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Abstract. A method is described to classify cloud mix-
tures of cloud top types, termed cloud scenes, using cloud
type classification derived from the CloudSat radar (2B-
CLDCLASS). The scale dependence of the cloud scenes is
quantified. For spatial scales at 45 km (15 km), only 18 (10)
out of 256 possible cloud scenes account for 90 % of all ob-
servations and contain one, two, or three cloud types. The
number of possible cloud scenes is shown to depend on spa-
tial scale with a maximum number of 210 out of 256 possible
scenes at a scale of 105 km and fewer cloud scenes at smaller
and larger scales. The cloud scenes are used to assess the
characteristics of spatially collocated Atmospheric Infrared
Sounder (AIRS) thermodynamic-phase and ice cloud prop-
erty retrievals within scenes of varying cloud type complex-
ity. The likelihood of ice and liquid-phase detection strongly
depends on the CloudSat-identified cloud scene type collo-
cated with the AIRS footprint. Cloud scenes primarily con-
sisting of cirrus, nimbostratus, altostratus, and deep convec-
tion are dominated by ice-phase detection, while stratocumu-
lus, cumulus, and altocumulus are dominated by liquid- and
undetermined-phase detection. Ice cloud particle size and op-
tical thickness are largest for cloud scenes containing deep
convection and cumulus and are smallest for cirrus. Cloud
scenes with multiple cloud types have small reductions in in-
formation content and slightly higher residuals of observed
and modeled radiance compared to cloud scenes with sin-
gle cloud types. These results will help advance the develop-
ment of temperature, specific humidity, and cloud property
retrievals from hyperspectral infrared sounders that include
cloud microphysics in forward radiative transfer models.

Copyright statement. © 2019 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

There is increasing evidence of secular cloud trends at re-
gional and global scales in both satellite observations (e.g.,
Norris et al., 2016) and climate general circulation model
(GCM) simulations (e.g., Zelinka et al., 2013). The pole-
ward migration of the extratropical storm tracks (Barnes and
Polvani, 2013) is coupled to systematic changes in cloud-
thermodynamic-phase partitioning in forced CO2 experi-
ments in climate GCMs (e.g., Mitchell et al., 1989; Ceppi
et al., 2016). The spread in equilibrium climate sensitivity is
also tightly coupled to the temporal evolution of phase parti-
tioning in most climate GCMs (Tan et al., 2016). Obtaining
reasonable observational estimates of the small-scale cloud-
phase partitioning at model subgrid scales is critical for con-
straining the highly uncertain Wegener–Bergeron–Findeisen
timescale parameter that is crucial for modeling mixed-phase
cloud and precipitation processes (Tan and Storelvmo, 2016).
A new generation of probability-distribution-function-based
parameterizations has shown promise for improving climate
model simulations of cloud properties (e.g., Golaz et al.,
2002) and would benefit from further exploitation of the in-
formation available in pixel-scale satellite observations. A
rigorous assessment of the scale dependence of cloud types,
and their mixtures, would also enhance climate GCM eval-
uation and parameterization development research efforts
(Bony et al., 2006).

Kahn et al. (2018) showed that Atmospheric Infrared
Sounder (AIRS) observations of ice cloud optical thickness
(τi) and effective radius (rei) exhibit statistically significant
temporal trends that are dependent on latitude and cloud type.
Trends in Multi-angle Imaging SpectroRadiometer (MISR)
observations of cloud texture have suggested that recent thin-
ning of tropical cirrus has led to increased detection of trade
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cumulus (Zhao et al., 2016). Using high-spatial-resolution
estimates of cloud thermodynamic phase obtained from the
Hyperion instrument on Earth Observing 1 (EO-1), Thomp-
son et al. (2018) showed that phase mixtures are highly vari-
able at scales smaller than the AIRS footprint or typical GCM
grid boxes. These studies (and many others) suggest that
quantification of the scale dependence of cloud type mixtures
could help explain satellite observations of cloud trends.

Statistical classification methods are commonly used to
define weather states or cloud types (e.g., Rossow et al.,
2005; Xu et al., 2005; Sassen and Wang, 2008; Wang et
al., 2016). For instance, joint histograms of cloud top pres-
sure and optical thickness from the International Satellite
Cloud Climatology Project (ISCCP; Rossow and Schiffer,
1999) are useful for relating cloud types to dynamical, radia-
tion, and precipitation variability, as well as in evaluating cli-
mate model simulations (e.g., Klein and Jakob, 1999; Jakob
and Tselioudis, 2003; Rossow et al., 2005; Tselioudis et al.,
2013). Weather states are typically mixtures of conventional
cloud types as shown by Rossow et al. (2005) and Oreopou-
los et al. (2014). Partly inspired by this methodology, we in-
troduce the concept of cloud scenes that are defined to be
mixtures of CloudSat cloud types (2B-CLDCLASS; Sassen
and Wang, 2005) that vary with horizontal scale.

As cloud scenes will be matched to coincident A-Train
observations, we begin by defining cloud scenes with
cloud types derived from CloudSat and observed within
an AIRS/Advanced Microwave Sounding Unit (AMSU)
(Chahine et al., 2006) field of regard (FOR) of roughly 45 km
resolution. One AMSU FOR within an AMSU swath is spa-
tially and temporally coincident with a “curtain” of 94 GHz
CloudSat radar profiles. The likelihood of observing clouds
is resolution-dependent and is approximately 80 %–85 % at
the AIRS footprint scale of 15 km (Krijger et al., 2007;
Kahn et al., 2008). The clouds in AMSU sounding FORs
or AIRS footprints are more often broken or transparent and
less often uniform or opaque. Yue et al. (2013) showed that
about 43 % of the AMSU FORs are mixtures of CloudSat-
identified cloud types, implying that roughly half of cloudy
soundings contain mixtures of cloud types.

Our purpose in this work is to quantify the scale depen-
dence of cloud type mixtures that are then used to understand
the cloud complexity within AIRS cloud-phase and ice cloud
property data sets. The AIRS and CloudSat data and the col-
location approach are described in Sect. 2. To quantify cloud
type distributions and their dependence on horizontal scales,
the cloud scenes are first characterized at the AMSU FOR
resolution in Sect. 3.1, are extended to larger and smaller
scales in Sect. 3.2, and key results of the scale dependence
are placed into context in Sect. 3.3. The cloud scenes are
used to partition AIRS cloud property retrievals into cloud
types, specifically, cloud-thermodynamic-phase histograms
in Sect. 4.2, and mean values of ice cloud microphysical pa-
rameters are described in Sect. 4.3. A discussion, summary,
and suggestions for future investigation are found in Sect. 5.

2 Data and methodology

2.1 CloudSat and AIRS pixel-scale matching

The AIRS/AMSU/CloudSat matchup product described in
Manipon et al. (2016) is used by Yue et al. (2013) and in this
investigation. The matchup process uses a nearest-neighbor
approach to geolocate all CloudSat profiles within either an
AMSU FOR at 45 km spatial resolution at nadir view or a sin-
gle AIRS footprint at 15 km spatial resolution at nadir view
(Kahn et al., 2008). Approximately 45 to 50 (15–17) Cloud-
Sat profiles coincide with a single AMSU FOR (AIRS foot-
print), in a swath of width 30 FORs (90 footprints). The cloud
scenes are first defined at the AMSU FOR scale and are then
extended to other spatial scales. We use a 2-year period of
data extending from 1 July 2006 until 30 June 2008 which
contains about 8 million AMSU FORs (or 24 million AIRS
footprints).

2.2 CloudSat cloud types and their mixtures within the
AIRS footprint

The CloudSat 2B-CLDCLASS product is used in this work
and the algorithm is described in Sassen and Wang (2005,
2008). As summarized in Sassen and Wang (2008) and pre-
vious works, the algorithm uses methods developed from
ground-based multiple remote sensors that have been tested
against surface observer-based cloud typing reports. The
cloud classification occurs in two steps. First, a clustering
analysis is performed to group cloud profiles into cloud clus-
ters. Secondly, classification methods are used to classify
clouds into different cloud types. The decision trees guiding
the classification are complex and are based on 23 variables
derived from the clustering analysis of the first stage. Geo-
metric quantities such as cloud base, top, and horizontal ex-
tents are present in decision trees (Sassen and Wang, 2005).
Plan view and zonal average frequencies of 2B-CLDCLASS
cloud types at its native resolution are reported in Sassen and
Wang (2008).

There are eight CloudSat-defined classes in the 2B-
CLDCLASS files: cumulus (Cu), stratocumulus (Sc), stratus
(St), altocumulus (Ac), altostratus (As), nimbostratus (Ns),
cirrus (Ci), and deep convective (Dc) clouds, with a ninth
classification of clear sky designated no cloud (nc). Since
each AMSU FOR contains roughly 50 CloudSat profiles
with 125 vertical levels each, there are 950×125 possible dis-
tinct cloud type combinations (although in practice there are
fewer as many levels reside in the stratosphere) for each
AMSU FOR. This number is too high to derive a classifica-
tion that could be useful, i.e., where each cloud type combi-
nation could be populated with a significant number of sam-
ples for any climatological study. One particularly appealing
way to reduce the dimensionality is to limit consideration of
cloud type to cloud top only. This simplification is consistent
with the capabilities of infrared sounders as the sampling of
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temperature and specific humidity is maximized in the at-
mosphere near and above cloud top, assuming the cloud is
opaque and covers the entire sounder pixel area. There are
950 possible cloud combinations defined in this manner, in-
cluding clear sky profiles. As a point of comparison, there are
about 324 000 AIRS soundings per day or about 108 per year.
Even when considering the 16 years of AIRS nominal oper-
ation, the number of cloud type combinations 950, or about
5× 1047, is many orders of magnitude greater than the num-
ber of AMSU FORs available, making it impossible to per-
form a statistically significant sampling of all combinations.
This necessitates further assumptions to define a practical yet
meaningful set of cloud scenes.

Two additional simplifications are made here: variations
in the count of each CloudSat cloud type are not consid-
ered, and the observation sequence of successive cloud types
is disregarded. These two simplifications are applied to the
AMSU field of view (FOV). We define a cloud scene as a
list of the cloud types that are present within a given AMSU
FOR. For example, the notation (Ci, Ac, Sc, Cu) is used to la-
bel a cloud scene that contains cirrus, altocumulus, stratocu-
mulus, and cumulus clouds at cloud top in any frequency and
in any sequence along the orbit segment. These simplifica-
tions greatly reduce the dimensionality of the classification
problem and make cloud scene identification tractable. We
will show both partly cloudy and completely cloudy scenes
in Section 4, so the clear sky (nc) type is both included and
excluded in the analyses. Since each of the eight cloud types
is either present or absent, a cloud scene can also be repre-
sented by an 8 bit binary string. As a consequence, there are
256 (28) possible cloud scenes that remain after taking into
account the aforementioned simplifications. The number of
possible cloud scenes is therefore reduced from 950×125 to a
much more tractable 256. The limitations of this approach are
(i) a consideration of cloud tops only, (ii) the spatial sequence
and frequency of individual cloud types are not considered,
and (iii) equal weight is given to all cloud types within a
cloud scene regardless of counts.

One advantage of using a classification to define cloud
mixtures rather than an unsupervised learning technique,
such as clustering, is that the size of the set of possible cloud
mixtures is well defined and finite (here it is 256). A related
and important advantage of classification is that one can use
this set of classes (cloud scenes) with any parameter matched
to any given scene. Here, the spatial-scale dependence of
those cloud scenes is described in Sect. 3.2.

An alternative approach may consider the vertical layer-
ing of cloud types or cloud features, some form of weighting
based on counts of each cloud type, or possibly the sequence
of cloud types, which may result in different radiance mea-
surements observed by the AIRS instrument (the radiance
emitted within an AIRS footprint is nonuniform and channel-
dependent, as described in Schreier et al., 2010). However,
the simplified approach outlined above is broadly consistent
with the sensitivity and sampling characteristics of nadir-

viewing passive infrared sounders. Therefore, we consider
the approach outlined above to be an appropriate compro-
mise that retains the diversity of cloud scenes and makes the
necessary data processing tractable by reducing the dimen-
sionality for ease of interpretation.

Lastly, the results of Kahn et al. (2018) suggest larger ice
cloud particle sizes occur at convective cloud tops compared
to thin cirrus at the same cloud top temperature. Given the
key assumption of cloud typing only at cloud top, the 2B-
CLDCLASS product is better suited for identifying convec-
tive clouds in AIRS apart from stratiform clouds, the latter
of which are dominant in 2B-CLDCLASS-LIDAR. If 2B-
CLDCLASS-LIDAR was used in place of 2B-CLDCLASS,
the statistics would be weighted towards the detection of
vast areas of cirrus in thin layers above and in proximity
to convective clouds. The Ci classification dominates in 2B-
CLDCLASS-LIDAR at cloud top and will blur the signals of
underlying cumulus and deep convective cloud types that are
capped by thin cirrus.

2.3 AIRS thermodynamic-phase and ice cloud
properties

The AIRS version 6 cloud-thermodynamic-phase and ice
cloud properties (Kahn et al., 2014) are geolocated to the
CloudSat ground track and are binned by cloud scene. The
cloud-thermodynamic-phase algorithm includes two liquid
tests and four ice tests of brightness temperature (Tb) thresh-
olds and Tb differences (1Tb) in the midinfrared atmospheric
windows. The Tb and 1Tb thresholds are designed to ex-
ploit spectral differences in liquid and ice water indices of
refraction. The two liquid and four ice tests are each as-
signed a value of −1 and +1, respectively, and a summed
value that ranges from −2 to +4 is reported. Summed val-
ues −2 or −1 indicate liquid clouds, 0 is undetermined, and
values ≥+1 indicate ice, with the highest values indicat-
ing deeper, convective ice clouds (Naud and Kahn, 2015).
Ice is detected in 26.5 % of AIRS footprints by Kahn et
al. (2014), and pixel-scale comparisons with estimates of ice
from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO) lidar (Jin and Nasiri, 2014) are
in agreement with AIRS more than 90 % of the time. The
success rate, however, is smaller for liquid cloud detection
with AIRS using CALIPSO as a benchmark because of the
small thermal contrast between low-lying liquid clouds and
the surface. Despite this limitation in sensitivity, AIRS rarely
misidentifies liquid clouds as ice (Jin and Nasiri, 2014). Fur-
thermore, many liquid clouds are classified as undetermined
phase. Low-latitude shallow trade cumulus clouds generally
fall within this category (Kahn et al., 2017).

Kahn et al. (2014) describe a retrieval algorithm that is
based on optimal estimation (OE) theory and derives ice
cloud optical thickness (τi) and effective radius (rei) for AIRS
footprints containing ice. The AIRS retrieval sample includes
nearly all ice clouds with τi > 0.1, while the maximum values
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of τi asymptote to values around 6–8 (e.g., Kahn et al., 2015).
Scalar averaging kernels (AKs), χ2 residuals from observed
and simulated radiance fits, and values of relative error are
also reported (Kahn et al., 2014). Values of AKs closer to 1.0
suggest higher information content, while larger relative er-
ror estimates and values of χ2 indicate increased uncertainty
in retrieved parameters. Only the relative magnitude of er-
ror estimates should be considered since temperature, spe-
cific humidity, surface temperature, surface emissivity, and
ice crystal habit and size distribution uncertainties are not in-
cluded in the error covariance matrices of the AIRS version
6 algorithm (see Kahn et al., 2014). We focus on the differ-
ences in error estimates and χ2 among cloud scenes and de-
termine which cloud scenes contain higher or lower certainty
in their ice cloud properties relative to other scenes.

3 Classification and characteristics of cloud scenes

3.1 Cloud scenes with ∼ 45 km resolution

A cloud scene is assigned to every AMSU FOR along the
CloudSat viewing path using the methodology outlined in
Sect. 2. Using the 2 years of data, a total of 194 out of 256
possible cloud scenes are observed but only 18 of the cloud
scenes account for 90 % of all observed scenes (Fig. 1a). The
four most common scenes contain one cloud type with or
without clear sky, and the most common mixed cloud scene
(Ac, Sc) is ranked as the fifth most common scene over-
all. Intuitively, the more diverse a scene, the less frequently
it should be observed. The scene that ranked last (18th) in
Fig. 1a is (Ci, Ac, Sc). The least frequently observed cloud
scene with a ranking of 194 contains six cloud types (Ci, As,
Ac, St, Cu, Ns) and was observed only once in 2 years. Of
the 256 possible types of cloud scenes, the number of unob-
served cloud scenes is 62, of which 61 include St. The un-
observed cloud scenes include the only possible cloud scene
with eight cloud types together and the seven possible cloud
scenes with seven cloud types together.

The unobserved scenes in the 2-year period contain a me-
dian of five different cloud types. This is consistent with the
improbability of particular cloud types occurring in rapid
succession over a few tens of kilometers. The only unob-
served cloud scene that does not contain St is (Sc, Cu, Ns,
Dc) and is consistent with the conclusion by Sassen and
Wang (2008) that Dc (1.8 %) and Cu (1.7 %) clouds are the
least frequent of the cloud types. While Dc and Ns are typi-
cally associated with different climatological regimes (trop-
ical convection versus extratropical storm tracks), occasion-
ally, Dc is embedded within extratropical cyclones and Ns is
classified in stratiform regions of mesoscale convective sys-
tems (MCSs). Given the prevalence of Sc and Cu in Fig. 1a,
it is somewhat surprising that the combination (Sc, Cu, Ns,
Dc) is not observed.

The relative ranking of cloud scenes within the AIRS FOV
along the CloudSat track is shown in Fig. 1b for the same
sets of matched pixels. A total of 10 cloud scenes account
for 90 % of all observed cloud scenes (Fig. 1b). This shows
that fewer cloud scenes are found at the smaller AIRS FOV
compared to the AMSU FOR.

Figure 2 depicts the geographic distribution of Sc at the
AMSU FOR scale, the most observed scene after clear sky
(nc), and (Ac, Sc) is the most observed mixed cloud scene.
The Sc classification is consistent with the prevalence of stra-
tocumulus clouds in subtropical subsidence regions and trade
cumulus in the tropics and subtropics (e.g., Yue et al., 2011).
The (Ac, Sc) cloud scene is identified most frequently in the
extratropical storm tracks and the transition from shallow cu-
mulus to deep tropical convection.

3.2 Cloud scenes at 1 to 1000 km scales

In Sect. 3.1, the relative frequencies of cloud scenes were
derived for exact collocated matches of AIRS and AMSU
observations to the CloudSat ground track. As the CloudSat
ground track can oscillate across several AIRS FOVs over
a scan line within a given orbit, the numbers of coincident
CloudSat profiles matching to AIRS and AMSU will vary.
Below, cloud scenes are derived independently of the specific
AIRS and AMSU collocation geometry.

To investigate the scale dependence of the number of cloud
scenes, the approach described in Sect. 2 is modified for a
range of horizontal extents between 1.1 and 1000 km. The
number of observed cloud scenes calculated at each horizon-
tal scale is shown in Fig. 3a for 10 to 1000 km. At the finest
scale of 1.1 km, only eight possible observed cloud scenes or
clear sky are expected. When the scale increases, as expected,
the number of cloud scenes quickly increases with a total of
143 cloud scenes observed at a scale of 11 km. As horizontal
scale is further increased, the probability of observing cloud
scenes with only one or two cloud types is reduced. After a
maximum number of cloud scenes is obtained at 105 km, the
number of cloud scenes will decrease with increasing scale
(e.g., 163 cloud scenes at 990 km) until a limiting case is
reached at the largest scale with only one cloud scene with all
observed cloud types. The number of cloud scenes observed
at least once at the AMSU FOR horizontal scale (indicated
by the red vertical line on Fig. 3a) is approximately 190.

The 90th percentile calculated at all horizontal scales is
shown in Fig. 3b. The 90th percentile of the maximum num-
ber of cloud scenes is 33 between 303 and 440 km in horizon-
tal scale. The number at the nominal 45 km AMSU footprint
scale is 16 cloud scenes, while the average number at the
AIRS footprint is 9 cloud scenes. (Note that these are slightly
smaller than values of 18 and 10 using the exact AMSU and
AIRS geometry, respectively, in Sect. 3.1.) While these re-
sults show that fewer cloud type mixtures are observed at a
decreasing length of 45 to 15 km, a variety of cloud type mix-
tures is still encountered. While infrared sounding at 15 km
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Figure 1. Histogram of cloud scenes containing relative counts of occurrence observed at the AMSU FOR and AIRS FOV resolution (∼ 45
and ∼ 15 km respectively). The cumulative sum of the relative counts of these 18 (10) cloud scenes amounts to more than 90 % of all cloud
scenes observed globally over a period of 2 years at AMSU (AIRS) resolution.

Figure 2. Geographic distribution of cloud scenes (Sc) and (Ac, Sc) in panels (a) and (b) respectively, in units of percentage with respect to
all of the (194) observed cloud scenes. These scenes were observed at the AMSU FOR resolution (∼ 45 km). Similar plots of the AIRS FOV
resolution (∼ 15 km) are nearly identical (not shown).

resolution does not eliminate the cloud scene complexity en-
countered for combined infrared and microwave sounding at
45 km, the vast majority of 15 km footprints contain a smaller
subset of possible cloud mixtures. In Sect. 4, we will deter-
mine whether individual cloud types or cloud type mixtures
have meaningful impacts on AIRS cloud property retrievals.
(Impacts on temperature and specific humidity soundings are
beyond the scope of this investigation.)

The reasons for the maximum number of observed cloud
scenes (210) at a particular horizontal scale (105 km) are not
immediately clear. The scale preference depends on the phys-
ical characteristics of cloud regimes and the degree to which
cloud types are mixed together by region and furthermore de-
pend on cloud length distributions (Guillaume et al., 2018). A
simple model is described below that is able to approximate
the results of Fig. 3 and offers some insight for the observed
maximum frequency of cloud scenes and the spatial scale at
which it occurs.

3.3 Generalizing to all scales

The goal of this section is to derive cloud scene scale statis-
tics that are independent of any regular grid resolution and
explore whether these statistics can explain some features
of the number of scenes as a function of scale observed in
the previous section. In particular, we explore whether these
statistics can explain the maximum observed around 105 km.
There is however an inherent difficulty in defining the bound-
aries that delimit any given cloud scene in the absence of a
predefined horizontal extent. It is possible that within a given
cloud scene there exists several scenes with the same cloud
types but differing lengths making the scene identification
ambiguous. To circumvent this problem, we define a cloud
scene and its maximum length as follows.

1. We search for a cloud scene containing a predefined
mixture of cloud types. The spatial extent of this scene
is delimited by cloud types (or clear sky) on both ends
that do not belong to the mixture.
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Figure 3. (a) Number of observed scenes as a function of the hor-
izontal length scale used to define the scene. (b) Number of scenes
observed at the 90th percentile as a function of horizontal length
scale used to define the scene. The vertical green (red) lines approx-
imate the scale of the AIRS (AMSU) pixel size.

2. The maximum length of a cloud scene is the sum of all
the horizontal lengths of all the cloud types in the cloud
scene.

For example, imagine that we will calculate the maximum
length of the specific cloud scene (Ac, Sc). We then identify
a location in the CloudSat data record with the following il-
lustrative succession of cloud types: (Ci, Ac, Sc, Ac, Sc, Ac,
Ns), with the number of CloudSat profiles associated with
each cloud type of 10, 3, 6, 5, 7, 12, and 15, respectively.
The Ci and Ns obviously do not belong to the (Ac, Sc) cloud
scene and therefore delimit the scene as defined in (1) above.
The maximum length of the cloud scene (Ac, Sc) will be the
sum of the number of CloudSat profiles for (Ac, Sc, Ac, Sc,
Ac), which is 3+ 6+ 5+ 7+ 12= 33 CloudSat profiles in
total. Below, we define a minimum cloud length that is un-
equivocal.

3. If within a given cloud scene there exist several cloud
scenes with the same cloud types but smaller lengths
than the maximum length, the minimum length of a
cloud scene is defined as the smallest length of all those
lengths.

In the example above, there are four possible sequences that
could be the minimum length: (Ac, Sc, . . . , . . . , . . . ), (. . . ,
Sc, Ac, . . . , . . . ), (. . . , . . . , Ac, Sc, . . . ), or (. . . , . . . , . . . , Sc,
Ac). The corresponding lengths are 3+ 6= 9, 6+ 5= 11,
5+7= 12, and 7+12= 19, respectively. In this example, the
minimum length would therefore be nine CloudSat profiles.
(The minimum and maximum may be equal for a particular
mixed cloud scene.)

Before steps (1) and (2) are used to quantify the maxi-
mum and minimum lengths for each of the 247 mixed scenes
(256 minus the 8 single cloud scenes and clear sky), the loca-
tions of each cloud scene must first be identified in the 2-year
data record. Starting at the first CloudSat profile, the pres-
ence of each of the 247 mixed cloud scenes is determined
using (1). For each occurrence of each mixed cloud scene,
(2) and (3) are then applied to determine the maximum and
minimum lengths for each individual cloud scene. After pro-
cessing the maximum and minimum lengths for every mixed
cloud scene, simple statistics are calculated.

A total of 200 out of 247 possible mixed scenes were iden-
tified. The minimum and maximum length occurrence fre-
quencies of five cloud scenes – (Ac, Sc), (As, Sc, Cu), (Ci,
As, Cu, Dc), (As, Ac, Ns, Dc), and (Ci, As, Ac, St, Sc) –
selected randomly from the 200 present in the 2-year record
are shown in Fig. 4a and c, respectively. Recall that the max-
imum length is defined from (2), while the minimum length
is defined from (3), with an illustrative example previously
described for (Ac, Sc). From top to bottom, their respective
ranks are 1, 26, 51, 76, and 101. It is striking that each fre-
quency histogram in Fig. 4a and c is not monotonic and dis-
plays a frequency maximum between 100 and 1000 km. Con-
sequently, the sum of all (200) observed mixed scenes across
length scales will result in a curve with a maximum, and
these are shown in Fig. 4b and d. Both curves are very similar
to Fig. 3a and have maxima for about 180 observed scenes at
77 and 174 km, respectively. Using the methodology outlined
in (1) to (3) to estimate numbers of cloud scenes, the scale
dependence of the number of observed scenes shows that the
maximum will occur somewhere between 77 and 174 km.

In order to shed additional light on why a maximum in
the occurrence frequency of each cloud scene histogram is
obtained, histograms of cloud length frequency of single
cloud types (defined at cloud top) are calculated. An example
CloudSat orbital segment is shown in Fig. 5. The distribution
of lengths for each cloud type for the 2-year period is then
shown in Fig. 6 with corresponding median and median ab-
solute deviation (or m.a.d.) values reported in Table 1. Note
that these values are similar to but not exactly the same as
those calculated in Guillaume et al. (2018), for which cloud
length was derived from a 2-D curtain of cloud features. The
main characteristic shared by all cloud types in Fig. 6 is that
their distributions are heavily skewed towards small lengths.

The length of a mixed scene is the sum of the lengths of
each cloud type within it. There are two aspects that will in-
fluence the number of scenes observed at a given length L.
First, there are several combinations of different lengths that
will sum to L and those lengths will be smaller than L (ab-
scissa of Fig. 6). Second, the likelihood of observing a given
scene depends on the frequency of occurrence of each cloud
type (ordinate axis of Fig. 6). These two effects have oppo-
site behaviors as a function of L: single cloud frequency de-
creases with L, whereas the number of cloud length combi-
nations that sum up to L increases with length scale.
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Figure 4. Distribution of (a) minimum and (c) maximum length for 5 of the first 200 cloud scenes. The five scenes are, from top to bottom,
(Ac, Sc) in blue, (As, Sc, Cu) in orange, (Ci, As, Cu, Dc) in yellow, (As, Ac, Ns, Dc) in purple, and (Ci, As, Ac, St, Sc) in green, and their
respective ranks are 1, 26, 51, 76, and 101. In panels (b) and (d), the number of scenes were obtained by summing the number of scenes
present a different lengths.

Figure 5. Cloud type vertical cross section defined by the values of the cloud_scenario variables of the 2B-CLDCLASS product. Each color
corresponds to a different cloud type (legend on right). Color segments on top of the figure indicate the horizontal extent of a cloud measured
at its top.

To illustrate the effects of these opposing behaviors, we
consider the scene (As, Sc, Cu) length distribution. Since
the minimum length of all cloud distributions in Fig. 6 is
one CloudSat profile, there is only one possible cloud length
combination (1+ 1+ 1) that will sum to the minimum pos-
sible length of the scene (As, Sc, Cu). This is indeed the
value observed on the far left of each red-orange curve
in Fig. 4a and c. Next, consider a measurement consisting

of four CloudSat profiles with this particular scene, with
three possible length combinations: (1+ 1+ 2), (1+ 2+ 1),
or (2+ 1+ 1). The frequency of each individual cloud type,
As, Sc, or Cu, is smaller at the scale of four CloudSat pro-
files than it is at a length of three CloudSat profiles in Fig. 6.
However, there are more (As, Sc, Cu) scenes at length 4 than
at 3 in Fig. 4a and c. This indicates that the increase in possi-
ble combinations is more important than the individual cloud
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Figure 6. Horizontal cloud chord length frequency histograms for each of the eight CloudSat cloud types and clear sky. The cloud chord
length was obtained at the cloud top (see Fig. 5) unlike that obtained in Guillaume et al. (2018).

frequency decrease for larger scales. This reasoning applies
for increasing lengths until the decreasing frequency of indi-
vidual cloud types between two consecutive lengths is more
important. There are very few single As, Sc, or Cu clouds
observed at large lengths (far right scale of Fig. 6) resulting
in a very small number of observed (As, Sc, Cu) scenes in
Fig. 4a and c, despite the large number of length combina-
tion possibilities that may contribute.

4 Cloud scene dependence of AIRS cloud properties

We will now establish differences in the AIRS
thermodynamic-phase and ice cloud properties in the
presence of complex and simple cloud types using coinci-
dent cloud scenes. In this section, the scenes are determined
at the AIRS FOV resolution (approximately 15 km). We
briefly summarize general categories of cloud scene statistics
in Sect. 4.1. The AIRS cloud-thermodynamic-phase tests
are discussed separately for single and mixed cloud scenes
in Sect. 4.2. The AIRS ice cloud τi and rei, error estimates,
averaging kernels (i.e., information content), and χ2 residual
fits between observed and simulated radiances are shown in
Sect. 4.3.

4.1 Types of cloud scenes

Table 2 summarizes five types of scenes at the 15 km AIRS
FOV scale: (i) clear sky, (ii) cloudy sky with one cloud type,
(iii) partly cloudy sky with one cloud type, (iv), cloudy sky
with multiple cloud types, and (v) partly cloudy sky with
multiple cloud types. The raw counts and the relative per-
centages for the 2-year observing period are shown. The
dominance of clear sky (30.7 %) at 15 km is apparent and
is consistent with an absence of thin cloud features in the
2B-CLDCLASS data set. Cloudy sky scenes with one cloud
type (multiple cloud types) amount to 31.3 % (10.2 %) of all
observed scenes, while partly cloudy sky scenes with one
cloud type (multiple cloud types) amount to 23.5 % (4.3 %)

of all observed scenes. A total of 41.5 % of AIRS FOVs
are completely cloudy while 27.8 % are partly cloudy ac-
cording to 2B-CLDCLASS. Below the differences in cloud-
thermodynamic-phase detection and ice cloud property re-
trievals are quantified for the types of scenes summarized in
Table 2.

4.2 Cloud thermodynamic phase

The occurrence frequency histogram of the sum of all
thermodynamic-phase tests is shown for cloudy sky with one
cloud type in Fig. 7. Homogeneous cloud scenes serve as an
ideal point of reference for establishing cloud-phase sensitiv-
ity benchmarks. Overall, there is strong differentiation in the
cloud thermodynamic phase among cloud scenes with sin-
gle cloud types. Ice tests dominate Ci, Ns, Dc, and As, while
liquid and undetermined tests dominate Ac, Sc, and Cu.

The ice tests dominate the Ci cloud scenes and reaffirm the
sensitivity of AIRS to ice clouds. CloudSat-classified clear
scenes contain occasional occurrences of AIRS-detected thin
cirrus (+1 and +2), consistent with either thin cirrus that
is undetected by the CloudSat radar or thicker cirrus within
the AIRS footprint but to the side of the CloudSat ground
track (e.g., Kahn et al., 2008). A few occurrences of −1 and
−2 may also arise from spatial mismatches between AIRS
and CloudSat scenes, or from stratus below 1 km in alti-
tude that is undetected by CloudSat. In the Sc cloud scenes,
trade cumulus clouds dominate as previously shown by Yue
et al. (2011) and Kahn et al. (2017). A larger proportion of
liquid tests, and a smaller proportion of ice tests, is observed
in the Sc cloud scenes compared to clear sky, but undeter-
mined phase is dominant in both scene types. The Cu and Sc
cloud scene histograms are generally similar with more un-
determined cases for Cu, but with a slight reduction of liquid
and slight increase in ice observed for Cu compared to Sc.

The As cloud scene histogram in Fig. 7 is overwhelmingly
dominated by ice. The undetermined cases in part may re-
sult from supercooled liquid or mixed-phase clouds that po-
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Table 1. Horizontal cloud chord length median and median absolute deviation for each cloud type (km).

Cloud type nc Ci As Ac St Sc Cu Ns Dc

Median 6.6 8.8 12.1 1.1 3.3 1.1 1.1 15.4 14.3
Median absolute deviation 5.5 7.7 11.0 0.0 2.2 0.0 0.0 13.2 9.9

Figure 7. AIRS cloud_phase_3x3 histograms for cloudy sky with one cloud type (i.e., all CloudSat profiles have the same cloud type and
no clear sky). The red, green, and blue bars indicate liquid, undetermined, and ice phase, respectively. Each histogram sums to 1.0 and does
not show how many counts relative to another histogram. Relative counts could be inferred from the percentages listed in the second to left
column of Table 3.

tentially could be distinguished with an improved phase al-
gorithm that factors in the spectral midinfrared signature of
supercooled liquid (e.g., Rowe et al., 2013). The Ac and As
cloud scene histograms are very different from each other,
with a majority of undetermined and liquid for Ac and a
majority of ice for As, consistent with aircraft observations
(Mazin, 2006). The preponderance of undetermined phase
for Ac may indicate frequent supercooled liquid cloud tops
(Zhang et al., 2010). Ham et al. (2013) showed that Ac are
typically 2–3 km lower in altitude than As, and this proba-
bly explains some of the difference in liquid and ice phase,
as lower clouds are usually warmer. The Ns cloud scene his-
togram is dominated by ice detection with occasional liquid
and undetermined cloud tops. The Ns cloud scene also has
significant height overlap with Ac and As, with most tops for
all three types typically located below 9 km. Ice tests domi-

nate in the Dc cloud scene histogram although a very small
proportion of−1, 0, and+1 occur. Inspection of AIRS gran-
ules (not shown) demonstrates that the spectral signatures
used in thermal infrared phase tests break down in the pres-
ence of overshooting convection and other ice clouds within
a few Kelvin of the tropopause (e.g., Kahn et al., 2018).

The occurrence frequencies of cloud phase for partly
cloudy sky with one cloud type are shown in Fig. 8. The
biggest change is the relative ordering of the ranks among
cloud scene types between Figs. 7 and 8. Ac is now more
common than As, as horizontal extent and frequency both
explain reordering of rankings in Figs. 7 and 8 (Miller et al.,
2014; Guillaume et al., 2018). There are more subtle changes
in the cloud-phase histograms that are consistent with partly
cloudy sky. A weaker spectral signature for partly cloudy
scenes results in slightly greater counts of unknown phase
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Figure 8. AIRS cloud_phase_3x3 histograms for partly cloudy sky with one cloud type. All else equal to Fig. 7.

Table 2. Total counts and relative percentages of five cloud scene
categories at the AIRS FOV scale: clear sky, cloudy sky with one
cloud type, partly cloudy sky with one cloud type, cloudy sky with
multiple cloud types, and partly cloudy sky with multiple cloud
types.

Type of scene Total count percent

Clear 7 175 523 30.7
Cloudy sky with one cloud type 7 332 076 31.3
Partly cloudy sky with one cloud type 5 506 074 23.5
Cloudy sky with multiple cloud types 2 377 259 10.2
Partly cloudy sky with multiple 1 008 158 4.3
cloud types

All 23 399 090 100.00

and also subtle shifts in liquid- and ice-phase tests in Fig. 8
compared to Fig. 7. In the Ac cloud scene histograms, there
is a small but discernible increase in ice tests in Fig. 8 com-
pared to Fig. 7. Horizontally heterogeneous Ac appears to
have more frequent ice detection than horizontally homoge-
neous Ac.

The nine most frequent cloudy scenes with multiple cloud
types are shown in Fig. 9. The (Ci, Sc) cloud scene ice-
phase histogram resembles a hybrid of histograms for Ci and

Sc with undetermined phase the most frequent. (Ci, Sc) is
a common cloud scene in the low latitudes as trade cumu-
lus (Sc cloud type) and is frequently found under thin cirrus
(Chang and Li, 2005). Furthermore, the spectral signatures of
the two types of clouds frequently cancel, giving an undeter-
mined phase result in the spectral tests used here (not shown).
The (Ci, As) cloud scene shows a slight reduction in liquid
detections and a slight increase in ice detections compared to
As alone. While the As cloud scene in Fig. 7 is dominated
by +2, the (Ci, As) cloud scene is dominated by +2 and +3.
This suggests that a mixture of Ci and As together can trigger
more ice tests in AIRS than As alone.

The nine most frequent partly cloudy scenes with multi-
ple cloud types are shown in Fig. 10. As with the differences
between Figs. 7 and 8, the biggest change is the relative or-
dering of the ranks among cloud scene types between Figs. 9
and 10. Furthermore, there are additional (yet subtle) changes
in the phase test histograms for the cloud scenes that are com-
mon between Figs. 9 and 10.

In most mixed cloud scenes in both Figs. 9 and 10, the
characteristics of the histograms are similar either to single
types or have combined characteristics of the multiple cloud
types contained within the cloud scene. These results are en-
couraging and reaffirm the capabilities of thermal-infrared
cloud-phase determination (Jin and Nasiri, 2014) and exhibit
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Figure 9. AIRS cloud_phase_3x3 histograms for cloudy sky with multiple cloud types for the top nine ranked cloud scenes in order of
occurrence frequency.

consistency with cloud types from the CloudSat radar. We
note, however, that the AIRS phase determination has some
ambiguity in overlapping ice and liquid cloud layers as pre-
viously shown by Jin and Nasiri (2014).

4.3 Ice cloud properties

The mean ice cloud property retrievals are summarized in Ta-
ble 3 for cloudy sky with one cloud type only for the ice-only
portions of the cloud-phase histograms depicted in Fig. 7.
Scenes identified as clear sky exhibit properties of a small
population of thin cirrus detected by AIRS (Fig. 7) with mean
values of τi = 0.77 and rei = 20.9 µm (Table 3). The AKs are
notably lower and the relative error for τi is higher than other
cloud scenes. The Sc cloud scene shows a small population
of cirrus that go undetected in 2B-CLDCLASS (Fig. 7) and
have mean values of τi = 1.30 and rei = 20.6 µm (Table 3).
The AKs are also lowest in Table 3 for Sc relative to other
cloud scenes with similarly high errors in τi and rei. Kahn
et al. (2008, 2015) have shown that AIRS is very sensitive
to thin cirrus; thus some ice clouds in CloudSat-identified Sc
cloud scenes are expected. Because tenuous ice clouds have
smaller values of τi and rei, the lower estimates of informa-
tion content and larger error estimates are promising. These
tenuous ice cloud retrievals are differentiated well from more

robust retrievals within cloud scenes that are dominated by
ice phase in the histograms (Fig. 7).

The Ci cloud scene has mean values of τi = 1.91 and
rei = 25.4 µm; an AK= 1.0, the highest of any scene type;
and lower errors compared to other types in Table 3. The As
cloud scene has a larger mean of τi = 2.42 compared to the
Ac cloud scene with a mean of τi = 1.65 (Table 3). Interest-
ingly, the mean value and error estimate of rei is lower for
Ac than As, exhibiting differentiation between these two mi-
dlevel cloud types. However, a much smaller proportion of
Ac is ice compared to As (Fig. 7).

The Ns cloud scene in Table 3 contains larger mean val-
ues of τi than Ci and Ac cloud scenes, but these values are
similar to those for As; however, the mean values are lower
than Cu and Dc cloud scenes (Table 3). A lower value of τi is
characteristic of diffuse cloud tops where the infrared emis-
sion may originate several kilometers deep within the cloud
(e.g., see Kahn et al., 2008; Holz et al., 2006). The reduced
AK= 0.88 for the Ns cloud scenes illustrates that a diffuse
cloud top is more problematic for ice cloud retrievals. Cu
cloud scenes with ice cloud tops occur a small amount of the
time (Fig. 7); furthermore, Cu is infrequent in CloudSat clas-
sification (1.7 % of all clouds). The horizontal extent of Cu is
also much smaller than Dc (see Table 1). Interestingly, τi is
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Table 3. Cloud ice properties for cloudy sky with one cloud type (i.e., all CloudSat profiles have the same cloud type). Proportions and
relative errors are in percent. The effective radius is in micrometers (µm).

Cloud Cloudy Mean τi τi % Mean rei rei % χ2

type single τi relative averaging passing rei relative averaging passing residual
type error kernel QC for error kernel QC for fit

proportion τi rei

nc 49.5 0.77 14.88 0.71 75.09 20.9 5.6 0.97 34.1 3.3
As 14.0 2.42 6.41 0.92 97.36 24.5 4.7 0.98 79.9 2.9
Sc 11.5 1.30 15.12 0.69 82.63 20.6 6.5 0.96 48.6 3.2
Ci 11.3 1.91 2.21 0.99 96.44 25.4 2.6 1.00 74.2 4.0
Ns 8.6 2.41 8.70 0.88 98.11 23.6 5.6 0.98 87.0 2.4
Ac 2.9 1.65 6.66 0.91 93.45 22.1 4.1 0.98 59.0 4.1
Dc 1.7 5.47 3.53 0.98 98.64 27.1 7.1 0.96 71.9 3.2
Cu 0.6 2.92 5.99 0.94 94.37 26.5 6.1 0.97 70.6 3.9
St 0.001 2.33 15.37 0.63 100.00 27.3 4.9 0.98 70.0 4.1

Figure 10. AIRS cloud_phase_3x3 histograms for partly cloudy sky with multiple cloud types for the top nine ranked cloud scenes in order
of occurrence frequency.

larger for Cu cloud scenes than for all categories except Dc
cloud scenes (Table 2).

The mean Cu value of rei = 26.5 µm is larger than most
cloud scenes. This is consistent with larger ice particles ob-
served at the tops of convection instead of small ice particles
in thin cirrus at the same cloud top temperature (e.g., Yuan
and Li, 2010; Protat et al., 2011; van Diedenhoven et al.,

2014; Kahn et al., 2018). These Cu cases are likely transient
cumulus congestus at altitudes cold enough for cloud top
glaciation. The Dc cloud scene has the largest mean τi = 5.47
of all cloud scenes with a very dense cloud top that saturates
the infrared emission signal in contrast to Ns. The values of
rei for Dc are similar to Cu (Table 3), with a slight reduction
in the rei AK= 0.96 and τi AK= 0.98 relative to Ci cloud
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Table 4. Cloud ice properties for partly cloudy sky with one cloud type. All else the same as Table 3.

Cloud Partly cloudy Mean τi τi % Mean rei rei % χ2

type single τi relative averaging passing rei relative averaging passing residual
type error kernel QC for error kernel QC for fit

proportion τi rei

Sc 74.79 0.93 14.45 0.71 73.91 21.2 5.7 0.97 36.8 3.5
Ci 10.44 0.71 3.69 0.96 87.98 22.5 2.8 0.99 62.0 4.2
Ac 5.08 0.94 5.95 0.92 88.41 20.8 3.6 0.99 52.6 4.6
As 4.83 1.09 14.40 0.72 90.47 19.9 6.4 0.96 46.5 3.1
Cu 4.80 0.87 12.78 0.76 74.49 21.1 5.2 0.97 38.2 3.7
Ns 0.05 1.69 14.50 0.71 85.08 22.9 7.1 0.96 45.3 3.7
Dc 0.01 4.63 3.44 0.98 93.58 26.8 6.4 0.96 53.8 3.9
St 0.01 0.79 8.95 0.88 84.00 21.3 6.3 0.96 64.0 3.9

scenes (Table 3). This is consistent with reduced sensitivity
for high values of τi (e.g., Huang et al., 2004).

The relative variations between the ice cloud retrieval
properties for cloudy sky with one cloud type in Ta-
ble 3 are consistent with expectations of infrared sensitiv-
ity. CloudSat-observed Ci cloud scenes have smaller error
estimates and higher information content in comparison to
Sc, consistent with Sc scenes containing tenuous cirrus that
goes undetected by 2B-CLDCLASS. Larger τi and rei are ob-
served at the tops of convective ice clouds such as Dc and Cu
compared to stratiform clouds such as As and Ci. Differences
in ice cloud properties between Ac and As cloud scenes are
consistent with observed differences in scene heterogeneity
and cloud top height.

The mean ice cloud property retrievals are summarized
in Table 4 for partly cloudy sky with one cloud type with
cloud-phase histograms depicted in Fig. 8. The biggest dif-
ference between Tables 3 and 4 is the relative frequency of
occurrence with large differences between cloud scenes with
or without clear sky. Another significant change is an over-
all reduction in AKs and magnitude of τi, with an increase
in χ2 in Table 4, consistent with partly cloudy scenes. The
changes in rei AKs, magnitudes, and error estimates between
Tables 3 and 4 are smaller than those for τi. Overall, the dif-
ferences between Tables 3 and 4 are reassuring in that the
AIRS retrieval is responding to partly cloudy scenes by re-
ducing information content and the magnitude of τi, while
χ2 residuals are increasing somewhat.

The As and Ac cloud scenes in Table 4 are very similar
to As and Ac cloud scenes in Table 3 except for slight re-
ductions in τi and rei. Scenes in Table 4 are partly cloudy,
implying a weaker infrared cloud signal. The Ci cloud scene
in Table 4 shows slight reductions in τi and rei from the Ci
cloud scene in Table 3.

The differences between Tables 3 and 4 are more signif-
icant for the convective ice clouds, however. The Cu cloud
scene τi and AK are smaller while errors are larger in Table 4
compared to the pure Cu cloud scene in Table 3. This is ex-
pected as Cu clouds are several kilometers in depth but often

have small horizontal scales and are averaged with clear sky
in an AIRS pixel. Mixed (Cu, Nc) cloud scenes are especially
problematic for plane-parallel radiative transfer calculations.
This results in more uncertain retrievals of ice cloud prop-
erties for partial cloud (Cu, Nc) in Table 3 than those for the
pure Cu cases in Table 2, which are more likely to completely
fill an AIRS scene.

The ice cloud property retrievals for cloud scenes that
contain multiple cloud types are summarized in Table 5 for
cloudy scenes and Table 6 for partly cloudy scenes. These ta-
bles list the nine most frequent cloud scene types as depicted
in Figs. 9 and 10. Four of the nine cloud scenes are com-
mon between Tables 5 and 6. There is a general tendency
for reductions of τi, increases in percent relative error, and
slight reductions in AKs in Table 6 for the seven common
cloud scenes in Table 5. Changes in rei-related variables are
smaller than changes in τi-related variables.

To summarize Tables 3–6, larger differences in ice cloud
property retrievals are found between different cloud types
than between cloudy and partly cloudy scenes. However,
the differences between cloud scene types are the sharpest
for the subset of cloudy scenes with one cloud type (Ta-
ble 3). The AIRS cloud property retrievals are not greatly
impacted by mixtures of cloud types within the AIRS foot-
print, and ice cloud property differences among cloud scenes
are broadly consistent with the expected performance of in-
frared retrievals among these cloud types.

5 Summary

A method is described to classify cloud mixtures of cloud
top types, termed cloud scenes, using the 2B-CLDCLASS
cloud type classification obtained from the 94 GHz Cloud-
Sat radar. The scale dependence of the cloud scenes is quan-
tified. The method is initially applied to 2 years of Cloud-
Sat data collocated within the Atmospheric Infrared Sounder
(AIRS)/Atmospheric Microwave Sounding Unit (AMSU)
field of regard (FOR) at a 45 km scale. Given the 45 km
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Table 5. Cloud ice properties for cloudy sky with multiple cloud types for the first nine most observed cloud scenes at the AIRS FOV scale.
All else the same as Table 4.

Cloud Mixed Mean τi τi % Mean rei rei % χ2

scene scenes τi relative averaging passing rei relative averaging passing residual
proportion error kernel QC for error kernel QC for fit

τi rei

Ci,As 16.7 2.52 4.05 0.96 97.56 24.7 3.8 0.99 74.6 3.5
Ac,Sc 16.0 1.31 10.41 0.81 85.92 21.9 5.0 0.97 53.7 4.0
As,Ns 11.0 2.07 10.66 0.83 97.01 22.4 5.7 0.97 81.6 2.6
Ci,Ns 7.2 2.14 6.84 0.93 97.39 22.9 4.3 0.98 85.8 2.8
Ac,Ns 6.1 1.75 12.83 0.77 91.58 21.2 6.0 0.97 69.9 3.1
Ci,Sc 5.2 1.00 4.61 0.95 84.98 24.5 3.1 0.99 60.7 4.3
As,Sc 4.8 1.34 16.31 0.66 91.55 19.7 6.6 0.96 57.0 2.9
As,Dc 3.7 5.22 3.12 0.99 99.07 28.0 6.8 0.96 65.8 3.5
Ci,Dc 3.4 4.30 2.82 0.99 98.61 27.4 4.9 0.98 62.0 4.1

Table 6. Cloud ice properties for partly cloudy sky with multiple cloud types for the first nine most observed cloud scenes at the AIRS FOV
scale. All else the same as Table 5.

Cloud Mixed Mean τi τi % Mean rei rei % χ2

scene scenes τi relative averaging passing rei relative averaging passing residual
proportion error kernel QC for error kernel QC for fit

τi rei

Sc,Cu 18.0 1.03 14.00 0.73 76.20 21.8 5.9 0.97 39.1 3.7
Ac,Sc 20.1 0.87 6.34 0.92 84.99 21.4 4.0 0.98 54.9 4.4
Ci,Sc 17.8 0.70 4.07 0.95 86.31 22.6 2.9 0.99 61.1 4.2
As,Sc 5.2 1.16 14.36 0.72 88.08 20.4 6.3 0.96 47.9 3.4
Ac,Cu 3.4 0.94 4.84 0.95 86.14 23.0 4.1 0.98 56.3 4.7
Ci,Ac 3.3 1.18 2.93 0.98 93.16 22.3 2.5 0.99 56.4 5.0
Ac,Sc,Cu 3.2 0.83 5.36 0.94 85.47 22.7 4.3 0.98 59.5 4.4
Ci,As 2.7 1.22 7.10 0.89 92.41 21.3 4.2 0.98 52.5 3.9
As,Ac 2.1 1.14 8.07 0.87 90.54 21.3 4.5 0.98 48.6 4.3

scale and approximately 50 coinciding CloudSat profiles,
each with 125 levels, the total number of possible scenes
within an AMSU FOR is 950×125. This very large number of
possible scenes is reduced to 256 by making three assump-
tions in the classification. First, only the cloud type at the
cloud top is considered. Second, the occurrence frequency of
each cloud type within the cloud scene is disregarded; thus,
there is no consideration of the counts of each cloud type.
Third, the sequence of cloud types along the orbit segment is
not considered. These three assumptions make mixed cloud
scene classification tractable and are broadly consistent with
the sensitivity of infrared sounders to clouds. They are also
independent of the spatial scale of a scene and therefore can
be generalized to all horizontal scales. A total of 210 out of
256 possible cloud scenes are observed in a 2-year period
from 1 July 2006 to 30 June 2008. The maximum number
of cloud scenes occurs at a horizontal scale of 105 km with
fewer cloud scenes at larger and smaller scales, and the ma-
jority of observed cloud scenes contain single cloud types.

The cloud scenes are organized into five categories:
(i) clear sky, (ii) cloudy sky with one cloud type, (iii) partly
cloudy sky with one cloud type, (iv), cloudy sky with multi-
ple cloud types, and (v) partly cloudy sky with multiple cloud
types. Summarizing AIRS cloud top property retrievals for
cloudy sky with one cloud type, there is strong differentiation
in the cloud thermodynamic phase. Ice phase dominates Ci,
Ns, Dc, and As, while liquid and undetermined phase domi-
nate Ac, Sc, and Cu. The results are similar for partly cloudy
sky with one cloud type with an increase in unknown cloud
phase and χ2 residuals, as well as a reduction in informa-
tion content for some cloud types. A similar set of calcula-
tions were performed for both cloudy and partly cloudy skies
with multiple cloud types. In most cloud scenes with multi-
ple cloud types, the changes in the ice properties are gener-
ally either small or reflect the combined characteristics of the
multiple cloud types contained within the cloud scene. The
sensitivity of thermal infrared cloud-phase determination is
consistent with independently determined cloud typing from
the CloudSat radar for clouds detected by CloudSat.
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The relative magnitude of differences in rei and τi, and
their averaging kernels (AKs) and error estimates, and the
χ2 residual between simulated and observed radiances are
consistent with expectations of infrared retrieval sensitivity
to different cloud types. Smaller error estimates and higher
information content (AKs) within Ci cloud scenes are ob-
served in comparison to thin cirrus likely missed by Cloud-
Sat in clear sky and Sc scenes. Larger τi and rei are observed
at the tops of convective ice clouds. Differences in retrieved
cloud properties between Ac and As cloud scenes are consis-
tent with differences in their scene heterogeneity and cloud
temperature. Variations in ice cloud property retrievals are
larger between types of cloud scenes than between cloudy
and partly cloudy/mixed cloud scenes.

The fidelity of AIRS-retrieved cloud-phase and ice cloud
microphysics was tested within scenes with both uniform
and nonuniform cloud cover, as well as one or more cloud
types within the scene. As with phase, retrieval differences
are shown to be larger among cloud types rather than be-
tween uniform and mixed cloud scenes.

New methodologies for simultaneous retrievals of cloud
microphysical properties and temperature and specific hu-
midity profiles that include clouds in the forward radiative
transfer (e.g., De Souza-Machado et al., 2018; Irion et al.,
2018) necessitate careful investigation of the effects of cloud
mixtures on retrieved cloud properties. The bias and root-
mean square error of AIRS temperature and specific humid-
ity soundings depend on cloud type (Yue et al., 2013; Wong
et al., 2015). A more rigorous evaluation of scene complex-
ity is necessary for optimizing the retrieval configuration of
future sounding algorithms (Irion et al., 2018) and for vali-
dating their products.

This investigation shows that careful inspection of
footprint-scale AIRS cloud property retrievals is consistent
with expectations of infrared sensitivity to different cloud
types defined with the 94 GHz CloudSat radar. Other cloud
observations, such as MODIS, may be used in a similar anal-
ysis to the one described here. MODIS captures the off-
nadir portion of the AIRS swath and the fine-scale variability
within AIRS footprints. Wang et al. (2016) used the cloud
typing in CloudSat to cross validate with cloud typing using
MODIS-defined cloud types. This establishes a link between
cloud types obtained from CloudSat and MODIS. A rigor-
ous estimation of the pixel-scale relationships between cloud
properties obtained from CloudSat, MODIS, and AMSU will
help to further advance multisensor and multivariate geo-
physical retrievals (e.g., Irion et al., 2018).
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