 40 d. These dates cover four desert dust
events in the region between 0–40◦ N and 80◦W–120◦ E. The
second period covers four dust events in 2017: 21–30 April,
plumes over Africa, Middle East and Asia, mainly over land;
3–12 July, large plume over Africa with massive transport
to America and some plumes over the Middle East and In-
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Figure 5. Map of the 72 AERONET stations that were matched with IASI measurements. The color scale represents the value of the Pearson
correlation coefficient between the AERONET SDA coarse-mode AOD and the MAPIR AOD converted to 550 nm.

dia; 1–10 October, some dust over Africa and some activity
in the Taklamakan area, Middle East and India; and 21–30
December, Sahel plumes and East Asia dust. For 2017 the
full region between 60◦ S–60◦ N and 180◦W–180◦ E was in-
cluded in the analysis. The findings for the MAPIR dust al-
titude comparison with CALIOP dust altitudes are summa-
rized in Table 1.

The table includes the 2010 data from the comparison pre-
sented in Kylling et al. (2018) for MAPIR v3.2 and v3.4.

For 2010 the previous MAPIR version in general overesti-
mated both the cumulative extinction (by 0.357 to 1.008 km)
and geometric mean (by 0.038 to 0.340 km) dust altitudes
from CALIOP. MAPIR v4.1 generally underestimates the
CALIOP dust altitudes by −0.148 to −0.567 km (cumu-
lative extinction) and by −0.822 to −1.035 km (geomet-
ric mean). The reason for this is most likely because the
previous MAPIR version retrieved the dust concentrations
on levels starting at an altitude of 1 km. MAPIR v4.1 re-
trieves layer concentrations with the lowest layer between 0
and 1 km. Thus, the new MAPIR version will give a lower
mean dust altitude compared to the previous versions. The
difference between the cumulative extinction and geometric
mean altitude is about the same for both versions. However,
MAPIR v4.1 gives a consistently smaller standard deviation
by about 0.1 km. The percentage of MAPIR altitudes within
the CALIOP dust layer is somewhat smaller for MAPIR v4.1
and especially for CALIOP daytime measurements over the
ocean. However, for nighttime CALIOP measurements over
the ocean MAPIR v4.1 places more dust altitude within the
CALIOP dust layer.

For 2017 a smaller difference between MAPIR and
CALIOP dust altitudes is observed compared to 2010. We
also note that the standard deviation for most cases (CALIOP

night data over land being an exception) is smaller for the
2017 comparison. This may be due to the improved IASI
temperature profiles available for the 2017 analysis as noted
in Sect. 4.1. For both periods included in the comparison
the agreement is better for night than day CALIOP measure-
ments. It is noted that CALIOP daytime measurements gen-
erally are more noisy than nighttime measurements. We also
observe a lower standard deviation over ocean than over land.
This is probably linked to the fact that retrievals over ocean
are less uncertain: the surface emissivity and temperature are
more stable. In addition, the plume height is more constant
over ocean (no local source), therefore less deviating from
the a priori profile.

5.3 Qualitative profile comparison

In this section an effort is made to analyze the full MAPIR
aerosol profiles. As the two previous sections already contain
a comprehensive evaluation study on the AOD and aerosol
layer mean altitude, here only a qualitative profile com-
parison is done. Thus, we need data sets containing high-
resolution aerosol profiles that are close to IASI data in both
time and space. This small difference in time is very impor-
tant, especially over source areas. We selected two ground-
based lidar sites at relevant locations which offer aerosol
extinction profiles with a very small time lag with IASI:
M’Bour in Senegal and Al Dhaid in the United Arab Emi-
rates (UAE), operated by the Laboratory of Atmospheric Op-
tics (University of Lille, CNRS) and the Finnish Meteorolog-
ical Institute, respectively. The M’Bour site is situated on the
coast of the Atlantic Ocean in the Sahel region, where large
amounts of dust are emitted yearly. The Al Dhaid site is lo-
cated on the Arabian Peninsula and also frequently experi-
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Figure 6. Time series of the available AERONET data at four stations in the first column: Koforidua ANUC, Oujda, Masdar Institute and
Tunis Carthage. The black dots are the AERONET SDA coarse-mode AOD, and the red dots are the matched MAPIR AOD converted to
550 nm. The second column gives the corresponding scatter plots of the difference between the matched observations, together with the
median and interquartile range (IQR) of five bins of equal size. The location of each AERONET site is given in the third column.

ences dust events. They are therefore both relevant locations
to study dust distribution. Additionally, we will explore data
from the Cloud–Aerosol Transport System (CATS) on board
the International Space Station (ISS) to look for interesting
profile comparisons. A description of these instruments was
given in Sect. 2.

For each independent data set we co-locate the measure-
ments with our IASI data in time and space. The matching
criteria however differ slightly between data sets. For the
ground-based lidar sites at M’Bour and Al Dhaid we select
the IASI measurements that are within 0.5◦ of the station and
within 1 h of a lidar measurement. We compare the average
of the MAPIR retrievals with the lidar profile averaged over
a certain time period. At M’Bour, we take the average of all
lidar profiles within an hour before the first IASI measure-
ment and an hour after the last. At Al Dhaid we compare
a lidar profile that is averaged over 1 h centered around the
expected IASI overpass time. These differences in the tem-

poral co-location arise from the difference in the available
data from the two stations. For the CATS data, we loop over
all points on the ISS orbit in steps of 0.25◦. We compare the
average CATS extinction profiles within 0.25◦ of the points
with the average of MAPIR retrievals around the points, only
if the time difference is less than 1 h.

To account for the different resolution between the
MAPIR and the various higher resolved lidar profiles, a
smoothing is applied to the regridded lidar profile xL by the
MAPIR AK:

x′
L = xa exp

(
A ln

(
xL

xa

))
, (7)

where x′
L is the smoothed or convolved lidar dust profile,

and xa and A are the MAPIR a priori profile and AK. Equa-
tion (7) is based on the smoothing equation of Rodgers
(2000) but transformed to suit our state vector. If the li-
dar measurement is the true atmospheric profile, then the
smoothed lidar profile x′

L represents how our observing sys-
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Figure 7. MAPIR AOD, converted to 550 nm, versus the AERONET SDA coarse-mode AOD difference distribution. (a) Scatter plot of
the AOD difference in function of the AERONET AOD (red dots), for all considered stations combined. Data are split into 10 bins of
equal quantity; corresponding binned median (black dots) and interquartile range (IQR, vertical black lines) are shown. (b) AOD difference
histogram.

Table 1. The mean± the standard deviation of the dust altitude difference between the MAPIR and CALIOP dust altitudes and the number
(no.) of co-located points. The inlay is the percentage of MAPIR altitudes that are within the CALIOP layer. MAPIR 3.2/3.4 results are taken
from Kylling et al. (2018).

Year 2010 2010 2017

Algorithm MAPIR v3.2/v3.4 MAPIR v4.1 MAPIR v4.1

CALIOP altitude Cumulative Geometric Cumulative Geometric Cumulative Geometric
extinction mean extinction mean extinction mean

CALIOP, all data (day and night, ocean and land)

Altitude difference (km) 0.590± 1.213 0.078± 1.108 −0.361± 1.090 −0.871± 1.047 −0.322± 1.044 −0.640± 1.031
Points (no.) 2620 2408 2575 2358 2304 2244
Inlay (%) 83.1 81.1 79.8 77.9 77.2 76.6

CALIOP day, land

Altitude difference (km) 0.357± 1.665 0.087± 1.572 −0.567± 1.535 −0.888± 1.435 −0.452± 1.160 −0.633± 1.146
Points (no.) 605 598 607 597 1097 1100
Inlay (%) 58.5 57.7 63.2 63.0 69.1 69.1

CALIOP day, ocean

Altitude difference (km) 0.783± 0.913 0.340± 1.187 −0.456± 1.076 −0.850± 1.021 −0.225± 0.709 −0.535± 0.768
Points (no.) 172 170 204 204 312 313
Inlay (%) 74.4 72.4 58.5 57.6 72.8 71.9

CALIOP night, land

Altitude difference (km) 0.567± 1.020 0.038± 0.903 −0.314± 0.920 −0.822± 0.896 −0.181± 1.064 −0.625± 1.017
Points (no.) 1501 1330 1390 1228 689 661
Inlay (%) 91.0 89.4 85.8 84.3 85.5 85.5

CALIOP night, ocean

Altitude difference (km) 1.008± 0.741 0.094± 0.678 −0.148± 0.670 −1.035± 0.666 −0.247± 0.556 −0.943± 0.553
Points (no.) 342 310 374 329 206 170
Inlay (%) 96.5 95.8 96.2 93.9 99.5 100.0
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Figure 8. Mineral dust profile comparison at M’Bour site (Senegal) from 1 January to 1 March 2015. Panel (a) gives the lidar data (extinction
profiles at 532 nm) as provided for this study. In panel (b), the lidar data smoothed according to Eq. (7) are presented, for those times when
there is a co-located MAPIR profile. Panel (c) presents the MAPIR profiles over time averaged around the M’Bour site.

tem, the combination of the IASI instrument and the MAPIR
retrieval method, would retrieve it considering the limitations
of the system (Rodgers and Connor, 2003). The lidar profiles
both before and after smoothing will be presented.

5.3.1 M’Bour lidar

Some comparisons between the filtered extinction profiles
from the M’Bour lidar and the retrieved MAPIR dust pro-
files can be found in Figs. 8 and 9. They cover the 2-month
periods January–February 2015 and March–April 2016, re-
spectively. Given that both aerosol profiles are reported in
different units and measured by other instruments, the results
from this comparison should be treated with caution. For ex-
ample in Fig. 8, if the colors representing the extinction at
532 nm differ from the colors representing particle density,
this difference can be caused by the conversion factor used
or by errors in either the lidar or MAPIR retrievals. It is more
reliable to study the extent of the dust plumes in both data
sets and verify if the occurrence of dust events is detected at
the same time. This argument also applies for the analyses
performed in the following subsections.

During winter 2015, M’Bour experiences dust events al-
most every day, as can be seen in the first plot of Fig. 8.

These dust plumes roughly stretch between 0 and 2 km alti-
tude, except in about mid-February when there is an elevated
layer around 3 km. These features can be seen in the MAPIR
profiles too. There is some amount of aerosols present at all
co-located MAPIR retrievals in this period (see lowest plot
in Fig. 8). The load is concentrated close to the surface with
different intensities, the larger corresponding with the big-
ger events detected by the lidar. Moreover the higher dust
layer around 17 February is also detected by MAPIR. When
comparing the smoothed lidar profiles (middle plot in Fig. 8)
with the MAPIR retrievals, we come to similar conclusions.
However, the intensity of dust events is probably sometimes
underestimated by MAPIR. In January and February 2015,
we see that in general MAPIR is good at detecting the dust
events near M’Bour and additionally retrieves the vertical ex-
tent quite well.

Figure 9 shows the dust distribution near M’Bour in the
spring of 2016. Again, mineral aerosols are detected on a
daily basis, with occasionally some larger events. In the mid-
dle and end of April, there are large dust plumes reaching
an altitude of 4 and 5 km, respectively. Unfortunately, there
are no co-located MAPIR profiles of good quality during the
first event, although a small part of it can still be seen in the
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Figure 9. Same as Fig. 8 but for 1 March to 1 May 2016.

MAPIR profile on 18 April, when it gets the same vertical
extent as the lidar profile. The second event is better cov-
ered by MAPIR, which reproduces the plume seen by the
lidar adequately. The smoothed lidar profiles agree well with
the MAPIR profiles in April but less in March. In particu-
lar on 19 March 2016, the averaged MAPIR profiles near
M’Bour show a very high dust concentration around 2–3 km,
which is not seen in the lidar profiles. The reason for this
rather contradictory result is not completely clear but might
be caused by a bad retrieval for that comparison. Among the
averaged profiles, we observe a retrieval with an unrealistic
surface temperature of more than 340 K; hence this differ-
ence is most probably due to a problem in the IASI data.
Despite some differences in the comparisons, we believe that
MAPIR observes the mineral dust profiles near M’Bour ade-
quately, taking into account its limitations. This qualitative
analysis of aerosol profiles at M’Bour supports our confi-
dence in the value of the new MAPIR algorithm.

5.3.2 Al Dhaid lidar

A comparison of the 2-month measurements (March to
April 2018) at Al Dhaid with the MAPIR profiles is given
in Fig. 10. In general there are no large dust plumes detected
by the lidar in March 2018. There is one event on 11 March
for which the lidar at Al Dhaid detects a high aerosol load be-

tween 0 and 2 km altitude, but there is no co-located MAPIR
profile of good quality to compare it with. In the evening of
17 and 18 March, there is a faint elevated dust layer around
2 km that is seen by both the lidar and MAPIR. Likewise, the
amount of aerosols concentrated below 1 km in the morn-
ing of 18 March is detected by both instruments. The second
half of March does not contain any interesting events. How-
ever, the MAPIR profiles seem to have an almost continuous
dust plume in the lowest layer, not as much detected by the
lidar. The concentrations are relatively small, and since the
observing system has a low sensitivity in these cases, this
background plume is probably linked to the a priori profile.
It is also possible that the mean values of the lidar in the
first layer are underestimated because the lower range limit
of the lidar is about 180 m above ground level (Engelmann
et al., 2016). Finally, the high aerosol concentration around
9 March as retrieved by MAPIR is probably the result of a
bad retrieval. Since the retrieval passed all quality filters, it
could also point to a problem in the ancillary data.

During April 2018, more interesting dust plumes pass
nearby Al Dhaid. On 1 and 2 April, the lidar observes a
dust layer reaching 2 and 4 km, respectively, which is sim-
ilar to what MAPIR observes. However, MAPIR retrieves a
much higher aerosol concentration near the surface. The dust
plumes around 13 and 17 April are detected by both instru-
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Figure 10. Mineral dust profile comparison at the Al Dhaid site (UAE) from 1 March to 1 April 2018. Panel (a) gives the lidar data (extinction
profiles at 532 nm) as provided for this study. In panel (b), the lidar data smoothed according to Eq. (7) are presented, for those times when
there is a co-located MAPIR profile. Panel (c) presents the MAPIR profiles over time averaged around the Al Dhaid site.

ments, with similar ranges. Another event occurs on 22 and
23 April. The lidar at Al Dhaid as well as the MAPIR re-
trievals close by show larger dust signatures in that period.
However, they do not completely agree on the altitudes of
the layer.

Overall, this shows that MAPIR is reliable for the detec-
tion of mineral aerosols and even for the extent of the plumes;
yet based on the comparisons of this 2-month period, a small
overestimation of the lowest layer aerosol load near Al Dhaid
appeared.

5.3.3 CATS

There were 1780 occurrences for which CATS and IASI
measurements could be co-located close both in time and
space, not all of them containing interesting dust events. Two
examples for which high aerosol concentrations were ob-
served are plotted in Figs. 11 and 12. They cover the Sahel
on 16 February 2017 and the western region of the Sahara on
19 June 2015, respectively.

In Fig. 11 we see a spatially extended dust plume over the
Sahel, with high concentrations relatively close to the sur-
face. The width of the layer varies between 1 and 2 km, al-
ways reaching the ground. Similar features are observed by

MAPIR: an almost continuous, very dense surface layer of
mineral aerosols along the track. The plume never reaches an
altitude higher than 4 km. A bit further down the track, the
dust plume is more elevated and spread out around 2–3 km
height. Even though the load has decreased significantly, it is
still detected by both CATS and IASI instruments.

Figure 12 presents another profile comparison of co-
located CATS and IASI measurements. It shows several dust
plumes over the Sahara in the evening of 19 June 2015. Both
CATS and MAPIR retrieve a very dense plume extending
from the surface to 5 km altitude around 6◦ E. Additionally,
more westward two elevated layers around 5 km and 3–6 km
can be observed by the two sensors. Since both CATS and
MAPIR show such a good agreement, both in the detection
of dust events and the extent of dust plumes, this is another
example of the performance of MAPIR v4.1.

6 Discussion, conclusion and further work

In this work, we describe and provide an evaluation of the
updated Mineral Aerosol Profiling from Infrared Radiances
(MAPIR) algorithm version 4.1, retrieving dust aerosol con-
centration profiles in seven 1 km thick layers centered at 0.5
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Figure 11. Mineral dust profile comparison along the CATS track on 16 February 2017. Panel (a) gives the global retrieved AOD by MAPIR
together with the pathway of CATS that could be co-located with IASI in time and space. The part which corresponds to the plotted profiles
below is given in pink. It covers the Sahel region. Panel (b) shows the dust extinction profiles along the pink track, as measured by CATS. In
panel (c), the CATS data smoothed according to Eq. (7) are presented, for those locations for which there is a MAPIR profile. Finally, panel
(d) presents the averaged MAPIR profiles along the track.

to 6.5 km altitude, using the optimal estimation method ap-
plied on thermal infrared radiances measured by the Infrared
Atmospheric Sounding Interferometer on board the MetOp
satellite series. The new version of MAPIR was developed
to cope with known issues of earlier versions: the high frac-
tion of bad retrievals over Sahara and Sahel regions (about
40 % on average), the huge overestimation of the aerosol op-
tical depth (AOD; overestimated on average by 0.28) and the
large computation time. The main modifications to the algo-
rithm are (1) a faster radiative transfer (RT) model Radiative
Transfer for TOVS (RTTOV) to replace LIDORT, (2) the use
of the logarithmic concentrations in the retrieval to avoid nu-
merically plausible but nonphysical negative concentrations
and (3) the addition of the Levenberg–Marquardt modifica-
tion of the OEM for a better and faster convergence. All input
parameters, such as the IASI level 1 spectra, aerosol proper-
ties, temperature and humidity profiles and other ancillary
data remain unchanged with regard to the previous MAPIR
versions.

Using concentrations in the logarithmic space induces dif-
ferent underlying constraints on the state vector than before.

In cases with high aerosol concentrations, the retrievals will
be less constrained by the a priori profile and more sensi-
tive to the true profile. Conversely, retrievals are more con-
strained in regions with low aerosol concentrations (Deeter
et al., 2007).

MAPIR v4.1 has been applied to almost 11 years of IASI
measurements, resulting in a large data set that makes it
possible to accurately assess the quality of the updated al-
gorithm. The results show a significant increase in retrieval
quality (from 40 % to 16 % bad retrievals) and convergence
(from about 0.8 % to 0.6 % non-converging). There is an in-
crease of MAPIR data quality over time, most likely due to
the evolution of the different EUMETSAT IASI level 2 prod-
ucts for temperature profiles used in MAPIR retrievals. The
goodness of fit of the retrievals (after quality filtering) is rep-
resented by a median root mean square of the spectral resid-
uals of 0.32 K.

The information content of the retrievals is assessed
through the so-called averaging kernels (AKs) obtained from
the OEM. The trace of these AKs provides the number of
degrees of freedom (DOF) or independent pieces of informa-
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Figure 12. Same as Fig. 11 but with a co-located track on 19 June 2015. The pink track covers the western region of the Sahara.

tion which can be retrieved from the observations, consider-
ing the instrumental noise and the a priori knowledge of the
atmosphere. For dusty scenes (AOD≥ 0.5) there is a median
DOF of 1.4. For non-dusty scenes, the DOF can be very low
due to the constraints associated with lognormal retrievals.

This new 3-D data set of mineral dust has been evalu-
ated using data from the ground-based AERONET network,
the CALIOP satellite data, data from the CATS instrument
on board the international space station and data from two
ground-based lidar sites, at M’Bour (Senegal) and Al Dhaid
(United Arab Emirates).

First, a selection of 72 AERONET sites was used to com-
pare the dust AOD obtained from the integrated MAPIR pro-
files to the AERONET SDA coarse-mode AOD at 500 nm.
Overall there is a strong correlation of up to 0.88, especially
over northern India and Sahara and Sahel regions. A limited
number of stations show a weaker correlation for various rea-
sons: a specific station location between different air masses,
biased statistics due to misrepresentation of the actual AOD
distribution at a specific station, AERONET SDA being sen-
sitive to another type of coarse-mode aerosol than dust or
unrealistic MAPIR retrieval input data (temperature profiles,
surface emissivity) leading to lower-quality retrieved infor-
mation. However, in general MAPIR is quite good at repro-
ducing AERONET AOD, with a mean positive AOD bias

of only 0.04 over all stations along the whole time series.
The AOD overestimation observed with previous versions of
MAPIR is therefore now solved.

The MAPIR mean dust layer altitudes were compared with
the CALIOP geometric mean and cumulative extinction dust
layer altitudes. In these comparisons, the time difference be-
tween IASI and CALIOP (3 to 5 h) is accounted for, us-
ing the FLEXTRA transport model to simulate the transport
of the air masses observed by CALIOP backwards in time
to the IASI observation time. MAPIR v4.1 underestimates
the CALIOP cumulative extinction and geometric mean dust
layer altitudes for the 2017 sample by 0.322± 1.044 km and
0.640±1.031 km, respectively. Considering that the MAPIR
profiles are retrieved with a resolution of 1 km, this compar-
ison shows that the dust layer altitude from MAPIR v4.1
is rather accurate. The standard deviation of the difference
between the MAPIR and CALIOP altitude is consistently
smaller by about 0.1 km for MAPIR v4.1 compared with
earlier MAPIR versions. Furthermore, comparing 2010 and
2017 results, the improved IASI temperature profiles (from
EUMETSAT), used as input to our retrievals, appear to lead
to smaller differences between MAPIR and CALIOP alti-
tudes.

Finally, the full vertical profiles were qualitatively com-
pared with data from two ground-based lidar sites and from
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the CATS instrument. A total of 4 months of lidar measure-
ments at M’Bour near Dakar, Senegal, were compared with
the associated MAPIR profiles. Both instruments detected
similar dust plumes at the same times. In Al Dhaid, United
Arab Emirates, almost all dust events that were detected by
the lidar during the 2-month comparison period were also
seen in the MAPIR data. However, MAPIR also detects a
constant low-altitude low concentration dust layer not seen
with the lidar. A very good agreement was obtained when
comparing the MAPIR profiles with the measured extinction
by CATS. MAPIR showed the ability to reproduce the CATS
dust plumes both at low and high altitudes over bright sur-
faces, such as Sahara and Sahel. Overall, these qualitative
profile comparisons give us confidence in the competence of
MAPIR to retrieve mineral aerosol profiles. In particular, the
full profile comparisons were selected as being in areas close
to sources, where the temporal difference with CALIOP does
not ensure that both instruments observe the same air mass,
while with CATS and the ground-based instruments a max-
imum time difference of 1 h was accepted for the compar-
isons.

We have shown that the new MAPIR algorithm provides
reliable AOD, dust layer mean altitude and dust vertical pro-
files. Together with the extensive spatial and temporal cover-
age of IASI, MAPIR v4.1 is a new powerful tool to improve
the understanding of the 3-D dust distribution over time.

Future work to further improve the MAPIR algorithm can
include the better characterization of the dust aerosols. Pos-
sible improvements are the use of more recent refractive in-
dex data, for example those of Di Biagio et al. (2017) and
the use of a bimodal particle size distribution. Both represent
significant scientific work: the development of an automated
selection of the best refractive index and/or the retrieval of an
additional parameter, i.e., the ratio between the two modes of
the particle size distribution. In addition, assuming nonspher-
ical particles would make the aerosol representation more re-
alistic, which is especially important for the conversion to
visible AOD. Further, the product would benefit from a bet-
ter cloud and dust filter. An improved cloud filter would add
valuable information on the most intense dust events as these
are often missed now, being misflagged as clouds in the oper-
ational IASI level 2 cloud product. Finally, as the retrieval is
much affected by the quality of surface emissivity and tem-
perature profiles, improved data sets of these input parame-
ters could also increase the accuracy of MAPIR in the future.

Data availability. Under the Copernicus Climate Change Service
aerosols project, the MAPIR dust 10 µm and 550 nm AOD and the
MAPIR dust aerosol mean altitude were submitted to the Coperni-
cus Climate Data Store, where they are currently undergoing tech-
nical processing. The full profiles (and the AOD and mean altitude)
from MAPIR are available upon request to the authors.
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Appendix A: AERONET - MAPIR data

This appendix contains additional data from the compari-
son between AOD at AERONET stations and AOD from
MAPIR. In Table A1 a list of the AERONET stations that
were used for this study is given, together with their coordi-
nates and correlation parameters.

Table A1. List of the 72 AERONET sites selected for the evaluation study, together with their geographical coordinates and the results
from the regression analysis: geographical location, latitude, longitude, number of observations used in the analysis, Pearson correlation
coefficient between AOD at the site and MAPIR, slope and y intersection of the regression line. The standard deviation of the correlation
and regression parameters is also given. Coastal sites where the AERONET coarse-mode AOD is potentially impacted by sea salt are marked
with an asterisk after their name.

Site Geogr. terr. Lat. (◦) Long. (◦) No. Corr. σcorr Slope σslope Inters. σinters

Abu Al Bukhoosh* UAE 25.50 53.15 355 0.73 0.04 0.48 0.02 0.14 0.01
Alboran* Spain 35.94 −3.35 191 0.71 0.05 0.56 0.04 0.05 0.01
Arica* Chile −18.47 −70.31 493 0.07 0.05 0.03 0.02 0.03 0.00
Bakersfield USA 35.33 −119.00 715 0.22 0.04 0.68 0.12 0.04 0.01
Bambey-ISRA Senegal 14.71 −16.48 157 0.75 0.05 0.86 0.06 −0.02 0.03
Barbados SALTRACE* Barbados 13.15 −59.62 133 0.66 0.07 0.51 0.05 0.06 0.01
Beijing-CAMS China 39.93 116.32 1562 0.64 0.02 0.89 0.03 0.12 0.00
Beijing China 39.98 116.38 833 0.71 0.02 0.75 0.03 0.14 0.00
Beijing RADI China 40.00 116.38 172 0.85 0.04 1.09 0.05 0.12 0.01
Ben Salem Tunisia 35.55 9.91 514 0.79 0.03 0.80 0.03 0.06 0.00
Blida Algeria 36.51 2.88 800 0.73 0.02 0.70 0.02 0.05 0.00
Cairo EMA 2 Egypt 30.08 31.29 2022 0.66 0.02 0.60 0.02 0.03 0.00
Calhau* Cabo Verde 16.86 −24.87 391 0.75 0.03 0.65 0.03 0.09 0.01
Camagüey* Cuba 21.42 −77.85 1347 0.54 0.02 0.52 0.02 0.00 0.00
Cape San Juan* Puerto Rico 18.38 −65.62 1052 0.71 0.02 0.53 0.02 0.02 0.00
Cabo Verde* Cabo Verde 16.73 −22.94 177 0.75 0.05 0.64 0.04 0.09 0.02
CUT-TEPAK* Cyprus 34.67 33.04 1206 0.61 0.02 0.46 0.02 0.04 0.00
Dakar* Senegal 14.39 −16.96 2410 0.57 0.02 0.62 0.02 0.13 0.01
Dhadnah* UAE 25.51 56.32 496 0.74 0.03 0.74 0.03 0.10 0.01
Dhaka University Bangladesh 23.73 90.40 794 0.77 0.02 0.76 0.02 0.01 0.00
Dushanbe Tajikistan 38.55 68.86 2084 0.74 0.02 0.74 0.02 0.04 0.00
Eilat* Israel 29.50 34.92 2243 0.51 0.02 0.55 0.02 0.07 0.00
Gandhi College India 25.87 84.13 1377 0.74 0.02 0.87 0.02 0.09 0.01
Guadeloupe* France/Carribean 16.22 −61.53 903 0.73 0.02 0.57 0.02 0.01 0.00
Gual Pahari India 28.43 77.15 473 0.86 0.02 0.92 0.03 0.08 0.01
Hada El-Sham Saudi Arabia 21.80 39.73 469 0.60 0.04 0.58 0.04 0.21 0.01
ICIPE-Mbita Kenya −0.43 34.21 826 0.54 0.03 0.47 0.03 0.02 0.00
IER Cinzana Mali 13.28 −5.93 114 0.84 0.05 0.79 0.05 0.08 0.02
Ilorin Nigeria 8.48 4.67 1340 0.85 0.01 0.71 0.01 0.13 0.01
IMS-METU-ERDEMLI* Turkey 36.56 34.26 2498 0.27 0.02 0.15 0.01 0.06 0.00
Jaipur India 26.91 75.81 2651 0.81 0.01 1.00 0.01 0.11 0.00
Kanpur India 26.51 80.23 2751 0.81 0.01 0.86 0.01 0.10 0.00
Karachi Pakistan 24.95 67.14 1344 0.76 0.02 0.74 0.02 0.08 0.01
Kathmandu-Bode Nepal 27.68 85.39 505 0.79 0.02 0.92 0.02 −0.00 0.00
KAUST Campus* Saudi Arabia 22.30 39.10 1550 0.67 0.02 0.56 0.02 0.12 0.00
Koforidua ANUC Ghana 6.11 −0.30 404 0.86 0.03 0.65 0.02 0.11 0.01
Kuwait University Kuwait 29.32 47.97 299 0.19 0.06 0.47 0.14 0.34 0.06
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Table A1. Continued.

Site Geogr. terr. Lat. (◦) Long. (◦) No. Corr. σcorr Slope σslope Inters. σinters

Lahore Pakistan 31.48 74.26 1254 0.72 0.02 0.86 0.02 0.15 0.01
La Laguna* Tenerife 28.48 −16.32 1621 0.69 0.02 0.68 0.02 0.04 0.00
Lampedusa* Italy 35.52 12.63 1690 0.46 0.02 0.31 0.02 0.07 0.00
La Parguera* Puerto Rico 17.97 −67.05 2679 0.72 0.01 0.61 0.01 0.01 0.00
Lumbini Nepal 27.49 83.28 582 0.82 0.02 0.94 0.03 0.09 0.01
Mandalay MTU Myanmar 21.97 96.19 383 0.73 0.04 0.75 0.04 0.02 0.00
Masdar Institute* UAE 24.44 54.62 1530 0.79 0.02 0.80 0.02 0.09 0.00
MCO-Hanimaadhoo* Maldives 6.78 73.18 1362 0.62 0.02 0.45 0.02 0.02 0.00
Mezaira UAE 23.10 53.75 1905 0.48 0.02 0.75 0.03 0.12 0.01
Mussafa* UAE 24.37 54.47 563 0.82 0.02 0.64 0.02 0.09 0.01
Myanmar Myanmar 16.86 96.15 154 0.54 0.07 0.45 0.06 0.02 0.00
Nainital India 29.36 79.46 361 0.77 0.03 1.27 0.06 0.03 0.01
NEON GUAN* Puerto Rico 17.97 −66.87 197 0.58 0.06 0.50 0.05 0.03 0.00
Nes Ziona* Israel 31.92 34.79 1675 0.63 0.02 0.54 0.02 0.07 0.00
New Delhi IMD India 28.59 77.22 168 0.82 0.04 1.00 0.05 0.08 0.02
New Delhi India 28.63 77.18 134 0.76 0.06 0.71 0.05 0.15 0.02
NUIST China 32.21 118.72 182 0.52 0.06 0.55 0.07 0.11 0.02
Oujda Morocco 34.65 −1.90 1438 0.88 0.01 0.89 0.01 0.04 0.00
Pantnagar India 29.05 79.52 318 0.71 0.04 0.82 0.05 0.09 0.01
Ragged Point* Barbados 13.17 −59.43 2271 0.66 0.02 0.55 0.01 0.02 0.00
Saada Morocco 31.63 −8.16 364 0.79 0.03 0.95 0.04 0.05 0.01
SACOL China 35.95 104.14 410 0.94 0.02 0.99 0.02 0.04 0.01
Santa Cruz Tenerife* Tenerife 28.47 −16.25 2620 0.57 0.02 0.53 0.02 0.05 0.00
São Tomé* São Tomé and Príncipe 0.37 6.71 96 0.86 0.05 0.87 0.05 0.00 0.01
SEDE BOKER Israel 30.86 34.78 3525 0.64 0.01 0.62 0.01 0.05 0.00
Shagaya Park Kuwait 29.21 47.06 156 0.65 0.06 0.46 0.04 0.02 0.01
Solar Village Saudi Arabia 24.91 46.40 1996 0.57 0.02 0.52 0.02 0.11 0.01
Taihu China 31.42 120.22 361 0.64 0.04 0.80 0.05 0.04 0.01
Tamanrasset INM Algeria 22.79 5.53 3187 0.41 0.02 1.04 0.04 0.41 0.01
Tizi Ouzou Algeria 36.70 4.06 1177 0.70 0.02 0.68 0.02 0.06 0.00
Tunis Carthage Tunisia 36.84 10.20 1196 0.70 0.02 0.57 0.02 0.05 0.00
UPC-GEAB-Valledupar Colombia 9.56 −73.33 111 −0.11 0.09 −0.07 0.07 0.04 0.00
Weizmann Institute* Israel 31.91 34.81 944 0.71 0.02 0.61 0.02 0.06 0.00
XiangHe China 39.75 116.96 2744 0.60 0.02 0.70 0.02 0.13 0.00
Zinder Airport Niger 13.78 8.99 203 0.49 0.06 0.70 0.09 0.24 0.04
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