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Abstract. Determination of cloud condensation nuclei
(CCN) number concentrations at cloud base is important to
constrain aerosol–cloud interactions. A new method to re-
trieve CCN number concentrations using backscatter and ex-
tinction profiles from multiwavelength Raman lidars is pro-
posed. The method implements hygroscopic enhancements
of backscatter and extinction with relative humidity to de-
rive dry backscatter and extinction and humidogram param-
eters. Humidogram parameters, Ångström exponents, and li-
dar extinction-to-backscatter ratios are then linked to the ra-
tio of CCN number concentration to dry backscatter and ex-
tinction coefficient (ARξ ). This linkage is established based
on the datasets simulated by Mie theory and κ-Köhler theory
with in-situ-measured particle size distributions and chem-
ical compositions. CCN number concentration can thus be
calculated with ARξ and dry backscatter and extinction. An
independent theoretical simulated dataset is used to validate
this new method and results show that the retrieved CCN
number concentrations at supersaturations of 0.07 %, 0.10 %,
and 0.20 % are in good agreement with theoretical calculated
values. Sensitivity tests indicate that retrieval error in CCN
arises mostly from uncertainties in extinction coefficients and
RH profiles. The proposed method improves CCN retrieval
from lidar measurements and has great potential in deriv-
ing scarce long-term CCN data at cloud base, which benefits
aerosol–cloud interaction studies.

1 Introduction

Anthropogenic activities have caused an increase in atmo-
spheric aerosols, and some of the aerosol particles affect
the climate by serving as cloud condensation nuclei (CCN).
CCN in clouds can modify cloud-forming processes and
cloud microphysical properties (Rosenfeld et al., 2014). Al-
though numerous impacts of aerosol–cloud interactions on
radiative forcing (McCoy et al., 2017; Zhou et al., 2017),
precipitation (Xu et al., 2017; Fan et al., 2018), cloud elec-
trification (Wang et al., 2018), and severe weather or hazards
(Fu et al., 2017) have been discovered, constraining the rela-
tionships between aerosols and clouds is still a big challenge
(Seinfeld et al., 2016). Lacking the knowledge of aerosol–
cloud interactions limits our ability to estimate climate forc-
ing caused by aerosols (Boucher et al., 2013).

Aerosol CCN supersaturation activation spectrum is one
of the most critical parameters to quantify aerosol–cloud
interactions (Schmale et al., 2018). Despite the fact that a
large number of CCN number concentrations near ground
have been measured worldwide (Tao et al., 2018a), ground-
measured CCN may not represent CCN at cloud base that al-
ter clouds directly. Obtaining CCN near cloud base becomes
a crucial issue. Cloud base CCN can be measured in situ on
aircraft platforms, but airborne measurements have the limi-
tations of huge costs and discontinuity. Satellites have diffi-
culty observing CCN at cloud base because clouds can ob-
scure aerosol signals beneath them. Rosenfeld et al. (2016)
have proposed an alternative approach for satellites to re-
trieve CCN concentrations using clouds as CCN chambers;
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however, employing CCN concentrations derived with this
strategy limits our exploration of the relationship between
CCN concentrations and cloud droplet concentrations in the
natural environment. So far, CCN concentrations at cloud
base are scarce for aerosol–cloud interaction studies.

Ground-based lidars can continuously provide optical
properties of aerosol particles from ground up to cloud base
(Mattis et al., 2016; Li et al., 2019), suggesting great poten-
tial in deriving CCN concentrations near cloud base. Ghan
and Collins (2004) propose a simple method to infer CCN
profiles with the combination of surface in situ CCN and
aerosol optical measurements. The method is only appli-
cable when the boundary layer is well mixed from sur-
face to cloud base (Ghan et al., 2006). Mamouri and Ans-
mann (2016) investigate the potential of single-wavelength
polarization lidar to retrieval CCN for three aerosol types
(desert, nondesert continental, and marine). The polariza-
tion lidar can separate desert and nondesert by means of the
particle linear depolarization ratio. Based on datasets from
multiyear AErosol RObotic NETwork (AERONET) obser-
vations, valid relationships are found between particle ex-
tinction coefficients, and number concentrations of particles
with dry radius larger than 50 nm (for nondesert and marine)
and 100 nm (for desert). CCN concentrations at different su-
persaturations are parameterized with the particle number
concentration derived from extinction profiles according to
aerosol types. The consideration of the hygroscopicity of am-
bient particles is empirical. In addition, single-wavelength li-
dar also lacks sufficient information to quantify particle num-
ber concentration, which will bring large uncertainty on CCN
retrieval.

Multiwavelength Raman lidars (MWRLs) have been in-
creasingly used to detect aerosol vertical distributions in re-
cent years. The principle of MWRLs allows independent re-
trieval of particle backscatter (β) and extinction coefficients
(α), which provides more information about particle micro-
physical properties (Müller et al., 2016). The 3β+2αMWRL
systems (backscatter coefficients at 355, 532, and 1064 nm
and extinction coefficients at 355 and 532 nm) have been
widely recommended to derive particle microphysical prop-
erties (Burton et al., 2016). Existing approaches to retrieve
CCN using MWRLs are based on microphysical inversion
techniques. Lv et al. (2018) build a lookup table based on
AERONET datasets to retrieve particle number size distribu-
tions from backscatter and extinction profiles. Then assumed
activation critical diameters according to aerosol type classi-
fication together with the retrieved optically equivalent par-
ticle size distributions are utilized to calculate CCN concen-
trations. It is worth noting that most of the foregoing meth-
ods implement crude particle type classification to determine
particle hygroscopicity.

There are three major challenges in CCN concentration
retrieval with lidars. The first is the conversion of lidar-
derived optical properties into particle number concentra-
tions. High uncertainties of retrieved particle number con-

centrations could be an important source of CCN retrieval
error. The second one is the determination of particle hygro-
scopicity in order to evaluate the ability of particles to par-
ticipate as CCN. Particle hygroscopicity, which is highly re-
lated to chemical composition and the aging/coating effect,
is found to cause nonnegligible variations in cloud droplet
activation (Hudson, 2007; Zhang et al., 2017). The last is the
influence of high relative humidity (RH) near clouds. Aerosol
particles are likely to be humidified in the ambient environ-
ment, and the consequent changes in optical properties make
CCN retrieval more challenging. Most studies working on
CCN retrieval with MWRLs mainly focus on deriving par-
ticle number concentrations, but seldom commence to solve
the issue of hygroscopicity.

In recent years, several aerosol hygroscopic studies based
on lidar measurements have been carried out (Fernández et
al., 2018; Lv et al., 2017; Bedoya-Velásquez et al., 2018).
Backscatter and extinction enhancement factors can be de-
rived with lidar measurements and RH profiles. The enhance-
ment factor, which is associated with both particle size and
hygroscopicity (Kuang et al., 2017), is defined as

fξ (RH,λ)=
ξ (RH,λ)
ξ (RHref,λ)

, (1)

where fξ is the enhancement factor of the optical property
ξ (backscatter or extinction) at a specific light wavelength λ
and RH, and RHref is the reference RH value. Many stud-
ies manifest that lidar-derived enhancement factors are in
good agreement with in situ measurements (Wulfmeyer and
Feingold, 2000; Pahlow et al., 2006; Fernández et al., 2015;
Rosati et al., 2016). Feingold and Morley (2003) demon-
strate that the extent of backscatter and extinction enhance-
ments hints at the ability of particles to serve as CCN. Tao
et al. (2018b) use in-situ-measured light-scattering enhance-
ment factors to predict NCCN at 0.07 % supersaturation, and
the result shows strong consistency with the CCN counter.

In this paper, a new method to retrieve CCN number con-
centrations for 3β + 2α MWRL systems is proposed. Dif-
ferent from the foregoing approaches which use AERONET
datasets, we use in-situ-measured microphysical and chem-
ical data in this study. Theoretical simulations based on in
situ measurements are carried out to seek the relationship
between CCN number concentrations and lidar-derived op-
tical properties. The simulation implements κ-Köhler theory
(Petters and Kreidenweis, 2007) to describe particle hygro-
scopic growth and activation processes. Mie theory (Bohren
and Huffman, 2007) is utilized to calculate particle backscat-
ter and extinction coefficients from in-situ-measured aerosol
microphysical and chemical properties. The enhancements of
backscatter and extinction with RH are introduced to quan-
tify particle hygroscopicity instead of using empirical es-
timation according to aerosol type classification. The new
method is applicable to well-mixed aerosol layers. We take
datasets in the North China Plain (NCP) as an example of
this method. The NCP is influenced by heavy and complex
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pollution, which shows strong characteristics of continental
aerosols. Mineral dust and marine particles are not consid-
ered in this study.

The paper is structured as follows. The filed campaign and
in situ measurements are introduced in Sect. 2.1. Section 2.2
briefly introduces the simulations to calculate CCN number
concentrations, backscatter, and extinction coefficients from
in-situ-measured microphysical and chemical data. The new
CCN retrieval method for MWRLs is described in Sect. 3.1
in detail. Sensitivity of the method to the systematic and ran-
dom errors of backscatter, extinction, and RH is tested in
Sect. 3.2. Results and discussions are given in Sect. 4. Sec-
tion 5 summarizes the paper.

2 Data

Since it is not easy to accumulate large datasets of simulta-
neous measurements of lidar and aircraft, ground-measured
aerosol microphysical and chemical data are used to simu-
late lidar-derived backscatter and extinction coefficients and
corresponding CCN number concentrations. The simulations
are based on κ-Köhler theory and Mie theory. The required
datasets include particle number size distribution (PNSD),
black carbon (BC) mass concentrations (mBC), mixing state
of BC-containing particles, and size-resolved hygroscopicity.
The simulation results are used to establish and validate the
new retrieval method.

2.1 Datasets of aerosol microphysical and chemical
properties

In-situ-measured aerosol properties were collected from five
field campaigns at three different measurement sites in
the NCP. The measurement sites are located at Wuqing
(39◦23′ N, 117◦01′ E, 7.4 m a.s.l.) in Tianjin, Xianghe
(39◦45′ N, 116◦58′ E, 36 m a.s.l.), and Wangdu (38◦40′ N,
115◦08′ E, 51 m a.s.l.) in Hebei Province. The specific lo-
cations, topographical information, and pollution status of
these measurement sites are shown in Fig. S1 in the Supple-
ment. These three sites all lie inside the polluted NCP region
and are highly representative of the polluted background (Xu
et al., 2011; Bian et al., 2018; Sun et al., 2018). Time periods,
measured parameters, and corresponding instruments of the
individual campaign are listed in Table 1.

During these field campaigns, except measurement for
size-resolved chemical compositions, ambient particles were
drawn in through a PM10 inlet (16.67 L min−1), passed
through a silica gel diffusion drier, and then were split into
different instruments. All instruments were operated at RH
less than 30 %.

The particle number size distributions (PNSDs) were mea-
sured with the combination of a twin differential mobility
particle sizer (TDMPS, IfT, Leipzig, Germany) or a scanning
mobility particle size spectrometer (SMPS) and an aerody-

namic particle sizer (APS, TSI, Inc., Shoreview, MN USA,
model 3320 or model 3321). The statistical information
about the measured PNSDs is shown in Fig. 1a. The peaks
of the PNSDs are at about 100 nm (diameter in log scale),
which shows strong characteristics of continental aerosols.

The black carbon (BC) mass concentrations (mBC) were
measured by a multi-angle absorption photometer (MAAP,
Thermo, Inc., Waltham, MA USA, model 5012). As for mix-
ing states of BC, BC and other non-absorbing compositions
were found to be both externally mixed and core–shell mixed
during the campaigns (Ma et al., 2012). The mass fraction of
externally mixed BC (rext) is defined to quantify the mixing
states of BC:

rext =
mext_BC

mBC
, (2)

where mext_BC is the mass concentration of externally mixed
BC. According to Ma et al. (2012), rext can be retrieved from
hemispheric backscattering fractions (HBFs) measured by an
integrating nephelometer (TSI, Inc., Shoreview, MN USA,
model 3563).

Size-resolved chemical compositions all come from cam-
paign C2. The size-resolved aerosol sampling was carried out
with a 10-stage Berner low-pressure impactor (BLPI). Chem-
ical species including inorganic ions (NH+4 , Na+, K+, Mg2+,
Ca2+, NO−3 , SO2−

4 , Cl−), elemental carbon, organic carbon,
water-soluble organic carbon, and some other species such
as dicarboxylic acids were analyzed from sample substrates.
After transforming the ambient wet aerodynamic diameters
into dry volume-equivalent diameters, size-resolved κ dis-
tributions were derived from measured size-resolved chem-
ical compositions. The chemical compositions are found to
be size dependent during campaign C2, especially the mass
fraction of organic matter (Liu et al., 2014). A total of 25
typical size-resolved κ distributions in the NCP are given in
Fig. 1b. The measured size-resolved κ distributions vary a lot
and cover a wide range of aerosol hygroscopicity (Kuang et
al., 2018). More details about the measurements can be found
in Liu et al. (2014).

2.2 Datasets of CCN number concentrations and
lidar-derived optical properties

In-situ-measured aerosol properties mentioned above are uti-
lized to calculate CCN number concentrations and particle
backscatter and extinction coefficients based on κ-Köhler
theory and Mie theory. For each simultaneously measured
PNSD, mBC, and rext (16 183 sets of data), simulations are
carried out with every one of the 25 size-resolved κ distribu-
tions.

CCN number concentrations can be calculated with PNSD
and size-resolved κ distributions based on the κ-Köhler equa-
tion. Petters and Kreidenweis (2007) introduce the κ-Köhler
equation to describe the relationship between particle or
droplet diameter D and critical supersaturation ratio (SS) or
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Table 1. Locations, time periods, parameters, and instruments of five field campaigns.

Location Wuqing Wuqing Xianghe Xianghe Wangdu

Campaign name C1 C2 C3 C4 C5

Time period 7 March to 12 July to 22 July to 9 July to 4 June to
4 April 2009 14 August 2009 30 August 2012 30 August 2013 14 July 2014

PNSD TDMPS+APS TDMPS+APS SMPS+APS TDMPS+APS TDMPS+APS
mBC MAAP MAAP MAAP MAAP MAAP
HBF TSI 3563 TSI 3563 TSI 3563 TSI 3563 TSI 3563
Size-resolved – Substrates sampled – – –
chemical composition by BLPI

Figure 1. (a) Box plot of particle number size distributions (PNSDs) in the datasets from five field campaigns. Each PNSD is normalized by
its maximum value at the peak diameter. Green markers “+” represent the mean value of each diameter. The boxes extend from the lower
to upper quartile values, with orange lines at the median. The whiskers extend from the box to the minimum–maximum values or extend
from the box by 1.5 times the interquartile range. The flyers are not shown in the plot. (b) A total of 25 typical size-resolved κ distributions.
Each dotted line with color represents one size-resolved κ distribution. The solid black line represents the mean value of the size-resolved κ
distributions.

RH with a single hygroscopic parameter κ:

RH(D)= 1+SS(D)=
D3
−D3

dry

D3−D3
dry (1− κ)

exp
(

4σs/aMw

RT ρwD

)
, (3)

where Ddry is particle dry diameter, σs/a is the surface ten-
sion of the solution–air interface,Mw is the molecular weight
of water, R is the universal gas constant, T is temperature,
and ρw is the density of water. For a specific supersatura-
tion, critical activation diameter can be derived with the κ-
Köhler equation using size-resolved κ distributions. CCN
number concentrations can thereby be calculated by integrat-
ing number concentrations of particles larger than the criti-
cal diameter. CCN number concentrations at the supersatura-
tions of 0.07 %, 0.10 %, 0.20 %, 0.40 %, and 0.80 % are ac-
cordingly simulated. The selected supersaturation ratios are
widely used in CCN measurements.

Particle backscatter and extinction can be calculated with
PNSD,mBC, and rext using Mie models. Mie theory can solve
light-scattering problems of homogeneous and coated spher-
ical particles. Without the consideration of mineral dust, us-

ing the Mie model is quite reasonable because particles are
likely to be spherical near clouds where the RH could be rel-
atively high. When simulating particle backscatter and co-
efficients, PNSD, mBC, rext, and the complex refractive in-
dex are needed. PNSD at different RHs can be calculated
with the κ-Köhler equation as well. The refractive indices of
BC, the non-absorbing component, and pure water are set
to be 1.8+ 0.54i (Ma et al., 2012), 1.53+ 10−7i (Wex et
al., 2002), and 1.33+ 10−7i, respectively. Backscatter coef-
ficients (355, 532, and 1064 nm) and extinction coefficients
(355 and 532 nm) at dry conditions and RH from 60 % to
90 % are simulated with an interval of 1 %.

The simulations are introduced in detail in Sect. S3 in the
Supplement. The new method and all the analyses in this pa-
per are based on the Mie-model-simulated datasets, and all
the simulations mentioned above are implemented.
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3 Methodology

3.1 Method to retrieve CCN number concentrations
using MWRL

3.1.1 Overview

An optically related CCN activation ratio, ARξ , is introduced
to bridge the gap between CCN and lidar-derived optical
properties. ARξ is the ratio between CCN number concen-
tration and backscatter or extinction coefficient, which can
be expressed as

ARξ (SS,λ)=
NCCN (SS)
ξdry(λ)

=
NCCN (SS)
Naerosol

·
Naerosol

ξdry(λ)
, (4)

where NCCN is the CCN number concentration, and Naerosol
is the total number concentration of aerosol particles. ARξ
can be divided into two parts: one is the ratio of CCN to the
total particles, which is the origin definition of CCN activa-
tion ratio; the other is the ratio of total number concentration
to backscatter or extinction at dry conditions. Bulk CCN ac-
tivation ratio is related to particle size distribution and hygro-
scopicity, and the relationship between particle number con-
centration and optical properties is mainly controlled by size
distribution. Therefore, ARξ could be quantified with size
and hygroscopicity information. The key point of our method
is to seek parameters that can indicate size and hygroscopic-
ity of particles from lidar measurement and use these param-
eters to estimate ARξ . In addition, deriving backscatter and
extinction coefficients at dry conditions is also important.

A schematic diagram of the method to retrieve CCN num-
ber concentration is shown in Fig. 2.

Firstly, enhancement of backscatter and extinction co-
efficients with RH (also called humidogram) is derived
from lidar measurements and additional ancillary data (i.e.
pressure, temperature, RH profiles). Humidogram parame-
ter which can indicate particle hygroscopicity can be fitted
from humidograms with parameterization equation. Particle
dry backscatter and extinction can also be inferred from the
humidograms. This step is applied to all the 3β+2α parame-
ters. The approaches to select appropriate hygroscopic layers
and fit humidogram parameters, dry backscatter, and dry ex-
tinction are described in Sect. 3.1.2.

Then, Ångström exponent (å) and lidar extinction-to-
backscatter ratio (lidar ratio, sa) are calculated from in-
ferred dry backscatter and extinction coefficients. Extinction-
related Ångström exponent (åα) is the most commonly used
parameter to reveal information about the predominant size
of aerosols. Generally speaking, a smaller åα represents more
large particles. Similarly, backscatter-related Ångström ex-
ponent (åβ ) is often employed in lidar analysis (Fernández
et al., 2015), and particle backscatter coefficients of different
wavelengths have also been proven to have a valid Ångström
exponent relationship (Komppula et al., 2012). Ångström ex-
ponent of dry backscatter and extinction coefficients (åξ ) be-

Figure 2. Schematic diagram of newly proposed method to retrieve
cloud condensation nuclei number concentrations using multiwave-
length Raman lidar.

tween two wavelengths can be derived using Eq. (5):

åξ (λ1,λ2)=−
log(ξ1/ξ2)

log(λ1/λ2)
, (5)

where the subscripts 1 and 2 represent different wavelengths.
Another widely used parameter to express aerosol charac-
teristics in lidar studies is the particle lidar extinction-to-
backscatter ratio (lidar ratio, sa), which is defined as the ratio
of extinction coefficient to backscatter coefficient at a spe-
cific light wavelength:

sa (λ)=
α (λ)

β (λ)
=

4π
P (π) ·ω

. (6)

As is shown in Eq. (6), lidar ratio is determined by the scat-
tering phase function at 180◦ P (π) and the single-scattering
albedo ω. P (π) is mainly influenced by particle size and
ω indicates the content and mixing state of light-absorbing
components. Lidar ratio is often utilized in aerosol type clas-
sification and is proven to be very sensitive to particle sizes
(Zhao et al., 2017). The lidar ratio can provide information
on particle type and also serve as a proxy for particle hygro-
scopicity. Therefore, lidar ratio of dry particles could be a
reliable parameter to estimate ARξ .

Next, åξ , sa , and humidogram parameters are utilized to
estimate ARξ . ARξ of all the 3β + 2α parameters is calcu-
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lated. Statistical relationships among humidogram parame-
ters åξ , sa , and ARξ are used in our new method. The estima-
tion of ARξ is introduced in Sect. 3.1.3 in detail. The imple-
mentation of åξ and sa is quite similar to the microphysical
inversion process for particle size distribution retrieval. Mi-
crophysical inversion is a physics-based approach but will
bring large uncertainties in retrieving particle number con-
centrations. Constraining ARξ directly with a statistical rela-
tionship is a much more simple and straightforward way.

Finally, after ARξ values of backscatter and extinction at
different wavelengths are derived, CCN number concentra-
tion can be calculated by multiplying ARξ by the correspond-
ing ξdry. The average value of CCN concentrations calculated
by different ξdry is the final retrieval result.

3.1.2 Derivation of humidogram parameters, dry
backscatter, and dry extinction from lidar
measurement

A constraint needs to be satisfied when quantifying the en-
hancements of backscatter and extinction coefficients with li-
dar measurements. The selected vertical layers must be well-
mixed, so we can guarantee that the variations in particle
backscatter and extinction coefficients are caused by differ-
ent RH and not by various aerosol types or loads. Atmo-
spheric vertical homogeneity is fulfilled if the layer has little
variability of virtual potential temperature profile and water
vapor mixing ratio profile (Lv et al., 2017). Additional anal-
yses can also be considered to evaluate vertical mixing of air
masses, such as backward trajectory, horizontal wind veloci-
ties at different altitude, or the third moment of the frequency
distribution of vertical wind velocities (Bedoya-Velásquez et
al., 2018).

Once vertical homogeneity is ensured, physical and chem-
ical properties at dry conditions can be assumed to be uni-
form in the selected layer, and the number concentrations are
proportional to air molecule number density. Accordingly,
the relative variations in particle backscatter and extinction
coefficients against different RHs can be achieved after nor-
malizing the backscatter and extinction coefficients with air
molecule number density.

Humidogram parameterization is needed to find a repre-
sentative parameter for the relationship between enhance-
ment factor and RH. Unlike in-situ-controlled RH measure-
ments, there is no such generic reference RH for dry con-
ditions for lidar measurements to derive enhancement factor.
Inferring backscatter and extinction coefficients at dry condi-
tions (ξdry) is also an important issue in CCN retrieval. There-
fore, humidogram parameterization of lidar-derived optical
properties should combine ξdry and fξ (RH,λ) together.

Many equations to parameterize enhancement factors have
been proposed by previous studies (Titos et al., 2016). Two
one-parameter equations are selected to test their perfor-
mance on estimating ξdry and representing particle hygro-
scopic growth characteristics. The first equation is the most

commonly used one initially introduced by Kasten (1969):

ξ (RH,λ)= ξdry (λ) · fξ (RH,λ)= ξdry (λ)

· (1−RH)−γξ (λ), (7)

where the exponent γξ is the fitting parameter and describes
the hygroscopic behavior of the particles; the other equa-
tion is proposed based on physical understanding by Brock
et al. (2016), which has been reported to have better perfor-
mance in describing light-scattering enhancement factor than
Eq. (7) (Yu et al., 2018):

ξ (RH,λ)= ξdry (λ) · fξ (RH,λ)= ξdry (λ)

·

[
1+ κξ (λ)

RH
1−RH

]
, (8)

where κξ is the fitting parameter and shows significant cor-
relation with bulk hygroscopic parameter κ (Kuang et al.,
2017). Here, Eqs. (7) and (8) are denoted as the γ equation
and κ equation, respectively. With given backscatter and ex-
tinction at different RHs, ξdry and γξ or κξ can be fitted si-
multaneously by means of least squares.

Comparisons between the performances of the γ equation
and κ equation on inferring backscatter and extinction at dry
conditions are carried out to select a better parameterization.
Four RH ranges (60 %–90 %, 60 %–70 %, 70 %–80 %, and
80 %–90 %) are selected. The fitted ξdry values are compared
with the ξdry calculated by the Mie model. The slopes of lin-
ear regressions, determination coefficients (R2), and relative
errors are listed in Table 2. Apparently, the κ equation has a
better performance than the γ equation for all RH ranges. In-
ferring ξdry with the γ equation will underestimate by about
10 %–30 %. It is consistent with the finding of Haarig et
al. (2017) that the γ equation does not hold for RH lower
than 40 %. The bias of backscatter is found to be larger than
the bias of extinction.

The RH range of humidogram equations also influences
the fitting results. Table 2 shows the fitted ξdry values have
larger bias when the value of RH increases. The fitted humi-
dogram parameters γξ and κξ from different RH ranges are
compared to each other, and the results are displayed in Ta-
ble 3. Parameterization equations are not always perfect for
the whole RH range, so humidogram parameters fitted with
various RH ranges can be different. If γξ and κξ are used
to represent hygroscopic behavior of particles, more careful
attention should be paid to the RH ranges.

Based on the comparisons above, Eq. (8) (κ equation) is
selected as our humidogram equation to derive ξdry and κξ .
The RH range for parameter fitting used is fixed to 60 %–
90 % in the following method.

3.1.3 Estimation of ARξ

Ångström exponents, lidar ratios, and optical humidogram
parameters κξ are used to estimate the optically related ac-
tivation ratio ARξ . Concerning that the Ångström exponents
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Table 2. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between Mie-model-simulated particle dry
backscatter or extinction coefficients and those inferred from humidogram functions. A total of 404 575 pairs of the simulations from the in
situ dataset are used. The REs are given in the form of mean value± 1 standard deviation.

RH (%) ξ γ equation κ equation

Slope R2 RE (%) Slope R2 RE (%)

60–90 α355,dry 0.850 0.998 −16.2± 2.1 1.045 0.998 3.4± 2.4
α532,dry 0.820 0.998 −19.2± 2.0 1.017 0.999 0.5± 1.8
β355,dry 0.784 0.960 −20.8± 7.2 0.817 0.971 −9.6± 7.5
β532,dry 0.812 0.972 −22.7± 7.6 0.874 0.988 −11.7± 5.6
β1064,dry 0.878 0.986 −12.9± 5.7 0.935 0.994 −5.4± 4.4

60–70 α355,dry 0.913 1.000 −9.2± 1.1 1.016 1.000 1.1± 0.9
α532,dry 0.900 0.999 −10.4± 1.3 1.005 1.000 0.0± 0.7
β355,dry 0.939 0.989 −9.1± 6.0 0.906 0.991 −5.6± 4.9
β532,dry 0.939 0.990 −9.9± 5.6 0.939 0.996 −6.4± 3.9
β1064,dry 0.966 0.997 −3.9± 2.9 0.974 0.999 −1.9± 2.0

70–80 α355,dry 0.852 0.999 −15.8± 1.9 1.037 0.999 2.7± 2.1
α532,dry 0.827 0.998 −18.3± 1.9 1.012 0.999 0.3± 1.5
β355,dry 0.799 0.950 −20.5± 8.9 0.818 0.968 −10.5± 8.1
β532,dry 0.833 0.966 −21.4± 9.0 0.880 0.986 −11.7± 6.6
β1064,dry 0.898 0.987 −10.8± 5.7 0.942 0.995 −4.6± 4.1

80–90 α355,dry 0.756 0.922 −26.5± 3.8 1.110 0.991 8.5± 5.5
α532,dry 0.702 0.994 −31.9± 3.1 1.047 0.995 1.9± 4.2
β355,dry 0.547 0.848 −37.0± 11.1 0.695 0.892 −13.4± 14.1
β532,dry 0.593 0.925 −42.1± 8.7 0.775 0.961 −19.2± 8.7
β1064,dry 0.702 0.934 −30.4± 10.3 0.867 0.971 −11.5± 8.8

Table 3. Slopes of linear regressions and determination coefficients
(R2) between γξ and κξ fitted from RH range 60 %–90 % and those
fitted from limited RH ranges (60 %–70 %, 70 %–80 %, and 80 %–
90 %).

RH (%) ξ γξ κξ

Slope R2 Slope R2

60–70 α355 0.992 0.958 1.113 0.955
α532 0.969 0.978 1.007 0.977
β355 1.019 0.814 1.213 0.819
β532 0.790 0.797 0.891 0.799
β1064 0.806 0.834 1.011 0.812

70–80 α355 1.021 0.996 1.045 0.995
α532 1.015 0.997 1.014 0.997
β355 1.115 0.968 1.195 0.958
β532 1.078 0.973 1.128 0.969
β1064 0.999 0.979 1.034 0.972

80–90 α355 0.941 0.939 0.847 0.934
α532 0.957 0.969 0.969 0.967
β355 0.741 0.679 0.684 0.626
β532 0.970 0.851 1.002 0.827
β1064 1.090 0.816 1.036 0.818

and lidar ratios are not independent of each other (any pa-
rameter can be calculated from other parameters), we reduce
the number of parameters to a sufficient number to represent
all the information. The selected nine parameters are listed in
Table 4. One possible way to seek the relationship between
the nine parameters and ARξ is to build a lookup table, but
too many input parameters would make the lookup table too
large to build and operate.

In the past few decades, machine learning has been a
field that has developed rapidly, which experiences a very
wide range of applications (Grange et al., 2018). Compared
to traditional statistical methods, many machine learning
techniques are nonparametric and do not need to fulfill many
assumptions required for statistical methods (Immitzer et
al., 2012). Random forest (RF) is an ensemble decision tree
machine learning method that can be used for regression.
(Breiman, 2001; Tong et al., 2003). In addition to the free
restraints on input parameters and assumptions, RF also
has the advantage of being able to explain and investigate
the learning process (Kotsiantis, 2013). The Python module
RandomForestRegressor from the Python Scikit-Learn
library (http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html, last access:
18 December 2018) is utilized as the RF model. The nine
parameters in Table 4 are the input parameters for the
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Table 4. Lidar-derived parameters for predicting optically related CCN activation ratio ARξ .

Parameter Description

κα355 Fitted parameter of extinction humidogram at 355 nm in κ equation form
κα532 Fitted parameter of extinction humidogram at 532 nm in κ equation form
κβ355 Fitted parameter of backscatter humidogram at 355 nm in κ equation form
κβ532 Fitted parameter of backscatter humidogram at 532 nm in κ equation form
κβ1064 Fitted parameter of backscatter humidogram at 1064 nm in κ equation form
sa355 Particle dry lidar extinction-to-backscatter ratio at 355 nm
sa532 Particle dry lidar extinction-to-backscatter ratio at 532 nm
åα355&532 Ångström exponent of particle dry extinction coefficients between 355 and 532 nm
åβ532&1064 Ångström exponent of particle dry backscatter coefficients between 532 and 1064 nm

RF model, and the ARξ values of 3β + 2α are the output
parameters.

Some tuning parameters required by the RF model need to
be specified by users. Experiments are made to determine the
optimal values of the tuning parameters. Experiment results
are showed in Fig. S7 in the Supplement and the detailed
settings of the RF model are listed in Table S2 in the Supple-
ment. In this case, the results are rather insensitive to the tun-
ing parameters. Data simulated with datasets measured from
campaigns C1–C4 are utilized as the training data, and those
from C5 are used as test data.

3.2 Sensitivity test

Both systematic and random errors exist in lidar-retrieved
backscatter and extinction coefficients (Mattis et al., 2016).
Systematic errors in backscatter and extinction can come
from instrumentation setup, data processing method, and re-
trieval algorithm. Sensitivity test is carried out to test the
impact of systematic errors of backscatter and extinction on
CCN retrieval. Errors in backscatter or extinction influence
the value of Ångström exponents and lidar ratios. The errors
of individual backscatter or extinction are considered to be
independent, though systematic errors of different parame-
ters are related. The systematic errors are given in the range
of −20 % to 20 % with an interval of 2 %. In each test, the
error is only applied to one parameter, and other parameters
are error-free.

RH is another crucial factor in this new method to retrieve
CCN. Profiles of RH derived by remote-sensing techniques
are also influenced by errors. At present, RH profiles are
usually obtained with the combination of temperature from
microwave radiometer and water vapor mixing ratio from
MWRL. Both measurements can cause systematic and ran-
dom errors in RH (Bedoya-Velásquez et al., 2018). Errors in
RH will influence the values of ξdry and κξ , which in turn in-
fluence all the nine input parameters. Systematic errors rang-
ing from −10 % to 10 % in intervals of 1 % are considered
for RH.

Random errors in observations can be reduced by temporal
averaging but cannot be eliminated. The influence of random

errors in backscatter, extinction, and RH on CCN retrieval are
investigated with the Monte Carlo method. Three sets of sen-
sitivity tests for random errors are conducted. Errors obeying
Gaussian distribution are generated randomly with the mean
value of zero. The standard deviation of Gaussian distribu-
tion is fixed at 10 % for backscatter and extinction, and the
standard deviation of RH is set to be 5 %, 10 %, and 20 %
for each test. The procedure is repeated 2000 times. All the
80 575 sets of data from campaign C5 are used for sensitivity
test.

4 Results and discussions

4.1 Supersaturations for lidar CCN retrieval

CCN number concentrations are related to supersaturations.
Critical diameters of each supersaturations calculated with
25 size-resolved κ distributions are shown in Fig. 3a. Most of
the critical diameters at a supersaturation of 0.07 % are larger
than 200 nm, while critical diameters at a supersaturation of
0.80 % are around 50 nm. Suitable supersaturations for lidar
CCN retrieval depend on the ability of lidar optical properties
to provide information about number and hygroscopicity of
CCN-related sizes.

Size cumulative contributions of particle number of all
measured particle size distribution and corresponding cal-
culated backscatter and extinction at dry conditions are also
displayed in Fig. 3a. As the cumulative contributions of parti-
cle number suggest, particles with diameter less than 100 nm
dominate particle number concentrations (over 65 %). How-
ever, most backscatter and extinction come from particles
larger than 200 nm (around 90 %) and almost 100 % come
from particles larger than 100 nm. If critical diameter is
small, dry backscatter and extinction are insensitive to par-
ticle diameters that contribute to most CCN concentrations.

Size-resolved enhancement contributions of backscatter
and extinction are calculated to discuss hygroscopicity-
sensitive size of optical enhancement factor measurement.
The enhancement contribution is defined as the difference
between optical cross sections of RH at 90 % and 60 %, and
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Figure 3. (a) Cumulative contributions (accumulate from large
particle size to small particle size) of particle number concentra-
tions (measured), dry particle backscatter coefficients (simulated),
and dry particle extinction coefficients (simulated). The solid and
dashed lines represent the median values of five field campaigns,
and the shadows cover from the lower to upper quartile values. The
box plots in brown contain statistical information about critical di-
ameter of each supersaturation condition (right y axis). The boxes
extend from the lower to upper quartile values, with lines at the me-
dian. The whiskers extend from the box to the minimum–maximum
values or extend from the box by 1.5 times the interquartile range.
The markers “o” are the flyers. (b) Normalized size-resolved en-
hancement contributions when relative humidity increases from
60 % to 90 %, which are theoretically calculated by the mean parti-
cle number size distribution, the mean black carbon mass concentra-
tion (4.717 µg m−3), the mean mass ratio of externally mixed black
carbon (0.664 %), and the mean size-resolved κ distribution.

represents the proportion of each size to the enhancement in
backscatter or extinction. As is shown in Fig. 3b, the con-
tributions of the extinction enhancements are concentrated
in the diameters within 200 to 700 nm, and extinction en-
hancement at 355 nm is related to smaller particles than that
at 532 nm. Similar to particle number, particles with diame-
ters smaller than 100 nm contribute little to the enhancements
of both backscatter and extinction.

Figure 3b also shows that different κξ values are sensitive
to the hygroscopicity of different size. Size-dependent hy-
groscopicity is important to estimate CCN rather than bulk
hygroscopicity information, especially for different supersat-
uration conditions. One humidogram may indicate the bulk
hygroscopicity, but it is the hygroscopicity of small particles
that influences CCN number concentrations most. Using κξ
of all the 3β+2α values can provide some information about
the hygroscopicity of small particles.

Comparing sensitive size of optical properties and criti-
cal diameters at different supersaturations, 3β + 2α MWRL

systems have potential to retrieve CCN number concentra-
tions at supersaturations smaller than 0.20 %. It is not rec-
ommended to estimate CCN concentrations using lidar data
at supersaturations larger than 0.40 %.

4.2 CCN number concentrations retrieved with
error-free data

With error-free data as input, the model-predicted extinction-
related activation ratio at 532 nm (ARα532) and the retrieved
CCN number concentrations at supersaturations of 0.07 %,
0.10 %, and 0.20 % are compared to the theoretical calcu-
lated values. A total of 80 575 pairs of data calculated from
campaign C5 are used for verification. The retrieval results
are displayed in Fig. 4. The values ARα532 at a specific su-
persaturation are distributed in a wide range and can span
over an order of magnitude, indicating that the relationship
between CCN and optical parameters is very complex. Ac-
cording to Fig. 4, all data points are distributed almost evenly
on both sides of the 1 : 1 line and the relative errors of most
points are within 20 %. The determination coefficients (R2)
of CCN concentrations are all larger than 0.97, and the results
do not show obvious systematic deviations. The retrieval er-
rors are found to grow with supersaturation. Retrieval results
for higher supersaturations (i.e. 0.40 % and 0.80 %) are dis-
played in Fig. S8 in the Supplement. There are larger errors
for supersaturations of 0.40 % and 0.80 %. Only 47.76 % of
the retrieved CCN number concentrations at a supersatura-
tion of 0.80 % have relative errors less than 20 %. The results
demonstrate again that lidars may not be sufficient enough
to retrieve CCN number concentrations at supersaturations
lager than 0.40 %.

4.3 Importance of size-related and
hygroscopicity-related parameters

RF models can evaluate the importance of features (input pa-
rameters) by calculating the mean decrease impurity (MDI)
for each feature among all the trees in the forest. The MDIs
and corresponding standard deviations of each parameter at
different supersaturations are shown in Fig. 5. Importance
of the nine input parameters varies with supersaturations.
For 0.07 % and 0.10 %, κα355 and κβ1064 are the two most
important parameters, showing the impact of hygroscopic-
ity on the relationship between CCN and optical proper-
ties. For 0.20 %, åα355&532 becomes much more important.
Among the nine input parameters, κξ values are denoted as
hygroscopicity-related parameters, and åξ values are denoted
as size-related parameters. In particular, sa can be regarded
as a parameter related to both size and hygroscopicity. As
is shown in Fig. 5, hygroscopicity-related parameters, espe-
cially κα355, κβ1064, and sa532, play crucial roles in retrieving
CCN. Size-related parameters have already been proven to be
vital in retrieving CCN; however, humidogram parameters κξ
have not been implemented in previous methods. CCN con-
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Figure 4. Comparison of the theoretical calculated extinction-
related CCN activation ratio at 532 nm (true AR) and the model-
predicted extinction-related CCN activation ratios at 532 nm (re-
trieved AR) at supersaturations of (a) 0.07 %, (c) 0.10 %, and
(e) 0.20 %, and comparison of the theoretical calculated CCN
number concentrations (true CCN number concentration) and
the retrieved CCN number concentrations at supersaturations of
(b) 0.07 %, (d) 0.10 %, and (f) 0.20 %. A total of 80 575 pairs of data
calculated from campaign C5 are used. The solid line is the 1 : 1
line, and the dashed lines are 20 % relative difference lines. Colors
represent the relative density of the data points normalized by the
maximum data density of each panel. The relative error shown in
the figure is mean value± 1 standard deviation.

centrations retrieved with and without κξ are compared to
show the importance of κξ . When retrieving CCN without κξ ,
the RF model is also trained with datasets from campaigns
C1–C4, but the input data only contain Ångström exponents
and lidar ratios. The retrieved CCN concentrations are all
compared with datasets from campaign C5, and the results
are listed in Table 5. R2 of retrieved CCN decreases from
0.991 to 0.887 for supersaturations of 0.07 %, from 0.992 to
0.857 for 0.10 %, and from 0.973 to 0.785 for 0.20 %. Re-
trieval errors also increase overwhelmingly, and there are sig-
nificant positive systematic biases. Parameters which are de-
rived from backscatter and extinction enhancements, κξ , are
indispensable parameters in CCN retrieval.

Figure 5. Importance of each feature (input parameter) output by
the random forest model for predicting optically related CCN ac-
tivation ratios at supersaturations of (a) 0.07 %, (b) 0.10 %, and
(c) 0.20 %. The values of feature importance indicate the decrease
in impurity for each feature. The length of the bar represents the
mean values among all trees and the error bars give the standard
deviations.

4.4 Impact of systematic and random error on CCN
retrieval

Figure 6 shows the relative errors of CCN retrieved with
systematic errors in backscatter and extinction. Errors of re-
trieved CCN increase as errors of backscatter and extinction
increase, and higher supersaturations are more affected by
errors of optical parameters. Errors in extinction coefficients
at 355 nm (α355) influence the retrieval results most. On av-
erage, a positive relative error of 20 % in α355 will cause
about a 20 % overestimate in CCN number concentrations
for supersaturation of 0.07 %, about a 40 % overestimate for
0.10 %, and about a 60 % overestimate for 0.20 %. A nega-
tive error of 20 % in α355 will underestimate CCN concen-
trations, and the degree of impact is slightly smaller than
the positive error. Errors in extinction coefficient at 532 nm
(α532) and at 355 nm have the opposite effect on retrieval er-
ror. Errors in α532 do not show a significant impact at su-
persaturations of 0.07 % and 0.10 %, but an overwhelming
effect is found at supersaturations of 0.20 %. It is interest-
ing to note that the errors in backscatter coefficients do not
affect the results much. However, in practical applications of
MWRLs, the errors in extinction are always much larger than
the errors of backscatter. If the error of retrieved CCN con-
centrations needs to be limited to 20 % at a supersaturation of
0.20 %, the errors of retrieved extinction coefficients should
to be controlled within 5 %.

The test result of systematic error in RH is shown in Fig. 7.
When RH has a negative systematic error, CCN concentra-
tions are overestimated, and the extent of overestimation in-
creases as the error increases. A negative error of 10 % in
RH will overestimate CCN at supersaturations at 0.20 % by
about 60 % on average, and the standard deviation is over
60 %. Effects of positive errors in RH are much smaller than
negative errors but more complex. The standard deviations
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Table 5. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between theoretical calculated CCN number
concentrations and CCN number concentrations retrieved with and without κξ as input parameter. The relative errors are given in the form
of mean value± 1 standard deviation.

Supersaturation ratio With κξ Without κξ

Slope R2 RE (%) Slope R2 RE (%)

0.07 % 0.991 0.991 −0.8± 6.0 0.877 0.866 4.6± 26.1
0.10 % 0.992 0.989 0.1± 6.3 0.857 0.837 5.9± 26.7
0.20 % 1.005 0.973 3.9± 9.0 0.860 0.785 11.9± 28.1

Figure 6. Relative errors in retrieved CCN number concentrations at
supersaturations of (a) 0.07 %, (b) 0.10 %, and (c) 0.20 % as a func-
tion of systematic errors in backscatter or extinction. The markers
are the mean values, and the error bars denote the standard devia-
tions.

of retrieval relative error increase with RH error, and the ex-
treme value of the mean retrieval error appears at the RH
error of 5 %. Underestimating RH will cause much more er-
rors than overestimation. Great care should be paid to RH
profiles if enhancements of backscatter and extinction with
RH are utilized.

The relative error of retrieved CCN with random errors is
presented in Table 6. The retrieval error does not change sig-
nificantly as the random error of RH increases. For all the
conditions that are tested, the mean values of relative error
are below or near zero, and the standard deviations are within
18 %–28 %. The impact of random errors on the nine input
parameters is also evaluated and is shown in Fig. 8. Random
errors will underestimate κξ by 30 %–35 % on average for
5 % RH error, 80 %–85 % for 10 % RH error, and 90 %–95 %

Figure 7. Relative errors in retrieved CCN number concentrations
at supersaturations of 0.07 %, 0.10 %, and 0.20 % as a function of
systematic errors in relative humidity. The markers are the mean
values, and the error bars denote the standard deviations.

Figure 8. Relative errors in fitted and calculated parameters with
10 % random errors for backscatter and extinction and 5 % (blue),
10 % (orange), and 20 % (green) random error for relative humidity.
The dots are the median values, and the error bars denote the 5th and
95th percentiles. The dashed red line marks the position of zero.

for 20 % RH error. sa355 , sa532, and åβ532&1064 are likely to
be overestimated. As the random error of RH grows, the ab-
solute relative error of input parameters will become larger.

5 Summary

CCN number concentration at cloud base is a crucial
and scarce parameter to constrain the relationship between
aerosols and clouds. A new method to retrieve CCN number
concentrations using backscatter and extinction coefficients
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Table 6. Mean and 1 standard deviation (SD) values (mean±SD) of relative errors in retrieved CCN number concentrations at different
supersaturations with different random error conditions. The uncertainty of backscatter and extinction coefficients of all the tests is 10 %, and
the uncertainties of relative humidity are 5 %, 10 %, and 20 %.

Supersaturation ratio Random error (10 % for backscatter and extinction)

Error of relative humidity

5 % 10 % 20 %

0.07 % −4.1 %± 21.8 % 0.2 %± 23.4 % 0.7 %± 22.6 %
0.10 % −1.5 %± 23.4 % −2.8 %± 24.0 % −2.5 %± 21.2 %
0.20 % −1.2 %± 27.8 % −9.1 %± 26.3 % −5.2 %± 18.0 %

from MWRL measurements is proposed. Enhancements of
backscatter and extinction coefficients with RH are imple-
mented to derive dry backscatter and extinction ξdry and
humidogram parameter κξ . The ratio of CCN number con-
centration to dry backscatter or extinction coefficient ARξ ,
which is estimated by κξ , Ångström exponents, and lidar ra-
tios, is introduced to retrieve CCN number concentrations.

The method is established and verified by theoretical sim-
ulations using Mie theory and κ-Köhler theory with in-
situ-measured particle size distributions, mixing states, and
chemical compositions. The values of ARξ are found to have
large variations due to different size distributions and hygro-
scopicity. Theoretical analyses show that optical properties
provided by current 3β + 2α MWRL systems basically con-
tain size distribution and hygroscopicity information of par-
ticles with diameters larger than 100 nm, which only fits the
critical diameters for supersaturations lower than 0.20 %. Ac-
cordingly, CCN number concentrations at supersaturations of
0.07 %, 0.10 %, and 0.20 % are retrieved. The performance of
the new method is evaluated with error-free data, and CCN
number concentrations at all three supersaturations are in
good agreement with theoretical calculated values.

Sensitivity tests are carried out to show the influence of
systematic and random errors of lidar-derived optical proper-
ties and auxiliary RH profiles on CCN retrieval. Systematic
errors in extinction coefficients and RH are found to have
a large impact on error in retrieved CCN. Parameters fitted
from backscatter and extinction enhancements (i.e. ξdry and
κξ ) are significantly influenced by RH. The uncertainty of
RH profiles derived by remote-sensing techniques is a major
problem in CCN retrieval. Optical properties near cloud base
from lidar measurements are always influenced by high RH.
Thus, transforming backscatter and extinction coefficients at
ambient RH to dry conditions is a must for CCN retrieval,
and accurate RH profiles are in high demand.

The importance of humidogram parameters κξ is demon-
strated by comparing the error of CCN concentration re-
trieved with and without κξ . Neglecting hygroscopicity in-
formation contained in backscatter and extinction enhance-
ments will bring huge errors to CCN retrieval by lidars. The
performance of two parameterization schemes for backscat-

ter and extinction humidograms is evaluated. The κ equation
shows better performance on inferring dry backscatter and
extinction than the γ equation. The κ equation, therefore, is
recommended to describe the hygroscopic behaviors of the
backscatter and extinction coefficients from lidar measure-
ments. The fitted hygroscopic parameters are found to be sen-
sitive to fitting RH range when the RH range is limited and
relatively high (between 60 % and 90 %). This is an extreme
essential problem for current research for aerosol hygroscop-
icity with lidar measurements. Great care should be paid to
the RH range when evaluating the hygroscopic growth of the
lidar-related optical properties.

It should be noted that the theoretical analyses in this pa-
per are based on datasets of continental aerosols, and the im-
plementation of Mie theory also limits the scope of the re-
sults. The results can be applied in the North China Plain
but are not fit for sea salt and mineral dust. Studies with
datasets of other aerosol types should be carried out in the fu-
ture. Although the applicability of this new method is limited
by large uncertainties in RH profiles, comparison between
real measured MWRL data and airborne in situ measurement
should also be conducted.

This work furthers our understanding of the relationship
between CCN and aerosol optical properties and providing
an optional way to retrieve CCN number concentration pro-
files from lidar measurements. The newly proposed method
has the potential to provide long-term CCN at cloud base for
aerosol–cloud interaction studies.

Data availability. All of the datasets from field measurement and
the corresponding simulated datasets can be obtained from the
repository with the doi https://doi.org/10.5281/zenodo.3255086
(Tan et al., 2019).
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