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Abstract. Many applications of atmospheric composition
and climate data involve the comparison or combination of
vertically resolved atmospheric state variables. Calculating
differences and combining data require harmonization of
data representations in terms of physical quantities and ver-
tical sampling at least. If one or both datasets result from
a retrieval process, knowledge of prior information and aver-
aging kernel matrices in principle allows retrieval differences
to be accounted for as well. Spatiotemporal mismatch of the
sensed air masses and its contribution to the data discrepan-
cies can be estimated with chemistry transport modeling sup-
port. In this work an overview of harmonization or matching
operations for atmospheric profile observations is provided.
The effect of these manipulations on the information con-
tent of the original data and on the uncertainty budget of data
comparisons is examined and discussed.

1 Introduction

The quality assessment and validation of atmospheric state
observations largely rely on making comparisons with (ref-
erence) measurements of the same observable. On the other
hand, data merging or fusion schemes involve the combi-
nation of observations from different sources, weighted by
functions that mix uncertainties, information content aspects,
and spatiotemporal (4-D) representativeness. And chemical
data assimilation involves the comparison and/or combina-
tion of observations with modeling outputs. However, quanti-
tative comparisons and combinations of atmospheric sound-
ings are only possible when the observables are represented
on the same vertical grid, within the same vertical range, and

in identical units. Moreover, observations by different instru-
ments also differ in their sensitivity to and representativeness
of spatiotemporal features of the atmospheric field (i.e., res-
olution or smoothing differences) (Loew et al., 2017). The
remote sensing of the atmosphere by spaceborne and ground-
based instruments additionally consists of under-constrained
inverse problems that mix necessary prior information into
the retrieved atmospheric state profiles (Rodgers, 2000). Tak-
ing into account these differences in representation, loca-
tion, and, if applicable, retrieval characteristics is needed for
proper data combinations and comparative validation exer-
cises using difference statistics and χ2 testing (Rodgers and
Connor, 2003; von Clarmann, 2006).

Carried out in the context of several satellite validation
studies (for Sentinel-5P, the European Space Agency’s Cli-
mate Change Initiative, and the Satellite Application Facil-
ity on Atmospheric Composition Monitoring) and consider-
ing the exploration of advanced data fusion methods (Cortesi
et al., 2018), with a view to harmonize practices across satel-
lite missions and Earth Observation domains, this work is
meant to provide an overview of existing approaches that al-
low estimating and potentially (partially) correcting for these
observational differences in quantitative data comparisons.
The uncertainties that are tied to these differences, as typi-
cally expressed in terms of covariance matrices, as a result
are also (partially) removed from the uncertainty budget of
the data comparison. All relevant difference error contribu-
tions are identified in the next section, where it has also been
necessary to align some concepts and terminology that might
not be identical across all atmospheric research communities.
Section 3 then motivates why the difference error contribu-
tions must ideally be either quantified or corrected for in the
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difference statistics. Opting for the latter, an overview of har-
monization (or homogenization) operations that match two
atmospheric state datasets in terms of their representation,
retrieval characteristics, and location is provided in Sect. 4.
This section focuses on the harmonization algebra, while the
reader is referred to the bibliography for specific examples
using real data. The impact of the “matching” operations on
the observations’ information content and on the compari-
son uncertainty budget is discussed in Sects. 5 and 6, respec-
tively.

2 Difference error identification

When taking the difference of two vertically resolved atmo-
spheric state observations, e.g., a measurement under study
xs and a reference measurement xr that both aim for the same
true state xt as the measurand, random and systematic mea-
surement errors ε on both observations will lead to a non-
zero difference vector 1ε:

1x = xs− xr = (xt+ εs)− (xt+ εr)= εs− εr =1ε. (1)

This equation only holds for observations that are ex-
actly spatiotemporally co-located. Usually, however, the air
masses that are sampled by both measurements do not match.
This introduces a spatiotemporal (4-D) co-location mismatch
error, which can be subdivided into a sampling difference er-
ror ε1sa (different nominal measurement location and time)
and a smoothing difference error ε1sm (different 4-D air
mass sensitivity) (Nappo et al., 1982; Lambert et al., 2013;
Verhoelst et al., 2015). Assuming that both types of error are
independent, the above becomes

1x =1ε+ ε1sa+ ε1sm. (2)

For vertically resolved atmospheric state observations, a dis-
tinction can be made between the horizontal and vertical
sampling and smoothing difference errors, next to their tem-
poral counterparts, ε1sa = ε1Hsa+ε1Vsa+ε1Tsa and ε1sm =

ε1Hsm+ ε1Vsm+ ε1Tsm, so that

1x =1ε+ ε1Hsa+ ε1Vsa+ ε1Tsa

+ ε1Hsm+ ε1Vsm+ ε1Tsm. (3)

If at least one of the observations is the result of a retrieval
process, some retrieval contributions to the difference errors
can be made explicit as well. For example each retrieved
profile x that is obtained by an optimal estimation (OE) ap-
proach can be regarded as a weighted average between prior
and measurement information (Rodgers, 2000):

x = Axt+ (I−A)xa + ε, (4)

where ε includes, next to (spectral) measurement errors, re-
mote sounding errors like the retrieval parameter errors and
forward model errors (Rodgers, 2000, Eq. 3.16). The latter

as such also capture the uncertainty on the square weight-
ing matrix A. This is the so-called averaging kernel ma-
trix (AKM) that is determined by the prior profile shape
(PS) xa , the prior constraint (PC) in terms of its covari-
ance matrix Sa , and the retrieval process that yields a ver-
tical smoothing and a measurement weight (MW) (also see
next sections). Matrix I represents the identity matrix equal
in size to the AKM. The following sections however are
also valid for retrieval approaches that have xa = 0, like in
some Philips–Tikhonov regularization schemes, as the equa-
tions can easily be adopted accordingly. By inclusion of
ε1PS+ ε1PC + ε1MW as retrieval difference errors, the ob-
served difference 1x containing at least one retrieved prod-
uct can be decomposed as follows:

1x =1ε′+ ε1Hsa+ ε1Vsa+ ε1Tsa

+ ε1Hsm+ ε1Vsm+ ε1Tsm

+ ε1PS+ ε1PC + ε1MW. (5)

Here 1ε′ then contains both the known and unknown mea-
surement errors and remote sounding errors (Rodgers, 2000;
Povey and Grainger, 2015).

3 Quantitative validation

The Committee on Earth Observation Satellites (CEOS) de-
fines validation as (1) “the process of assessing, by indepen-
dent means, the quality of the data products” (International
Organization for Standardization, 2014). Validation is also
defined by international normalization bodies as (2) “the con-
firmation, through the provision of objective evidence, that
specified requirements, adequate for an intended use, have
been fulfilled” (Joint Committee for Guides in Metrology,
2012). In the atmospheric remote sensing literature, the val-
idation exercise is also sometimes defined as (3) “to confirm
that the theoretical characterization and error analysis actu-
ally represent the properties of the real data” (Rodgers, 2000)
or (4) “to confirm the predicted accuracy estimator of that
product” (von Clarmann, 2006). The predicted (or inductive
or ex ante) uncertainty of the product under study is typi-
cally represented by an error covariance matrix Ss = 〈εsε

T
s 〉,

which means that uncertainty information is restricted to co-
variances and higher-order correlations are ignored. Two ap-
proaches are commonly applied in order to validate this un-
certainty by comparison of the product under study with a
reference data product that is characterized by an ex ante un-
certainty Sr.

One can perform a so-called χ2 test to verify whether the
difference between the study and reference products 1x is
consistent (χ2

∼ 1) with the predicted estimate of the total
uncertainty on the difference S1 (Rodgers and Connor, 2003;
von Clarmann, 2006):

χ2
= L−11xT S−1

1 1x, (6)
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whereby L symbolizes the number of elements in 1x, and
S1 is the full sum of the covariance matrices of the errors
that were previously identified, including S(1ε)= Ss+Sr as
the ex ante uncertainty prediction of the study and reference
products combined:

S1 = Ss+Sr+S1Hsa+S1Vsa+S1Tsa

+S1Hsm+S1Vsm+S1Tsm

+S1PS+S1PC +S1MW. (7)

This expression assumes that the covariance matrices of the
difference error terms are independent and are not already
included in the ex ante covariance matrices. Equation (7)
should be corrected for those which are. For an ensemble of
N pairs of spatiotemporally co-located study and reference
profiles, one can now either determine χ2

N =N
−1∑

nχ
2
n or

one can replace the factors in Eq. (6) by statistical estima-
tors. In the latter case a distinction between bias b (system-
atic) and precision p (random) tests can be made, whereby
the combined root-mean-square uncertainty a as an estima-
tor of the accuracy obeys a2

= b2
+p2 (von Clarmann, 2006;

Joint Committee for Guides in Metrology, 2008, 2012).
Secondly, one often directly quantitatively or qualitatively

verifies whether a sample bias 〈1x〉 as an estimator of the
combined systematic error of the products is of the same or-
der as the combined ex ante uncertainty on the mean differ-
ence, and whether the corresponding sample dispersion on
the differences σ(〈1x〉) as an estimator of the standard de-
viation around the bias (combined random uncertainty) is of
the same order as the combined ex ante random uncertainty
on the difference. Unfortunately it is often overlooked that
also here the combined random and systematic components
of all difference error contributions to S1 should actually be
taken into account, and not only those inductively provided
with the study and reference data products through Ss and Sr,
respectively.

Irrespective of the method used, a full assessment and
quantification of all contributions to the difference error S1
are necessary to close the uncertainty budget and perform
a proper comparative validation. Alternatively however, one
can reduce the (number of) difference error terms by apply-
ing harmonization operations on the study and/or reference
profiles. Using matching manipulations, a difference 1x is
thereby replaced by a difference 1x′ that contains fewer, or
at least reduced, difference error contributions. Furthermore
these omitted contributions should no longer to be considered
in S′1. On the other hand, note that profile matching opera-
tions in turn introduce manipulation (difference) errors and
possibly ancillary data uncertainties.

4 Harmonization methods

This section provides an overview of profile matching ma-
nipulations. A distinction is made between representation

matching (relating to the vertical grid, vertical quantities, and
their units), vertical smoothing matching (cf. vertical resolu-
tion of the measurement), retrieval matching (cf. impact of
prior information), and spatiotemporal co-location matching.
Because of the focus on vertically resolved atmospheric state
observations, horizontal and vertical sampling and smooth-
ing issues are discussed separately.

4.1 Vertical representation matching (mandatory)

The matching of the vertical representation of the study and
reference profiles is an unavoidable operation to make differ-
ence calculations possible in the first place. The vertical rep-
resentation includes the vertical sampling and coordinate (al-
titude, pressure, geopotential height, or other) and the atmo-
spheric state quantity (volume mixing ratio, number density,
partial column, or other). A representation conversion may
introduce a bias and reduce the precision due to uncertainties
in the ancillary data and data manipulations, which actually
should be taken into account in the comparison’s uncertainty
budget (see Sect. 6).

4.1.1 Vertical quantity matching

When changing between concentration-type quantities like
number density and volume mixing ratio, a diagonal level-
by-level unit conversion matrix M can be constructed
straightforwardly (e.g., Keppens et al., 2015, Table B1). The
quantity-matching operation for a vertical profile x, with cor-
responding ex ante covariance matrix S and possibly averag-
ing kernel matrix A, is then easily achieved by matrix multi-
plication (Keppens et al., 2015):

x′ =Mx, (8a)

S′ =MSMT , (8b)

A′ =MAM−1. (8c)

Note that these operations have no effect on the fractional
covariance matrix, nor on the fractional (or logarithmic) av-
eraging kernel matrix that is required for information content
studies (see Keppens et al., 2015 and Sect. 5).

When going from a concentration-type representation on
levels to one between levels (i.e., on layers, like partial
columns), one can choose the integration boundaries either
on the given levels or in between them with the exception of
the outer edges, resulting in a rectangular or square conver-
sion matrix M, respectively (Keppens et al., 2015, Table B1):

M(L−1)×L =
u

2

1h1 1h1 0 0
0 . . . . . . 0
0 0 1hL−1 1hL−1

 (9)

and

ML×L = u

1h′1 0 0
0 . . . 0
0 0 1h′L

 (10)
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with

h′ =


1 0 0 0
.5 .5 0 0
0 . . . . . . 0
0 0 .5 .5
0 0 0 1

h. (11)

Here h has been used as a generalization of the vertical co-
ordinate (altitude, pressure or other) with L elements, while
u is the relevant unit conversion constant. Note that in con-
trast with Eq. (9), the inverse of M in Eq. (10) is not under-
constrained, which favors the latter at the small price of the
need for an h′.

4.1.2 Vertical sampling matching

The number of levels (for point-like concentration values)
or layers (for vertically integrated column values) and their
vertical locations or boundaries have to be identical for two
profiles to be quantitatively compared. One can opt for an
explicit vertical range matching of the two profiles first, e.g.,
by vertical clipping of the one or by extension by use of a
climatology of the other. The latter can be applied when later
profile operations require knowledge of the atmospheric state
over its full vertical range (Keppens et al., 2015). When ver-
tical range matching is skipped, vertical sampling or grid-
matching operations – often called regridding – automati-
cally limit the height range of the input profile grid to its
vertical overlap region with the target profile grid.

Several regridding approaches are in use, although their
application typically can depend on units and/or the vertical
resolution discrepancy between the input and target grids.

– Straightforward regridding by (linear or other) interpo-
lation only works appropriately, i.e., with minimum in-
formation loss, when going from a coarser-resolution
input grid to a finer-resolution target grid. Although the
corresponding interpolation matrix W is not square, it is
applied in an identical way as the unit conversion matrix
M in Eq. (1):

x′ =Wx, (12a)

S′ =WSWT , (12b)
A′ =WAW∗. (12c)

As the inverse of a non-square matrix is ill-posed, its
definition depends on the norm one wishes to minimize.
Opting for a simple least squares difference between
the input and target profiles yields W∗ = (WTW)−1WT

(Rodgers, 2000). The elements of W are determined
by the interpolation function one applies, which intro-
duces an additional term in the uncertainty budget (see
Sect. 6).

– In order not to suggest a vertical resolution that is mis-
leadingly much higher than the effective vertical res-
olution of (one of) the observations, atmospheric state

profile comparisons are often made on the vertical grid
of the product with the coarsest sampling. When con-
sequently the input grid has a finer resolution than the
target grid, one can easily invert the problem by con-
structing an interpolation matrix W for going from the
target grid to the input grid, and then applying the regu-
lar regridding formulas for W′ =W∗. This approach is
denoted as pseudo-inverse (linear or other) regridding.
When going from a fine to a coarse vertical sampling,
this method approximately conserves the atmospheric
constituent’s mass (vertically integrated amount) over a
wavelet-like vertical window function (also see Sect. 5).

– In practice vertical sampling definitions might change
in time, or one might not know beforehand whether
the target grid is coarser than the input grid or vice
versa, or both grids may be similar. Calisesi et al. (2005)
have therefore proposed to combine both of the previous
methods by first constructing two interpolation matri-
ces, W1 and W2 respectively, going from the input and
target grids to a conjoint super grid that is the resorted
union of the input and target grids. As a result, one can
generally apply vertical sampling matrix W′ =W∗2W1
as before.

– One might instead prefer the total vertical column
amount to be conserved during the regridding operation.
Such mass-conserved regridding is easily achieved for
partial column quantities, whether going from finer to
coarser resolution or vice versa. It is sufficient to con-
struct an overlap matrix that contains the fractions of
how much each target grid layer is covered by an in-
put grid layer (Langerock et al., 2015). Assuming that
the ith output grid layer overlaps with the j th input grid
layer, the corresponding element of the conversion ma-
trix is the following interpolation factor

W(i,j)=1h−1
in,j [min(hUout,i,h

U
in,j )

−max(hLout,i,h
L
in,j )], (13)

with 1hin,j the input layer thickness and the indices
U and L indicating the layers’ upper and lower height
bounds, respectively. Note that this expression implic-
itly makes use of the conjoint super grid (see previous),
allowing broad usage of this approach. If there is no
overlap between target layer i and input layer j , then
W(i,j) equals 0. The coefficients of the conversion ma-
trix therefore satisfy 0≤W(i,j)≤ 1.

– Total mass-conserved regridding of concentration-type
quantities defined on vertical levels or as vertical av-
erages, as is often the case in model fields, is somewhat
less straightforward. Before being able to apply the con-
version matrix as defined in the previous expression, the
point-like concentration values of the input profile must
be converted to vertically integrated values, and after the
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subsequent mass-conserved regridding operation a con-
version to the initial units is needed. A combination of
Eq. (13) with a forward and backward conversion by use
of Eq. (1) including M defined by Eq. (10) (with well-
defined inverse) is hence required, although this can be
achieved in arbitrary units (i.e., without the need for the
unit conversion constant u):

W′ =M∗outWMin. (14)

Here Min and Mout are the conversion matrices for the
input and output grids to their layer representations, re-
spectively, and W is the regular mass-conserved regrid-
ding matrix of Eq. (13).

4.2 Vertical smoothing matching

The vertical correlation of atmospheric measurement or re-
trieval quantities results from the allocation to neighboring
levels (layers) of concentrations (columns) that are in fact
obtained from vertically overlapping probed air masses. Es-
pecially for profile retrievals that have more retrieval levels
than independent degrees of freedom in the measurement, the
vertical smoothing of the spectral measurement information
by the retrieval can be large. As the algebraic inversion of a
retrieved profile’s vertical smoothing is typically an ill-posed
problem, vertical smoothing matching is ideally achieved by
imposing an estimator of the coarser height-dependent win-
dow smoothing function to each level (layer) of the atmo-
spheric state profile with the smaller window smoothing.

The smoothing window estimator can take any custom-
defined shape, but in practice typically a box, triangular, or
Gaussian-like function is applied. The window function in
any case has to be normalized to unity, while the function
width determines the extent of the vertical smoothing effect.
This extent is chosen in agreement with the estimated verti-
cal resolution of the coarser-smoothed atmospheric observa-
tion, usually going from a few to several tens of kilometers
(Keppens et al., 2015). The smoothing functions additionally
have to be discretized to the number of target profile levels
(layers) for application of the vertical smoothing matching
by matrix multiplication, x′ = Vx, with the rows of V con-
taining the level-specific smoothing functions. The averaging
kernel matrix here does not transform in the same way as a
representation matching operation (as in Eqs. 1 and 2), but is
given by A′ = VA as a unilateral smoothing of the averaging
kernel (AK) matrix itself (Rodgers and Connor, 2003). On
the other hand, the regular conversion formula for the target
profile’s covariance matrix still holds true, as the covariance
represents a quadratic quantity.

For retrieved atmospheric state profiles, the best and al-
ready discretized estimators of the vertical smoothing func-
tions are provided by the averaging kernel matrix rows
(Rodgers, 2000). These vectors are automatically normalized
to unity for some Philips–Tikhonov-type regularization tech-
niques that have xa = 0 but are to be explicitly normalized

for optimal estimation and other retrievals that have AKM
row sums different from one. The resulting unit-sensitivity
averaging kernels (i.e., with unit row sums) are denoted as
A1. Usually vertical sampling matching, either of the re-
trieved profile’s averaging kernel matrix or of the target state
vector, is required before one can apply V= A1 (also see
Sect. 4.5).

4.3 Retrieval matching

Attempting to harmonize two atmospheric state products
whereby at least one is the result of a retrieval process, one
has to consider differences in measurement weights, prior
profile shapes, and prior constraints between both products.
These differences can be (partially) corrected for in two
ways. Either one imposes the retrieval artifacts of one prod-
uct on the other, or one eliminates the retrieval artifacts and
associated uncertainties from the retrieved product(s) at the
cost of vertical resolution. Both options are discussed in the
following two subsections, respectively.

4.3.1 Imposing retrieval artifacts

– Measurement weight matching. The vertical sensitivity
of an atmospheric state retrieval is defined as the col-
umn vector of its averaging kernel row sums. It is given
by Au if u represents the vertical unit vector and can be
considered an estimator of the height-dependent frac-
tion of the retrieval that comes from the measurement,
rather than from the prior profile (Rodgers, 2000). One
can thus define a diagonal measurement weight matrix
WM (or prior weight matrix I−WM) by diag(WM)=

Au, so that A=WMA1 or A1
= (WM)−1A. The last

expression provides the most straightforward calcula-
tion of the AK-based vertical smoothing matrix V in
the previous section. The measurement weight harmo-
nization operation that matches the sensitivity of an at-
mospheric state with the measurement weight WM of a
given retrieved state is thus given by x′ =WMx, with
A′ =WMA. Here S′ = S, as the diagonal matrix WM

can be considered as merely a vertically resolved con-
version constant.

– Prior matching. Rodgers (2000, Eq. 10.48) provides an
expression for replacing the prior constraint Ra and pro-
file shape xa within a given retrieval by R′a and x′a , re-
spectively:

x′ = (S−1
−Ra +R′a)

−1(S−1x−Raxa +R′ax
′
a), (15)

whereby the prior constraint is typically, but not neces-
sarily, given by the inverse of the prior covariance ma-
trix, Ra = S−1

a . If only the prior’s profile shape xa is
substituted by x′a (i.e., for R′a = Ra), the prior match-
ing formula simplifies to the rather intuitive (Rodgers
and Connor, 2003, Eq. 10)

x′ = x− (I−A)(xa − x′a), (16)
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by taking into account that I−A= SS−1
a (Rodgers,

2000, Eq. 2.79). The latter moreover shows that A′ =
A+SS−1

a −S′S′a
−1. The prior-changed covariance ma-

trix S′ is obtained by substituting Sa by S′a in the re-
trieval’s expression for S (for example Rodgers, 2000,
Eq. 2.27): S′ = (S−1

−S−1
a +S′a

−1
)−1.

– Re-optimized prior matching. By changing the prior in a
given retrieval, the resulting atmospheric state profile x′

and its AKM will no longer provide an optimally esti-
mated (i.e., with minimal retrieval gain function) repre-
sentation with respect to the new constraint. Hence re-
optimization of the prior-matched profile might be re-
quired. When S′a = Sa , this can be achieved by (Rodgers
and Connor, 2003, Eq. 18)

x′ = x′a +S′aAT (AS′aAT +S)−1(x− x′a), (17)

whereby the atmospheric state vector x on the right-
hand side is taken from the output of the prior
matching operation in Eq. (16). The re-optimized
prior matching that combines Eqs. (16) and (17) thus
takes the form x′ = P[x−(I−A)xa]+(I−A′)x′a , with
P= S′aAT (AS′aAT +S)−1 and A′ = PA like a vertical
smoothing operation. Just as before, S′ = PSPT cor-
respondingly. Ridolfi et al. (2006, Eq. 8) obtained the
same conversion matrix P by constructing an opti-
mal interpolation method, i.e., an optimization through
trace(S1) minimization of combined vertical sampling
and smoothing matching operations (hence the non-
square AKMs and preceding A1 in their expression).
However, based on the complete data fusion framework,
Ceccherini et al. have been able to construct a more gen-
eral re-optimized prior matching operation that is valid
for all new prior profile shapes and constraints (Cec-
cherini et al., 2014, Eq. 7):

x′ = P[x− (I−A)xa] +PS(AT )−1R′ax
′
a . (18)

This expression even holds when R′a and x′a are defined
on a different vertical grid than the input profile x. In
that case it is sufficient to replace A by AW∗ in Eq. (18)
(also in P) with W, a regridding matrix as defined in
Sect. 4.1.2 (Ceccherini et al., 2018).

– Averaging kernel smoothing. In practice the covariance
matrices that are needed in Eqs. (17) and (18) are not
always provided to data users, or implementation of the
(re-optimized) prior matching is not preferred. One can
however avoid these operations by equalling x′a to the
prior of one of the profiles in a comparison and then
applying a vertical smoothing matching and measure-
ment weight matching on this profile by use of the
second profile’s averaging kernel matrix. In doing so,
only the second profile has to be prior-corrected, re-
sulting in only one non-optimal representation, while

this non-optimality and the initial prior constraint of
the second profile are enforced on the first profile and
therefore drop out of the difference comparison. This
whole process thus combines vertical smoothing match-
ing with V= A1, measurement weight matching with
diag(WM)= Au, and prior matching that does not re-
quire re-optimization (Eq. 16). By, for example, com-
paring a vertically smoothed and measurement weight-
corrected reference profile x′r =WM

s A1
sxr = Asxr with

a prior shape-corrected profile under study x′s = xs−

(I−As)(xa,s−xa,r) one obtains (omitting any necessary
vertical representation matching)

1x = x′s− x
′
r

= xs− (I−As)(xa,s− xa,r)−WM
s A1

sxr

= xs− [Asxr+ (I−As)(xa,s− xa,r)]. (19)

If additionally the reference profile results from an in
situ measurement or model (xa,r = 0), this equation can
just as well be inferred by considering x′s = xs and im-
posing the satellite retrieval on the reference profile,
meaning that the unknown true profile xt is replaced by
xr in Eq. (4) (without the error term):

x′r = Asxr+ (I−As)xa,s. (20)

It is typically the latter interpretation that is referred to
as averaging kernel smoothing (of xr). The term how-
ever also applies when this reference profile is a re-
trieved product as well. In that case one can even apply
symmetrical smoothing of both the satellite and refer-
ence profiles if they show comparable vertical smooth-
ing (Rodgers and Connor, 2003; von Clarmann and
Grabowski, 2007)

1x =Ar[xs− (I−As)(xa,s− xa,c)]

−As[xr− (I−Ar)(xa,r− xa,c)] (21)

for prior matching to a common xa,c. This expression
simplifies to Eq. (19) for xa,c = xa,r and Ar = I.

4.3.2 Removing retrieval artifacts

– Maximum likelihood representation. The maximum
likelihood representation (MLR) of a retrieved atmo-
spheric state profile corresponds to the retrieval in the
absence of explicit prior information, i.e., the retrieval
for Ra = 0 (Rodgers, 2000). One can thus easily convert
a given retrieved profile to its maximum likelihood rep-
resentation by performing a prior matching operation as
in Eq. (15) with R′a = 0 (Rodgers, 2000; von Clarmann
et al., 2015):

x′ = (S−1
−Ra)−1(S−1x−Raxa). (22)
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Figure 1. Profile harmonization flowchart, indicating the order of
the matching operations outlined in the text. Rectangular boxes are
optional, while hexagons are mandatory. The maximum likelihood
(ML) representation has here been included as a prior matching op-
eration with R′a = 0.

The resulting covariance matrix is given by S′ = (S−1
−

S−1
a )−1, while the averaging kernel matrix becomes the

unit matrix, making re-optimization meaningless. This
does however not mean that the MLR is fully uncon-
strained, as it is still implicitly constrained by its ver-

tical grid and the related interpolation convention (von
Clarmann and Grabowski, 2007).

– Information-centered representation. In order to explic-
itly remove all prior information from a given retrieval
and hence simulate a direct measurement with all levels
or layers representing one degree of freedom, the prior
constraint replacement operation has to be combined
with a vertical regridding operation while also setting
x′a = 0 (von Clarmann and Grabowski, 2007):

x′ =W(S−1
−Ra +R′a)

−1(S−1x−Raxa). (23)

By insertion of the transposed regridding matrix and its
pseudo-inverse, one obtains

x′ =W(S−1
−Ra

+R′a)
−1WTW∗T (S−1x−Raxa)

= (W∗T S−1W∗−W∗TRaW∗

+W∗TR′aW∗)−1W∗T (S−1x−Raxa). (24)

In order to remove all prior information from the re-
trieval outcome, one thus has to determine W and R′a
that impose the hard constraint W∗TR′aW∗ = 0 non-
trivially instead of using the soft MLR constraint R′a =
0 (von Clarmann and Grabowski, 2007). The difficulty
of this approach lies in the determination of these two
matrices in agreement with (i.e., causing minimal loss)
the number of independent pieces of information or
degrees of freedom in the initial measurement, which
is given by trace(A). The study from von Clarmann
and Grabowski (2007) provides methods to do so –
in both staircase and triangular representation – that
are rather extensive and therefore not reproduced here.
Equation (24) can also be obtained from Eq. (18) includ-
ing W∗, while it is in agreement with Rodgers (2000,
Eq. 10.50) only if the latter’s back-transformation to the
original grid is omitted. Rodgers therefore still indicates
his representation as a maximum-likelihood solution,
while here the term information-centered representa-
tion by von Clarmann and Grabowski (2007) is adopted.
Note however that these two references have considered
opposite directions in the definition of their respective
regridding matrices W. Again A′ = I, while the covari-
ance matrix is now given by S′ =W(S−1

−S−1
a )−1WT

in agreement with the prior matching expression upon
addition of a regridding operation.

4.4 Spatiotemporal co-location matching

As described in the previous sections, vertical sampling and
effective resolution differences can be virtually eliminated
by applying appropriate regridding and smoothing proce-
dures, respectively. The underlying requirement however is
that the vertical dimension within the measurement range is
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Figure 2. Regridding window functions for the four vertical sam-
pling matching operations discussed in Sect. 4.1.2, going from a fine
grid (0 to 100 in steps of one) to a coarse grid (0 to 100 in steps of
100/13) that only overlaps at the vertical edges (a.u.). The seventh
row of each regridding matrix with dimension 14× 101 is plotted
(columns 20 to 80 only). For pseudo-inverse and super-linear re-
gridding these matrix elements are never zero, but of the order of
10−6 at the edges.

nearly continuously sampled or, phrased differently, that nei-
ther the study nor the reference profile is vertically highly
under-sampled. This ensures that neither instrument is blind
to significantly variable parts of the profile, as only then can
interpolation errors be kept to a minimum. Alternatively, in-
terpolation difference errors could be small if both instru-
ments have the same under-sampling pattern, but this hardly
occurs in practice.

In the horizontal and temporal dimensions, the sufficient-
sampling requirement is usually far from satisfied for ver-
tically resolved atmospheric state observations, in particu-
lar for ground-based measurements. Except for some spe-
cific measurement campaigns, station-to-station distances
are usually much larger than the horizontal representative-
ness of the measurements, and the typical sounding frequen-
cies (e.g., weekly) are much coarser than the characteristic
measurement duration (minutes to hours) and timescale of
atmospheric variability (Nappo et al., 1982). Consequently, it
is usually impossible to horizontally smooth data from mul-
tiple ground-based reference stations to the resolution of the
measurement under study, just as it does not make sense to
interpolate temporally between, for example, weekly sound-
ings. On the other hand, horizontal smoothing can occa-

sionally be achieved for satellite-to-satellite comparisons that
have horizontal averaging kernels available (Lambert et al.,
2013). Without the possibility to regrid to a common horizon-
tal and/or temporal grid, comparisons must be done for co-
located pairs, whereby the co-location criteria are designed
to ensure minimal co-location mismatch errors in Eq. (5),
i.e., minimal differences in the measurements due to a differ-
ent horizontal and temporal sampling and smoothing of the
variable and inhomogeneous atmosphere.

It is beyond the scope of this work to provide a review of
all potential co-location methods, which range from simple
space and time constraints to more geophysical constraints
(e.g., based on potential vorticity), and even Lagrangian tra-
jectory calculations to match as much as possible the mea-
sured air masses (Loew et al., 2017). In this context, it is
important to realize that the actual four-dimensional extent
of the measurement sensitivity is not easily captured in the
metadata (approximations such as an effective measurement
location are often too crude). Instead, so-called observation
operators can be used to improve the air mass matching
(Lambert et al., 2013; Verhoelst et al., 2015). These geo-
metric parametrizations of the four-dimensional extent of the
measurement sensitivity are based on physical considerations
and – if possible – radiative transfer and retrieval models.
They can for instance be derived from dedicated calculations
of horizontal averaging kernels (von Clarmann et al., 2009).

Despite these attempts to optimize the co-location criteria,
some irreducible co-location mismatch usually still affects
the comparisons, adding non-negligible random and system-
atic errors to the difference statistics, and thereby hampering
the interpretation of the differences in terms of the quality
of the measurements and their reported uncertainties. Sev-
eral approaches to quantify these co-location difference er-
rors exist; see Verhoelst et al. (2015) and Fassó et al. (2017)
for an overview and some case studies. Particularly appealing
is the option to estimate the individual errors from model-
based simulations. In this approach, the measurements are
simulated by applying the observation operators, initialized
with the real measurement metadata, on a gridded represen-
tation of the atmosphere. The vertically resolved difference
1m between the simulated measurement under studyms and
the simulated reference measurementmr then provides an es-
timate of the horizontal and temporal co-location mismatch
error profile:

1m= 〈ε1Hsa+ ε1Tsa+ ε1Hsm+ ε1Tsm〉. (25)

This co-location mismatch error estimate can be used to hor-
izontally and temporally match the observed profiles (von
Clarmann, 2006, Eq. 15):

x′ = x−1m. (26)

The use of model data however also introduces some
model uncertainty in the comparison results, meaning that
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Table 1. Matching operations overview table for vertically resolved atmospheric state observations (order of appearance in the text). The
averaging kernel (AK) smoothing operation shows the exemplary case for xa,c = xa,r = 0 and Ar = I.

Matching operation x′ S′ A′

Vert. quantity matching Mx MSMT MAM−1

Vert. sampling matching Wx WSWT WAW∗

Vert. smoothing matching Vx VSVT VA
Meas. weight matching WMx S WMA
Prior matching (PM) S′(S−1x−Raxa +R′ax′a) (S−1

−Ra +R′a)−1 A+SS−1
a −S′S′a

−1

Re-optimized PM P[x− (I−A)xa] +PS(AT )−1R′ax′a PSPT PA
AK smoothing (for s on r) Asxr+ (I−As)xa,s A1

s Sr(A1
s )
T As

Maximum likelihood repr. S′(S−1x−Raxa) (S−1
−Ra)−1 I

Information-centered repr. W(S−1
−Ra)−1(S−1x−Raxa) W(S−1

−Ra)−1WT I
Co-location matching x−1m S+S1m A−S1mS−1

a

Table 2. Impact of matching operations on the information that is contained in the fractional averaging kernel matrix, as expressed by the
DFS = trace(A) and the vertical sensitivity Au (order of appearance in the text). The averaging kernel (AK) smoothing operation shows the
exemplary case for xa,c = xa,r = 0 and Ar = I.

Matching operation DFS = trace(A′) Vertical sensitivity = A′u

Vert. quantity matching trace(A) Au
Vert. sampling matching trace(WAW∗) WAW∗u
Vert. smoothing matching trace(VA) VAu
Meas. weight matching trace(WMA) WMAu
Prior matching (PM) trace(A)+ trace(SS−1

a )− trace(S′S′a
−1
) Au+SS−1

a u−S′S′a
−1
u

Re-optimized PM trace(S′aAT (AS′aAT +S)−1A) S′aAT (AS′aAT +S)−1Au
AK smoothing (for s on r) trace(As) Asu
Maximum likelihood repr. rank(A) u

Information-centered repr. rank(A′) u′

Co-location matching trace(A)− trace(S1mS−1
a ) Au−S1mS−1

a u

this procedure only makes sense when the model uncer-
tainty is (expected to be) smaller than the (spread on the) co-
location mismatch errors. Moreover, a residual co-location
difference error is still present, caused by finer structures in
the sampling and smoothing of the observations than those
accounted for by the model. This residual error can be quan-
tified by use of an additional reference dataset that has a
finer resolution than the model (von Clarmann, 2006), but the
quantification procedure is not expanded here. Combining
the model uncertainty and (possibly negligible) residual spa-
tiotemporal co-location difference error into S1m, one sim-
ply has S′ = S+S1m. Although strictly speaking the averag-
ing kernel matrix is no longer valid for the spatiotemporally
shifted profile x′, one can estimate the effect of the model
uncertainty that is introduced during the matching operation
on the AKM by taking A′ = I−S′S−1

a = I−(S+S1m)S−1
a =

A−S1mS−1
a .

4.5 Overview and order of operations

An overview of the atmospheric state profile matching oper-
ations discussed in this work is listed in Table 1 (order of ap-

pearance). The matrix algebra that is required to obtain x′, S′,
and A′ is provided for each operation. The flowchart in Fig. 1,
on the other hand, shows the preferred order of the matching
operations that possibly precede the comparison of two at-
mospheric state profiles under study. Vertical representation
matching (of quantities and grids) is thereby mandatory, but
the full elimination of retrieval artifacts by changing to the
information-centered representation has to take place first, as
it also includes a change in the profile’s vertical sampling.
Optional vertical smoothing matching, measurement weight
matching, and prior matching follow after the representation
matching. All three can be combined into the so-called aver-
aging kernel smoothing operation, or one can opt for a con-
version to a maximum-likelihood representation for one or
both profiles. Both options do not require re-optimization op-
erations.

Keppens et al. (2015) have discussed the possibility
to perform averaging kernel smoothing by multiplying a
row-interpolated averaging kernel matrix with a full high-
resolution ground profile instead of regridding the ground
profile first as suggested in Fig. 1. The former approach max-
imally exploits the fine-gridded reference measurement with-
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Table 3. Impact of matching operations on the comparison uncertainty budget S1 (order of appearance in the text). The residual covariance
of the vertical sampling matching includes the regridded vertical smoothing V′2 =WV2W∗. The averaging kernel (AK) smoothing operation
shows the unidirectional case.

Matching operation Removed covariance Converted covariance S′ Introduced and residual covariance

Vert. quantity matching – MSMT SQ
Vert. sampling matching – WSWT (V1−V′2)SC(V1−V′2)

T

Vert. smoothing matching S1Vsm VSVT (V1−V1V2)SC(V1−V1V2)
T

Meas. weight matching S1MW S –
Prior matching (PM) S1PS and/or S1PC (S−1

−Ra +R′a)−1 S′1MW
Re-optimized PM S1Vsm+S1PS+S1PC +S1MW PSPT (A−PA)SC(A−PA)T

AK smoothing (for s on r) S1Vsm+S1PS+S1PC +S1MW A1
s Sr(A1

s )
T (As−AsAr)SC(As−AsAr)

T

Maximum likelihood repr. S1Vsm+S1PS+S1PC +S1MW (S−1
−Ra)−1 S′1Vsm+S′

1PC

Information-centered repr. S1Vsm+S1PS+S1PC +S1MW W(S−1
−Ra)−1WT S′1Vsa

Co-location matching S1Hsa+S1Tsa+S1Hsm+S1Tsm S S1m

out adding information to the retrieval data (Ridolfi et al.,
2006). On the other hand however, this method addition-
ally requires row renormalization of the interpolated AKM
in order to conserve the vertical sensitivity of the averag-
ing kernel matrix (Keppens et al., 2015, Eq. 11). Only for
mass-conserved regridding of partial column quantities is the
AKM renormalization already included by definition. In that
case both approaches are equivalent, as one has A′x = Ax′ =
AWx. Keeping all vertical sampling matching operations be-
fore any averaging kernel smoothing therefore in general is
the most straightforward approach. This order of operations
moreover avoids the smoothing error pitfalls as discussed by
von Clarmann (2014).

5 Harmonization impact

While intended to merely remove uncertainty contributions
from eventual atmospheric state profile difference statistics,
the harmonization operations discussed in this work obvi-
ously also impact the remaining covariance (matrix) and the
information that is contained within a retrieval’s averaging
kernel matrix. First of all, from the discussion on vertical
smoothing matching one can observe that in fact all opera-
tions that include a multiplication with a non-diagonal con-
version matrix also impose a vertical smoothing on the verti-
cal profile and its covariance and averaging kernel matrices.
Especially the vertical sampling matching operation com-
bines information from several input grid levels into a single
output grid level by definition. For linear and mass-conserved
regridding operations, the associated vertical smoothing win-
dows are approximately triangular and square, respectively,
with an extent that is limited to adjacent grid points (see
Fig. 2). When going from a fine to a coarse grid however,
the use of inverse or double (linear) interpolation over a con-
joint super grid results in a wavelet-shaped vertical smooth-
ing function that can extend up to the full vertical profile

range. This is due the pseudo-inverse matrix that is involved,
as demonstrated in Fig. 2.

Vertical quantity matching by use of a diagonal conver-
sion matrix will not introduce a vertical smoothing effect,
but affects the covariance matrix and the averaging kernel
matrix nevertheless. This is a result of these matrices be-
ing typically provided in absolute and, thus, unit-dependent
numbers. One can avoid this unit dependence by switching
to fractional representations of the covariance and averag-
ing kernel matrices instead. These are given by SR(i,j)=
S(i,j)x(i)−1x(j)−1 and AR(i,j)= A(i,j)x(i)−1x(j), re-
spectively (Keppens et al., 2015, Eqs. 3 and 4). Note that the
latter automatically results from a logarithmic retrieval. Be-
cause of their invariance under (matrix-diagonal) unit con-
versions, such fractional averaging kernel matrices are pre-
ferred for information content studies (Keppens et al., 2015).
Fractional kernel representations are therefore also assumed
in Table 2 that summarizes how a retrieval’s degrees of free-
dom in the signal (DFS), calculated as the AKM trace, and its
vertical sensitivity, calculated as the AKM row sum vector,
are altered by each harmonization operation.

6 Uncertainty budget

The harmonization operations presented in this work are in-
tended to enable the calculation of profile difference statis-
tics and to eliminate uncertainty contributions from the total
uncertainty budget as expressed by Eq. (7). Table 3 lists for
each profile matching operation the covariance that is thereby
removed (first column), how the ex ante covariance of the
harmonized atmospheric state product is altered (second col-
umn), and what uncertainty is possibly introduced by the op-
eration or remains as a residual despite the matching (third
column).

It is clear that the vertical representation harmonization
operations actually do not remove uncertainty from the full
budget but are required for difference calculations of atmo-
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spheric state vectors with equal units and lengths. These
operations affect the product covariance and moreover in-
troduce auxiliary representation conversion uncertainty SQ
and an additional vertical smoothing difference uncertainty
S′1Vsm (see regridding impact discussion in previous sec-
tion and next paragraph), respectively. The former however
is usually hard to quantify, and therefore often neglected.
The model uncertainty S1m that is introduced by the co-
location matching operation (see Sect. 4.4) is of the same
nature as SQ but preferably better characterized and explic-
itly taken into account as the model correction of a verti-
cal profile leaves the associated ex ante product uncertainty
unchanged: S′ = S+S1m. Note that despite these additional
uncertainties one evidently expects the matching operations
to reduce the overall difference covariance. For sufficiently
fine-gridded models the co-location matching could in prin-
ciple also account for vertical sampling and smoothing dif-
ferences, but this is hardly feasible in practice.

Two atmospheric state products with different vertical
smoothing V1 and V2 have a vertical smoothing difference
covariance S1Vsm = (V1−V2)SC(V1−V2)

T in their com-
bined uncertainty budget (e.g., Rodgers and Connor, 2003;
von Clarmann and Grabowski, 2007). Here SC represents the
comparison ensemble’s covariance matrix, which in practice
is often replaced by one of the two ex ante product covari-
ance matrices or their sum. Upon vertical smoothing match-
ing, e.g., by enforcing the vertical smoothing of the first on
the second, the vertical smoothing difference is actually not
fully removed, as a residual smoothing difference covariance
S′1Vsm remains:

S′1Vsm = (V1−V1V2)SC(V1−V1V2)
T , (27)

or S′1Vsm = (V2V1−V1V2)SC(V2V1−V1V2)
T for symmet-

rical smoothing. Hence only the vertical smoothing of an
ideal measurement with V2 = I fully eliminates the vertical
smoothing difference error (von Clarmann and Grabowski,
2007). It is the latter case that typically occurs for the verti-
cal smoothing of model data and in situ reference data. When
also considering vertical sampling matching, e.g., of the sec-
ond product, V2 has to be replaced by WV2W∗ in Eq. (27)
(von Clarmann, 2014).

For the (asymmetrical) averaging kernel smoothing opera-
tion, the expression in Eq. (27) has been modified to include
the study and reference product AKMs. This harmonization
operation also includes a measurement weight matching and
a prior matching (see Sect. 4.3 and Fig. 1). Only the resid-
ual smoothing difference error covariance thus remains. The
measurement weight matching actually consists of a rescal-
ing and does therefore not introduce a new covariance term.
Non-optimal prior matching on the other hand corrects for
differences in prior profile shape and prior constraint, but as
a result changes the measurement weight difference covari-
ance to S′1MW. Re-optimization of the prior-corrected state
by use of Eq. (17) corrects for this measurement weight dif-

ference yet alters the vertical smoothing difference error as a
result.

In terms of the uncertainty contributions that are removed
from the full covariance of the difference, the AK smoothing
operation is equivalent to the re-optimized prior matching
(Eq. 18) and to switching to the information-centered rep-
resentation beforehand. While for the former only a resid-
ual vertical smoothing difference error defined by P re-
mains, the latter operation changes the vertical sampling dif-
ference covariance due to the inherent regridding operation
(which upon subsequent vertical sampling matching is re-
placed by a vertical smoothing difference error). As demon-
strated by von Clarmann and Grabowski (2007, Eq. 58),
the information-centered representation yields an additional
residual smoothing difference error if the variability of the
true state is not sufficiently well characterized by S′ (not as-
sumed here). The maximum likelihood representation aims
at removing all prior information (including vertical smooth-
ing and measurement weight), but actually is still implicitly
(prior-)constrained by its vertical grid (see Sect. 4.3). There-
fore a residual vertical smoothing difference and prior con-
straint difference contribution must be considered in the un-
certainty budget.

7 Conclusions

In the context of data comparisons as performed in satellite
validation and of data combinations through assimilation or
fusion, this work discusses the most frequent methods for
the harmonization of vertically resolved atmospheric state
observations in a conceptually and terminologically aligned
framework. The harmonization of two profiles’ representa-
tions is mandatory for data comparisons and for proper quan-
titative χ2 testing of the resulting total difference covariance.
Other data manipulations are needed to reduce the uncer-
tainty budget of the comparison by minimizing the contribu-
tions due to differences in retrieval characteristics and spa-
tiotemporal co-location. A total of 10 matching operations
have been identified from the literature and expressed in a
consistent way using common matrix algebra. These opera-
tions include procedures for converting the ex ante covari-
ance matrix and the averaging kernel matrix (for retrieved
products) associated with each atmospheric profile. There-
fore the effect of each harmonization operation on the infor-
mation content of a retrieved product, as calculated from its
AKM, has also been discussed. Finally, which terms of the
error covariance are removed from the full comparison un-
certainty budget by each harmonization operation and what
covariance remains as a residual or is introduced as a re-
sult have been examined. Concerning the covariance terms
removed, averaging kernel smoothing appears to be equiv-
alent to re-optimized prior matching and to switching to
the information-centered representation beforehand, which
both, however, are more difficult to practically implement.

www.atmos-meas-tech.net/12/4379/2019/ Atmos. Meas. Tech., 12, 4379–4391, 2019



4390 A. Keppens et al.: Harmonization and comparison of vertically resolved atmospheric state observations

These operations only leave a residual smoothing differ-
ence error in the comparison (after regridding to a joint ver-
tical grid for the latter). In combination with co-location
matching by use of model data, these three approaches re-
duce the difference covariance to its minimum of the form
S′1 = S′s+S′r+S′1Vsm+S1m.
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