
Atmos. Meas. Tech., 12, 4591–4617, 2019
https://doi.org/10.5194/amt-12-4591-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and validation of a supervised machine learning radar
Doppler spectra peak-finding algorithm
Heike Kalesse1,2, Teresa Vogl1,2, Cosmin Paduraru3, and Edward Luke4

1Leibniz Institute for Tropospheric Research, Leipzig, Germany
2Institute for Meteorology, Universität Leipzig, Leipzig, Germany
3Department of Mining and Materials Engineering, McGill University, Montréal, Canada
4Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York

Correspondence: Heike Kalesse (heike.kalesse@uni-leipzig.de)

Received: 8 February 2019 – Discussion started: 28 March 2019
Revised: 4 July 2019 – Accepted: 10 July 2019 – Published: 30 August 2019

Abstract. In many types of clouds, multiple hydrometeor
populations can be present at the same time and height.
Studying the evolution of these different hydrometeors in
a time–height perspective can give valuable information on
cloud particle composition and microphysical growth pro-
cesses. However, as a prerequisite, the number of differ-
ent hydrometeor types in a certain cloud volume needs to
be quantified. This can be accomplished using cloud radar
Doppler velocity spectra from profiling cloud radars if the
different hydrometeor types have sufficiently different ter-
minal fall velocities to produce individual Doppler spectrum
peaks. Here we present a newly developed supervised ma-
chine learning radar Doppler spectra peak-finding algorithm
(named PEAKO). In this approach, three adjustable param-
eters (spectrum smoothing span, prominence threshold, and
minimum peak width at half-height) are varied to obtain the
set of parameters which yields the best agreement of user-
classified and machine-marked peaks. The algorithm was de-
veloped for Ka-band ARM zenith-pointing radar (KAZR)
observations obtained in thick snowfall systems during the
Atmospheric Radiation Measurement Program (ARM) mo-
bile facility AMF2 deployment at Hyytiälä, Finland, dur-
ing the Biogenic Aerosols – Effects on Clouds and Climate
(BAECC) field campaign. The performance of PEAKO is
evaluated by comparing its results to existing Doppler peak-
finding algorithms. The new algorithm consistently identifies
Doppler spectra peaks and outperforms other algorithms by
reducing noise and increasing temporal and height consis-
tency in detected features. In the future, the PEAKO algo-
rithm will be adapted to other cloud radars and other types

of clouds consisting of multiple hydrometeors in the same
cloud volume.

1 Introduction

Determining cloud composition in terms of hydrometeor
populations is a nontrivial task in thick, cold precipitating
clouds below 0 ◦C. In these clouds, supercooled liquid water
droplets and solid ice crystals of a variety of shapes and sizes
can coexist at temperatures between −40 and 0 ◦C. Mixed-
phase clouds and thick, cold precipitating cloud systems play
an important role in the Earth’s climate, due to their strong
influence on the radiative budget (Tan et al., 2016). Global
climate models (GCMs) still have problems in representing
mixed-phase clouds, and especially the supercooled liquid
fraction (SLF), accurately (Komurcu et al., 2014).

This motivates the need for highly time- and range-
resolved observations of the occurrence of different hydrom-
eteor populations and of cloud phase in the vertical column.
The first step towards characterizing hydrometeor types is
determining the number of different populations within a cer-
tain cloud volume. Profiling cloud Doppler radars are well
suited for this task for two reasons.

(i) They are able to penetrate the complete atmospheric
column (except for strongly precipitating deep convective
clouds), i.e., also beyond the range where lidar is fully at-
tenuated, and (ii) they can be used as a stand-alone means
of inferring the number of different hydrometeor populations
and in certain circumstances even cloud phase because dif-
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ferent ice particle populations (and sometimes liquid cloud
droplets) and ice particles, which are present simultaneously
within a radar sampling volume, are characterized by differ-
ent terminal fall velocities due to their different particle size
distributions and densities (Shupe et al., 2004; Verlinde et al.,
2013; Kalesse et al., 2016; Radenz et al., 2019).

Each of these different particle size distributions thus gen-
erates a peak in the radar Doppler velocity spectrum (Kollias
et al., 2016). However, sub-volume turbulence broadens the
cloud Doppler spectra peaks and thus smears/smoothes the
microphysical signature. Using narrow-beam width anten-
nas and optimizing observational strategies with short dwell
time and high vertical resolution reduces turbulence-induced
spectrum broadening (Kollias et al., 2016). However, the ob-
served Doppler spectrum is always a convolution of micro-
physical and dynamical effects.

In order to infer microphysical properties from the radar
Doppler spectrum, the peaks have to be separated. Because
spectra can be noisy and peaks can be merged, this is a non-
trivial task, which has already been approached in multiple
ways in the past for different cloud types: Shupe et al. (2004)
were able to separate observed Doppler velocity spectra into
a liquid and an ice spectral mode for a 30 min long altostra-
tus case study. They empirically defined criteria, which were
applied by an algorithm to distinguish multiple peaks in the
radar Doppler spectra.

The Microscale Active Remote Sensing of Clouds (Mi-
croARSCL) data product (Kollias et al., 2007; Luke et al.,
2008) is generated by a post-processing routine applied to
Doppler spectra recorded by the U.S. Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) pro-
gram millimeter wavelength cloud radars. It uses the mor-
phology of the Doppler spectrum to determine shape pa-
rameters like skewness and kurtosis for both the primary
peak (highest reflectivity) and, if applicable, an additional
noise-separated secondary peak (of lower reflectivity). The
peak power densities and modal velocities of up to two lo-
cal maxima (sub-peaks) located within the primary peak are
also included. The MicroARSCL product has, for example,
been used by Riihimaki et al. (2016) and Oue et al. (2018).
The former used it to infer hydrometeor phase in a trop-
ical deep convective system, the latter to study hydrome-
teor populations in deep precipitating systems in the Arc-
tic. Oue et al. (2018) found multimodal Doppler spectra in a
dendritic/planar growth layer as well as in mixed-phase lay-
ers. They also highlighted the added value of joint analysis
of Doppler spectra and polarimetric variables from scanning
cloud radar observations for snow microphysical studies.

Other studies have utilized Doppler spectra analyses to
identify cloud microphysical composition and cloud pro-
cesses operating in Arctic clouds. For instance, four Arc-
tic cloud hydrometeor populations (background ice, cloud,
drizzle, and new ice) were successfully classified using
continuity of spectral modes in time and height combined
with high-spectral-resolution lidar (HSRL) and in situ ob-

servations (Verlinde et al., 2013). Analyses of the Biogenic
Aerosols – Effects on Clouds and Climate (BAECC) field
campaign have also distinguished up to three noise-floor-
separated peaks in the recorded Doppler spectra for frontal
snow falling through a supercooled water layer (SWL) that
produced rimed snowflakes (Kalesse et al., 2016). These re-
spective peaks were then used to track microphysical pro-
cesses along slanted fall streaks, although this documented
case was special due to the separation of peaks by the
noise floor (merged peaks are usually observed, motivating
the need to develop robust cloud radar Doppler spectrum
peak separation techniques). Finally, KAZR observations of
liquid-only and mixed-phase clouds at Oliktok Point, Alaska,
have been used to identify multiple Doppler peaks using the
depth of the local minimum between the main peak and sub-
peak as the main separation criteria (Williams et al., 2018).

All these efforts, using somewhat differing approaches,
show that there is a need to correctly separate multiple
merged peaks in Doppler spectra to aid microphysical un-
derstanding of mixed-phase cloud processes as well as to
improve hydrometeor classification techniques. In the past,
algorithms mimicking the feature detection skill of human
experts in analyzing Doppler spectra have been shown to
achieve robust results (Cornman et al., 1998), while recent
studies highlight the role of machine learning as a tool for hy-
drometeor classification based on remote-sensing data (e.g.,
Besic et al., 2016; Praz et al., 2017). This study describes a
new algorithm that adopts machine learning tools to classify
Doppler spectra peaks in complex mixed-phase cloud scenar-
ios.

2 Data set description

The Biogenic Aerosols – Effects on Clouds and Climate
(BAECC; Petäjä et al., 2016) campaign took place at the
Station for Measuring Ecosystem-Atmosphere Relations II
(SMEAR II) in Hyytiälä, Finland (61◦51′ N, 24◦17′ E, 150 m
above sea level). The ARM program deployed their second
ARM mobile facility (AMF2) to Hyytiälä from February to
September 2014. Within this time frame, a snowfall exper-
iment (BAECC SNEX) took place as a collaborative effort
between DOE ARM, the University of Helsinki, the Finnish
Meteorological Institute (FMI), the National Aeronautics and
Space Administration (NASA), and Colorado State Univer-
sity. An intensive operation period (IOP) from 1 February
to 30 April 2014 was aimed at measuring snowfall micro-
physics using a comprehensive suite of remote-sensing in-
struments, complemented by surface-based precipitation ob-
servations.

The AMF is constituted of several ground-based remote-
sensing instruments, including among other things a 35 GHz
Ka-band ARM zenith-pointing radar (KAZR), a W-, Ka-, and
X-band scanning ARM cloud radar (Kollias et al., 2014), a
high-spectral-resolution lidar (HSRL), and a micropulse li-
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dar (MPL). Supplementing these measurements, radiosondes
were launched four times daily. This study will focus on the
Doppler spectra recorded by the KAZR, and will utilize other
observations (e.g., ground-based in situ, HSRL – if applica-
ble) for comparison and validation purposes. The KAZR was
operated with a temporal resolution of 2 s, a vertical range
gate spacing of 30 m, and a Doppler velocity spectrum reso-
lution (bin width) of 2.37 cm s−1.

3 Methodology

In the following section, the supervised Doppler spectra peak
detection algorithm developed in this work is introduced.
This description is followed by an introduction of the other
Doppler spectra peak-finding algorithms which are com-
pared to the new algorithm.

3.1 PEAKO algorithm description

In this study, a supervised Doppler spectra peak-finding algo-
rithm (in the following text referred to as PEAKO) was de-
veloped, which was trained via hand-marked Doppler peaks
as input. The learning process was split into two phases, the
training phase and the test phase. For that purpose, three data
sets, each containing example input and the corresponding
desired output, were created:

– a first training data set, used to obtain an initial model;

– a second training data set, about half as large as the first
training data set, used to tune the model;

– a testing data set, which is approximately the same size
as the second training data set, used for model evalua-
tion.

With the help of a graphical MATLAB interface, in which
the currently to-be-marked Doppler spectrum and its sur-
rounding neighbors (in time and height) are displayed in
logarithmic space (see Fig. 1), pronounced Doppler spec-
trum peaks were hand-marked by an experienced user. Even
though this approach is subjective, criteria such as peak
width, dynamic range, i.e., the height above noise floor,
skewness of the spectrum, and consistency of the feature
(peak) in time–height were taken into account. The locations
of these hand-marked peaks (in mean Doppler velocity (VD)
units, m s−1), as well as their corresponding signal powers
(dBZ), were then saved as data matrices.

The training and test data sets were chosen as individ-
ual nonoverlapping time–height areas rather than randomly
splitting all hand-marked spectra into training and test cat-
egories. For the training phase, data recorded on 21 Febru-
ary 2014, 22–23 UTC were utilized, a time period which was
studied in greater detail before (Kalesse et al., 2016; Ma-
son et al., 2018). Data from 16 February 2014, 00–01 UTC,
which were in part investigated in a case study presented in

Kneifel et al. (2015), were used in the training phase as well.
The third case selected for the training data set, 21 Febru-
ary 2014, 23–24 UTC, was in part analyzed by Kneifel et al.
(2015) as well. The test set is comprised of two 1 h cases,
which were recorded on 2 February 2014, 16–17 UTC, and
on 7 February 2014, 23–24 UTC. In the case of 2 February
2014, 16–17 UTC, the study area was set within the lowest
liquid layer where independent HSRL measurements were
used to check the performance of the PEAKO algorithm for
liquid-peak detection. Unfortunately, the HSRL was fully at-
tenuated by near-surface liquid layers during the other case
studies. The chosen period on 7 February 2014 overlaps with
another case investigated by Kneifel et al. (2015). Table 1
gives a summary of which measurement periods were used
for which of the data sets.

The PEAKO algorithm includes a set of three subse-
quently described adjustable parameters (smoothing span,
prominence threshold, minimum peak width at half-height),
which are varied to obtain the set of parameters which yields
the best agreement of hand-marked and machine-marked
peaks. The search for the best parameter combination is
done via a search through a finite set of values in the three-
dimensional search space.

As a first step, the raw spectrum at the current time and
height is replaced by an average spectrum obtained by aver-
aging 27 spectra, 9 in time and 3 in height centered on the
current one. For the given KAZR time–height resolution of
2 s (time) and 30 m (range), this translates to averaging of
18 s in the temporal dimension and 90 m in the spatial di-
mension. With hydrometeor populations usually appearing in
distinct layers, which are persistent over a certain period of
time, more neighbors in time than height are used for averag-
ing. Figure 9a in Buehl et al. (2016) shows minimum liquid
layer depths on the order of 50 to 100 m equivalent to two to
three range gates assuming 30 m vertical range gate spacing,
which motivated our choice of 90 m. The averaged spectrum
is then further smoothed using local polynomial regression.
The smoothing method applied, locally estimated scatterplot
smoothing (loess), performs weighted linear least-square fit-
ting on consecutive subsets of adjacent data points with a
second-degree polynomial model. The span for smoothing is
the fraction of the total number of data points (here Doppler
bins) of one Doppler velocity spectrum to be used for each
local fit. Loess was chosen empirically after testing different
methods because it showed the best ability to capture peaks
while filtering out noise. The span is varied in a range be-
tween 3.5 % and 13 %, regularly spaced with a distance of
0.5 %.

In the next step, local maxima are identified in the aver-
aged and smoothed spectrum. Only peaks with powers above
the raw spectrum’s maximum noise are considered. Finally,
peaks with prominences below the prominence threshold and
widths smaller than the minimum peak width are excluded.

The prominence threshold is a measure of how much a
peak stands out relative to the other peaks in the considered
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Figure 1. Example of graphical user interface for peak-marking by hand. For the Doppler spectrum in the center panel, two peaks (red stars)
were marked by the user (HK). The surrounding panels display the spatially and temporally neighboring spectra. Data are as follows: KAZR
spectra observed at TMP on 16 February 2014, 0.03–0.05 UTC, between 1.0 and 1.2 km height. The red line marks the maximum noise floor
determined according to Hildebrand and Sekhon (1974), and the black line the mean of the noise.

Table 1. Overview of the measurement periods used in each of the three data sets (first training data set, second training data set, testing data
set) containing hand-marked peaks. Published studies of the selected periods, to which results can be compared, are noted as well.

First training Second training Testing
data set data set data set

2014-02-02 X
16–17 UTC (comparison to HSRL)

014-02-07 X
23–24 UTC Kneifel et al. (2015)

2014-02-16 X X
00–01 UTC Kneifel et al. (2015) Kneifel et al. (2015)

2014-02-21 X
22–23 UTC Kalesse et al. (2016)

2014-02-21 X
23–24 UTC Kneifel et al. (2015)

Doppler spectrum. The prominence of a peak is the power
difference (dynamic range) of the peak’s maximum and the
signal’s minimum between the considered peak and the near-
est higher peak. Concerning the highest peak of the Doppler
spectrum, the prominence is the power difference between
the peak maximum and the mean of the spectral noise deter-
mined by Hildebrand and Sekhon (1974). This parameter is
varied between 0 and 2 dBZ m−1 s−1 in the training phase of

PEAKO. Figure 2 illustrates the definition of the peak promi-
nence: a spectrum with three merged peaks is shown and their
prominences are drawn as red vertical lines. In the case of
the rightmost peak (VD ≈−0.5 m s−1), the prominence is de-
fined as the power difference between the peak’s maximum
and the minimum between this peak and the nearest higher
peak. This minimum is located approximately at the leftmost
peak’s right edge (marked with a solid black vertical line
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Figure 2. Example spectrum (blue line) with multiple merged
peaks, recorded on 21 February 2014, 22.7 UTC, at 2.44 km alti-
tude. The smoothed spectrum (average of neighbor spectra in time
and height domain, smoothed using a span of 8.5 %) is shown as
well (bold black line). For each of the three peaks marked in this
spectrum (blue dots), the prominences (red dashed lines) and widths
at half-height (blue dashed lines) as well as the edges (vertical black
lines) of the peaks are marked. The red horizontal line marks the
maximum value of the power in the raw (blue) spectrum among
those Doppler spectral bins identified as noise by Hildebrand and
Sekhon (1974). The black horizontal line is drawn at the mean
power of the Doppler bins containing only noise.

at around −1.1 m s−1). For the peak with the lowest power
at VD ≈−0.8 m s−1, the prominence of 0.25 dBZ m s−1 is
barely visible because it is defined as only the distance be-
tween this peak’s maximum and the minimum to the closest
higher peak, which is the peak with the lowest absolute VD.

The third adjustable parameter is the minimum peak width
at half-height. The range of values in which it is varied
(4.2 to 8.4 Doppler velocity bins, spaced with a distance
of 1.05) was determined from a low-turbulence cloud re-
gion only consisting of liquid droplets (21 February 2014,
22.53–22.59 UTC 2.9–3.1 km). Doppler spectra peaks in
low-turbulent liquid cloud droplet layers are very narrow and
thus suited to determine the minimum width of a peak con-
sidered physically meaningful. At the given KAZR resolu-
tion, these peaks were found to be between 4.2 and 8.4 VD
bins wide corresponding to about 10–20 cm s−1.

To determine the optimal parameter combination, a sim-
ilarity measure is defined, based on the maximum overlap-
ping area of detected peaks as illustrated in Fig. 3: for a cer-
tain set of smoothing span, minimum peak width, and promi-
nence threshold, the algorithm will detect certain peaks in
a Doppler spectrum (shown as red dots surrounded by blue
circles in Fig. 3). For these peaks, as well as for the peaks
marked by a user in the same Doppler spectrum (red stars
in Fig. 3), the edges (marked with vertical lines) are deter-

Figure 3. Schematic to visualize how the similarity measure to
compare user-marked and algorithm-found peaks in Doppler spec-
tra: areas of matching peaks are summed up (blue hatched area),
and the areas of mismatched peaks (red hatched) are subtracted.

mined, which are defined as follows. The edge is either the
first Doppler bin where the spectrum power is smaller than
the maximum noise floor or, in the case of a merged peak,
the minimum (saddle point) between the merged peaks. In
the next step, the overlapping area for each pair of hand-
marked and machine-found peaks is identified. In the case of
multiple peaks in one spectrum, the sum of all overlapping
areas is determined. Nonoverlapping regions caused by ei-
ther a mismatch in the number of hand-marked and machine-
found peaks or a different location (in x direction, i.e., in
Doppler velocity) of the pair of peaks are penalized by sub-
tracting the nonoverlapping area (red hatched area in Fig. 3)
of the mismatched peaks from the similarity area measure.
The optimum parameter combination is the triplet of span,
prominence threshold, and minimum peak width for which
the similarity has its maximum value.

3.2 Description of other radar Doppler spectra
peak-finding algorithms

Three other radar Doppler velocity spectrum peak-finding al-
gorithms were compared to PEAKO and will be briefly ex-
plained in the following.

The algorithm described in Shupe et al. (2004) (from
now on referred to as “Shupe_04”) uses peak-finding crite-
ria optimized to one relatively short (30 min) mixed-phase
cloud case study period. In short, the power of the primary
(strongest) peak must be at least 4 standard deviations of the
noise above the mean spectral noise level. In addition, one or
more secondary peaks are identified as maxima being at least
2.5 standard deviations of the noise greater than the mean
spectral noise level. Both primary and secondary peaks must
have a width of at least 0.448 m s−1. Merged peaks are iden-
tified as separate spectral modes if the saddle point between
the two maxima is lower than 65 % of the lowest of the two
peaks from the noise level.

The MicroARSCL data product (Kollias et al., 2007; Luke
et al., 2008) decomposes noise-floor-subtracted and three-
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bin-boxcar-filtered radar Doppler spectra into a primary peak
(defined as the peak containing the bin with maximum spec-
tral power density), dominating the total reflectivity and
containing up to two sub-peaks, and a possible secondary
peak. Fixed thresholds, i.e., minimum primary or secondary
peak width (Pwmin), minimum sub-peak height (Phmin), min-
imum sub-peak separation (Psmin), and minimum primary–
secondary peak edge separation (Pnmin), are applied to ex-
tract a suite of variables from the Doppler spectra. Pwmin is
set to five Doppler velocity bins (0.12 m s−1), Psmin to three
Doppler velocity bins (0.07 m s−1), Pnmin to one Doppler ve-
locity bin (0.0237 m s−1), and Phmin to 1 dBZ m−1 s−1. For
the comparative study, a third technique, a polynomial fit-
ting algorithm as described in Kollias et al. (1999, 2003),
was also applied to the radar Doppler spectra that are ana-
lyzed in this study. This routine first extracts the parts of the
spectrum above the maximum noise floor (the noise thresh-
old determined by Hildebrand and Sekhon, 1974) and ex-
tends the edges of the found peaks down to the mean noise
floor. In a next step, each continuous sample of data above
the noise floor is identified as a sub-spectrum. Sub-spectra
that are classified as being too narrow (with velocity ranges
of the peak smaller than 0.2 m s−1) are excluded. For each
of the remaining sub-spectra, polynomial fitting of the 12th
order is applied. The first and second derivatives are taken to
identify minima and maxima. Peaks are defined as sequences
of minimum–maximum–minimum. Peaks having a velocity
range smaller than 0.2 m s−1 are ignored, as well as peaks
with an amplitude smaller than 2 dB, with amplitude being
defined as the difference in reflectivity between consecutive
minimum and maximum.

4 Results and discussion

The following section will be structured as follows: in
Sect. 4.1, the best parameter values obtained during the
training phase of the PEAKO algorithm are summarized.
The peaks detected by one of these best parameter com-
binations are compared to peaks found by the Shupe_04,
MicroARSCL, and Polyfit12 algorithms in a case study. It
should be noted that PEAKO was trained with a subset of
data from the same distribution as this firstly presented case
study. This means that PEAKO has somewhat of an advan-
tage over the other three algorithms when comparing to the
training data set. Section 4.2 summarizes the testing phase
and presents a comparative independent study case, in which
PEAKO-found peaks are again compared to peaks detected
by the three other algorithms and validated against HSRL
retrievals of liquid water droplets. More case studies are pre-
sented in the Appendices.

4.1 Training phase of the PEAKO algorithm

The training phase was split into two steps: Initially, peaks
marked manually in 1340 Doppler spectra were used for
training the PEAKO algorithm and obtaining an initial model
via a coarse parameter search. This initial training resulted
in six equally well-performing combinations of span, promi-
nence threshold, and width, which all yield the same value
of the similarity measure. A more finely resolved search
for the three parameters was then performed, using 775
Doppler spectra with user-marked peaks. This second, re-
fined training again resulted in several combinations of min-
imum peak prominence, minimum peak width, and smooth-
ing span yielding the same similarity. Table 2 gives an
overview of the possible ranges found for the three PEAKO
parameters after the initial training and the more finely re-
solved parameter search. The span for loess became slightly
larger (increased by 0.5 %–1 % in absolute terms) and con-
verged to one single possible value (8.5 %). The mini-
mum peak prominence decreased by one-third, i.e., from
0.15 to 0.1 dBZ m−1 s−1. This prominence threshold is very
low compared to values used by other peak-finding tech-
niques. However, in other approaches, spectra are usually
not smoothed and neighbor-averaged. Maxima prominent
enough in time and height to be still visible after aver-
aging and smoothing are most probably physical, justify-
ing the low prominence threshold. The possible values for
the minimum peak width did not change significantly be-
tween the initial and the more refined model and ranges be-
tween 0.09 and 0.15 m s−1 (i.e., VD range, from 4 to 6.25
VD bins for the given KAZR Doppler spectra resolution).
Doppler spectrum peaks detected by PEAKO configured in
one of these combinations (span= 8.5 %; prominence thresh-
old= 0.1 dBZ m−1 s−1; minimum peak width= 4 m s−1) are
compared to peaks found by other methods for a study case
on 21 February 2014, 22.54 to 22.77 UTC, at 2 to 6 km
height. This parameter set containing the smallest possible
minimum peak width was chosen because it is most stringent
and thus best suited for the detection of narrow supercooled
liquid water peaks. The selected period was discussed in de-
tail in Kalesse et al. (2016).

Figure 4 shows the first three radar moments, i.e., the radar
reflectivity factor Ze, the mean Doppler velocity (MDV),
and the Doppler spectrum width σ for the first selected
case study, which is set from 21 February 2014, 22.54 to
22.77 UTC, at 2 to 6 km height. This time period is character-
ized by the passage of a warm occlusion in Hyytiälä, Finland,
shown by the continuously lowering frontal snow cloud base
characterized by high Ze. A mid-level mixed-phase cloud
was present before the front approached. It can be identi-
fied by its supercooled liquid water (SLW) layer near cloud
top between approximately 2.9 and 3.2 km altitude. Before
the snow cloud moves in (22.54 to 22.69 UTC), new ice is
formed from this SLW layer and grows in size while sedi-
menting, leading to a slight increase in Ze, MDV (absolute
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Table 2. Ranges of the parameters yielding the highest similarity measure after the initial and the finely tuned training using the first and
second training data sets, respectively.

Optimal parameter range Optimal parameter range
after initial training after fine-tuned training

Span for smoothing 7.5 %–8 % 8.5 %
Peak prominence threshold 0.15 dBZ m−1 s−1 0.1 dBZ m−1 s−1

Minimum peak width 4.2–6.3VD bins 4–6.25VD bins
(9.95–14.93 cm s−1) (9.48–14.81 cm s−1)

Figure 4. Case study period from 21 February 2014, 22.54 to
22.77 UTC, at 2 to 6 km height. Panels (a), (b), and (c) show the
radar reflectivity factor Ze, the mean Doppler velocity (MDV), and
the Doppler spectrum width σ of the main peak in the Doppler spec-
trum.

value), and σ with decreasing altitude. As the frontal cloud
moves in and snow begins to fall through the SLW layer, rim-
ing takes place along slanted fall streaks. A more in-depth
analysis of the synoptic situation and the observed micro-
physical growth processes is given in Kalesse et al. (2016).

The number of detected peaks for this case study is shown
in Fig. 5. All algorithms show a similar general picture with

Figure 5. Number of Doppler spectrum peaks detected by different
algorithms for the selected case study on 21 February 2019 from
22.54 to 22.77 UTC at 2 to 6 km altitude. (a–d) Number of peaks
found by the PEAKO algorithm for one of the “best parameter”
combinations obtained in the training phase of the algorithm; num-
ber of peaks in MicroARSCL data product; number of peaks de-
tected using the criteria of Shupe_04; number of peaks determined
by Polyfit12.
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Figure 6. Contoured frequency by altitude diagram (CFAD) for the frequency of occurrence of number of detected peaks from different
algorithms for the case study period on 21 February 2014 from 22.54 to 22.77 UTC at 2 to 6 km altitude.

an increasing number of spectral peaks as the snow front
moves in and snow starts falling through the SLW layer of the
mid-level mixed-phase cloud. A closer examination however
reveals some differences between the methods: the PEAKO
and Shupe_04 algorithms have very similar results except
for some areas in the snowfall region where PEAKO detects
three peaks and Shupe_04 detects two peaks. MicroARSCL
generally shows higher variability than the other algorithms;
the small areas of higher peak number often coincide with
increased spectrum width in Fig. 4. Polynomial fitting shows
three peaks in the area where snow falls through the top of
the SLW layer and is otherwise very similar to PEAKO and
Shupe_04. The areas where the different algorithms show
discrepancies are now examined in more detail.

For that purpose, contoured frequency by altitude dia-
grams (CFAD, Fig. 6) is created to compare the results of
the algorithms in a different way. The CFAD shows the num-
ber of detected peaks (abscissa) at different heights (ordinate)
as a colored frequency of occurrence for the total case study
sample. For all four compared algorithms, it is most com-
mon that only one peak is detected. This is especially true for
higher altitudes within the snow front (4 km and above). It is
visible that the PEAKO algorithm and the results obtained
using the Shupe_04 approach agree to a large extent. In the
polynomial fitting approach, two or three peaks are detected

more often, especially in the layer just above 3 km altitude,
where several spectra are classified to contain three peaks.
The MicroARSCL data product contains even more Doppler
peaks, often three or more, over the complete altitude range.

In Fig. 7, four exemplary spectra from regions where the
algorithms show discrepancies are shown along with the
peaks detected by each of the four algorithms. The spectrum
in Fig. 7a is recorded in 2.83 km height at 22.56 UTC, be-
low the SLW and before the snow front moves in. As dis-
cussed in Kalesse et al. (2016), ice particles which are nu-
cleated in the SLW layer of the mid-level cloud and growth
through water vapor deposition lead to this Gaussian-shaped
monomodal Doppler peak. The spectrum is relatively broad
(as can also be seen from Fig. 4) and noisy, pointing to turbu-
lence. MicroARSCL is sensitive to small-scale noise of the
original spectrum, which the other algorithms are not sensi-
tive to, and thus overestimates the number of spectral peaks.
Figure 7b shows a spectrum from later on, at 22.7 UTC, in
the upper part of the frontal snow cloud at 5.26 km height. In
this time–height region, PEAKO, Shupe_04, and Polyfit12
detect the Gaussian-shaped snow peak, but MicroARSCL
is again sensitive to small-scale fluctuations in the Doppler
spectra and finds three peaks. The example in Fig. 7c is
taken from 3.2 km altitude at 22.7 UTC where snow from
the frontal cloud starts to fall through the SLW. All four
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Figure 7. Four exemplary Doppler spectra picked from the case study on 21 February 2014, 22.54 to 22.77 UTC, at 2 to 6 km altitude. The
averaged and smoothed spectrum which is used as input to PEAKO is drawn in bold over the original spectrum. The peaks detected by the
four algorithms are marked. The number of peaks found by each algorithm is noted in parentheses in each figure legend. Please note the
different y scales.

algorithms are able to detect the very narrow noise-floor-
separated peak produced by the supercooled liquid droplets
with VD near 0 m s−1. Figure 7d shows a spectrum recorded
at the same time but below the SLW layer at 2.41 km height,
where freshly generated ice (VD =−0.5 m s−1), unrimed
snow (VD =−1 m s−1), and rimed snow (VD =−1.7 m s−1)
are present. These hydrometeor populations do not have suf-
ficient differences in terminal fall velocities and thus produce
a spectrum with merged peaks. For this example, Shupe_04
and Polyfit12 detect the two main maxima (freshly generated
ice and rimed snow), whereas MicroARSCL and PEAKO
find three peaks. However, closer examination of the exam-
ple spectrum shows that the two algorithms each detect an
additional peak in different locations: MicroARSCL finds a
sub-peak in the faster falling hydrometeor population (the
Gaussian peak of the rimed snow) while PEAKO detects a
sub-peak in the slower-falling mode, which exhibits a strong
skewness. This sub-peak is most likely caused by snow from
the upper layers, which remained unrimed as discussed in
Kalesse et al. (2016).

The results of the PEAKO comparison to the other three
peak-finding approaches for the other two training data
sets, i.e., for 16 February 2014, 0.67 to 0.92 UTC, and for
21 February 2014, 23.01 to 23.25 UTC, are shown in Ap-
pendices A and B. Time–height plots of peak number are
shown in Figs. A2 and B2; CFAD diagrams can be found in
Figs. A3 and B3. Both of these time periods were also ana-
lyzed by Kneifel et al. (2015) in depth, so it was possible to
compare the microphysical signatures reported in this study
to the Doppler peaks detected by the four algorithms. For
16 February 2014, 0.67 to 0.92 UTC, Kneifel et al. (2015)
reported high values of microwave-radiometer-derived liq-
uid water path of 100 to 500 g m−2 and clear signatures of
large aggregates in the dual-wavelength ratios of Ka-band
to W-band reflectivities below 2 km as well as in the reflec-
tivity fall streak feature at 0.85 UTC, which were also seen
in the X–Ka dual-wavelength ratios around 0.85 UTC. The
general structure of the layers of Doppler peak number de-
tected by PEAKO, Shupe_04, and Polyfit12 again agree to a
large extent, whereas MicroARSCL detects a higher number
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Figure 8. HSRL measurements from the case study period from
2 February 2014 from 16 to 17 UTC at 0 to 3 km height.
Panel (a) shows the attenuated backscatter cross section and
panel (b) the circular depolarization ratio. The black dashed line
marks the boundary of the supercooled liquid layer, indicated by
high backscatter and low depolarization ratio.

of peaks in both cases (Figs. A2 and B2). The fall streak fea-
ture which exhibits particle size sorting was better detected
by PEAKO and MicroARSCL than by the other two algo-
rithms. The increase in number of peaks at 0.67 to 0.75 UTC
can be explained by the presence of large needle aggregates
of sometimes more compact and sometimes very open struc-
ture as explained in Kneifel et al. (2015), which lead to the
interesting multimodal Doppler spectrum with up to four
peaks as shown in Fig. B4d. Ground-based in situ observa-
tions show that during 0.75–0.85 UTC aggregates and rimed
particles with enhanced terminal velocities were present and
that the number of large aggregates was further found to de-
crease while number of increasingly rimed aggregates fur-
ther increased until 1 UTC. Radio-sounding observations on
15 February 2014 at 23.2 UTC show a thin layer at 0.8–
0.9 km altitude, which is subsaturated with respect to ice and
liquid and which might explain the decrease to one found
Doppler peak at this altitude. For 21 February 2014, 23.01 to
23.25 UTC, Kneifel et al. (2015) report the transition from a
low concentration of strongly rimed particles (lump graupel)
to aggregate snowfall with large snowfall rates and increas-
ing size and number of the aggregates. The fast transition
of the snowfall from rimed particles to aggregates results in
the bimodal Doppler spectra (with two found peaks) at 23

Figure 9. Like Fig. 4 but for 2 February 2014, 16:00 to 17:00 UTC,
at 0 to 2.7 km height.

to 23.05 UTC and monomodal spectra afterwards. For this
case study, PEAKO and Shupe_04 and Polyfit12 agree well
with the situation described in Kneifel et al. (2015) while Mi-
croARSCL overestimates the number of peaks, especially in
the turbulent boundary layer and near 4 km altitude.

4.2 Testing phase of the algorithm

Using the tuned parameter pairs obtained in the training
phase, the PEAKO algorithm is again compared to the other
three algorithms, as well as to data measured by an inde-
pendent instrument, the HSRL. For this purpose, a case of a
frontal passage associated with snow on 2 February 2014,
16:00 to 17:00 UTC, was analyzed. During this time, a
liquid-topped mixed-phase cloud with cloud top temperature
of (T =−4 ◦C) and cloud top height of 2.6 km was present
(Fig. 9). A deeper precipitating cloud system with cloud
top around 8 km (cloud top temperature of −40 ◦C) was ap-
proaching the TMP site at about 16.27 UTC. The surface
temperature was−5 ◦C. During the first half of the hour-long
case study, the HSRL detected an embedded layer of SLW in
the mid-level cloud, characterized by high backscatter coeffi-
cient values and low depolarization ratio values (Luke et al.,
2010) in Fig. 8. The SLW layer is located between 0.8 and
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Figure 10. Like Fig. 5 but for 2 February 2014, 16:00 to 17:00 UTC,
at 0 to 2.7 km height. Boxes mark the points in time–height where
peaks detected in single spectra are analyzed in greater detail. The
dashed lines mark the bottom and top of the SLW layer detected by
the HSRL (Fig. 8).

1 km height and is slightly lifted as the front is moving in.
Its base and top are traced with dashed lines in Fig. 8. Af-
ter 16.8 UTC, the microwave-radiometer-derived liquid wa-
ter path (LWP) decreases from around 300 g m2 to approxi-
mately 60 g m2 and the lidar does not detect the cloud base
anymore due to the scarcity in small liquid droplets to which
the lidar is sensitive and due to the strong snowfall. The
strong decrease in LWP again points to riming. Analysis of
the ground-based in situ particle imaging package (PIP) data
shows a variety of different precipitating particles during that
1 h time period (Annakaisa von Lerber, personal communi-
cation, 2018): around 16 UTC, oblate particles, possibly nee-
dles, and some small needle aggregates are present. When
Ze decreases around 16.3–16.55 UTC (Fig. 9), no large par-
ticles are present at all, just very small ones, maybe single

pristine crystals (the resolution of PIP is not good enough to
distinguish). At 16.55–16.8 UTC when Ze increases strongly
and LWP decreases significantly, the PIP observes a clear
change to round, dense, fast-falling particles, indicative of
small graupel. Finally, from 16.8 UTC onward, particle sizes
at the ground increase and there are more (quite dense) ag-
gregates, resulting in Ze of up to 10 dBZ.

Figure 9 shows the first three radar moments (Ze, MDV,
and σ ) of the main peak for the selected case study. The su-
percooled liquid layer at the top of the mid-level cloud ex-
tends from about 2.1 to 2.4 km and is characterized by MDV
of near 0 m s−1. Snow fall rate is at first low and increases
at about 16.6 UTC (surface meteorological observations, not
shown). Pronounced fall streaks can be seen coinciding with
large values of spectrum width, indicating the presence of
several hydrometeor populations, producing Doppler spectra
with broad merged peaks.

Figure 10 reveals that the number of peaks detected by
the four algorithms differs significantly for this case study.
Shupe_04 and Polyfit12 again agree to large extents, al-
though Shupe_04 does mostly only detect one peak at 2–
2.5 km height before 16.3 UTC and after 16.5 UTC where
all other algorithms mostly detect two peaks. MicroARSCL
generally detects a larger number of peaks in the Doppler
spectra; PEAKO is in this case more similar to MicroARSCL
than to the other two algorithms and often detects three to
four and sometimes even five peaks along certain fall streaks.
However, due to the smoothing performed within PEAKO,
the detected features are less noisy and more consistent in
time and height than for MicroARSCL.

Figure 11 shows CFAD diagrams for each of the four algo-
rithms for the case study on 2 February 2014, 16 to 17 UTC.
These graphs confirm that Polyfit12 and Shupe_04 estimate
the number of peaks more conservatively than PEAKO and
MicroARSCL. It is obvious that MicroARSCL often detects
three or four peaks in the lowermost radar height bins, which
can probably be attributed to turbulence. The HSRL-detected
SLW layer (varying between 0.7 and 1.5 km height) is most
obvious in the Shupe_04 and PEAKO CFAD plot; the num-
ber of spectra which are assigned two or three peaks is no-
ticeably higher in this altitude range.

A closer look at the Doppler spectra substantiates the oc-
currence of riming during the selected study period: Fig. 12
shows four exemplary Doppler spectra from the case study
on 2 February 2014, 16 to 17 UTC. Only PEAKO is able to
detect a narrow peak near 0 m s−1 in all four example spec-
tra. While these peaks can be attributed to SLW in Fig. 12a, b,
and c, it is more likely that this small sub-peak in Fig. 12d is
caused by small ice particles nucleated in the SLW layer situ-
ated slightly above because the HSRL does not detect liquid
at 0.7 km altitude around 16.7 UTC. In addition to the peak
near 0 m s−1, all shown spectra are characterized by broad
merged snow peaks pointing to snow particles of different
size, shape, and density falling at different terminal veloci-
ties. In Fig. 12a, the three merged modes of snow, as well as
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Figure 11. Like Fig. 6 but for the case study period on 2 February 2014, 16:00 to 17:00 UTC, at 0 to 2.7 km altitude.

the SLW peak, are detected by PEAKO and MicroARSCL,
while Shupe_04 and Polyfit12 both only detect one maxi-
mum.

The spectrum shown in Fig. 12b is near the top of the
SLW layer detected by the HSRL. The narrow liquid peak
with fall velocity near 0 m s−1 is only detected by PEAKO
and Shupe_04. Both algorithms find two more snow peaks
with larger fall velocity. These two peaks are also detected
by Polyfit12. MicroARSCL detects three peaks as well; how-
ever it is not able to detect the liquid peak. Figure 12c shows
a spectrum which was chosen in an area where PEAKO finds
five peaks. Again, one of them is a SLW peak within the SLW
layer detected by the HSRL (Fig. 10). This peak is also de-
tected by MicroARSCL and Shupe_04 but not Polyfit12. The
four other peaks found by PEAKO are merged snow peaks
with different fall velocities which hint to various degrees of
riming that the other algorithms have difficulties detecting. In
Fig. 12d, the number of peaks detected by the four algorithms
differs significantly: the peak with the highest reflectivity at
around −1.5 m s−1 fall velocity is found by all algorithms.
PEAKO detects two sub-peaks, which are each identified by
at least one other algorithm as well. However, none of the
other methods finds both other ice sub-peaks.

In Appendices A–C, three more case studies from the
training and test phase are presented. Results of comparison
of PEAKO to the other peak-finding algorithms are similar

to the cases presented here. Appendix D contains a sensitiv-
ity study on the effect of different smoothing schemes and
spatiotemporal averaging scales.

5 Conclusions and outlook

5.1 Summary of findings and outlook

The presented study focuses on the description of a new su-
pervised cloud radar Doppler velocity spectrum peak-finding
algorithm (PEAKO). Its performance was compared to dif-
ferent existing Doppler spectrum peak-finding algorithms.
It was found that the PEAKO algorithm generally agrees
well with results from Shupe_04 and a polynomial fitting
approach. PEAKO is however capable of detecting nar-
rower merged peaks with a smaller power contribution than
Shupe_04. The polynomial fitting approach has mostly re-
sults similar to Shupe_04 but is not very practical due to
its long computation time. The MicroARSCL product was
usually more sensitive to small perturbations in the radar
Doppler spectrum and thus often detected a higher num-
ber of peaks than the other three algorithms and produces
more “speckled” results. Some areas where peaks are over-
estimated by MicroARSCL are in highly turbulent regions
with large spectrum width like the turbulent boundary layer
while others seem more random and not consistent in time

Atmos. Meas. Tech., 12, 4591–4617, 2019 www.atmos-meas-tech.net/12/4591/2019/



H. Kalesse et al.: Development of a Doppler peak-finding algorithm 4603

Figure 12. Four exemplary Doppler spectra picked from the case study on 2 February 2014, 16:00 to 17:00 UTC, at 0 to 2.5 km altitude. The
averaged and smoothed spectrum which is used as input to PEAKO is drawn in bold over the original spectrum. The peaks detected by the
four algorithms are marked. The number of peaks found by each algorithm is noted in parentheses in each figure legend. Mean and maximum
noise floors are presented by black and red horizontal lines, respectively. Please note that the scale of the y axis is different in each plot.

and height. Consistency in time and to a lesser extent height
is a good indicator of the performance of a peak-finding
algorithm because hydrometeor populations and cloud mi-
crophysical processes generally occur in layers (unless in
highly turbulent regions). The number of found cloud radar
Doppler velocity spectrum peaks within mixed-phase winter-
time snow clouds in Finland was validated with independent
ground-based in situ observations described in Kneifel et al.
(2015) and, if available, HSRL observations.

The described approach only identifies underlying hy-
drometeor populations if the particle types differ sufficiently
in their terminal fall velocities to produce individual Doppler
spectrum peaks.

In upcoming projects, it is planned to test if the best three-
parameter pairs of PEAKO found are applicable to other
radar systems (like METEK MIRA 35 GHz radars or RPG
94 GHz FMCW radars) or to which extent further refinement
is needed for different radar sampling parameters. Addition-
ally, the effect of stronger cloud dynamics will be evaluated.

Determining the number of different hydrometeor popula-
tions in the same radar volume based on morphological fea-
tures of the radar Doppler spectrum as presented in this com-
parative study is the first step towards cloud particle classi-
fications. Having this easily adjustable cloud radar Doppler
spectrum peak detection algorithm available will facilitate
carrying out microphysical process studies, involving appli-
cations such as peak tracking.

Data availability. All KAZR and HSRL data of the second ARM
Mobile Facility (AMF2) at the University of Helsinki Research
Station (SMEAR II), in Hyytiälä, Finland, used in this study
are publicly accessible at the ARM data archive: https://adc.
arm.gov/armlogin/login.jsp (last access: 27 November 2018). The
High Spectral Resolution Lidar (HSRL) data from 2 February
to 21 February 2014 were compiled by B. Ermold, E. Elo-
ranta, H. Michelsen, J. Garcia, J. Goldsmith, and R. Bambha.
The data set was last accessed on 27 November 2018 at
https://doi.org/10.5439/1025200 (Ermold et al., 2014). The At-
mospheric Radiation Measurement (ARM) user facility Ka-band
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ARM Zenith Radar general moment data (KAZRGE) from 2 to
21 February 2014 were compiled by A. Matthews, B. Isom, D.
Nelson, I. Lindenmaier, J. Hardin, K. Johnson, and N. Bharad-
waj. The data set was last accessed on 27 November 2018 at
https://doi.org/10.5439/1025214 (Matthews et al., 2014a). The Ka-
band ARM Zenith Radar Doppler spectra data (KAZRSPECC-
MASKGECOPOL) from 2 to 21 February 2014 were compiled by
A. Matthews, B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K.
Johnson, and N. Bharadwaj. The data set was last accessed on 27
November 2018 at https://doi.org/10.5439/1025218 (Matthews et
al., 2014b).
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Appendix A: Case study from 16 February 2014,
0.67–0.92 UTC (training data set 2)

The results of the PEAKO comparison to the other three
peak-finding approaches for the training data set of 16 Febru-
ary 2014, 0.67 to 0.92 UTC, are shown in Appendix A.
This time period is also analyzed by Kneifel et al. (2015)
in depth, so it was possible to compare the microphysical
signatures reported in this study to the Doppler peaks de-
tected by the four algorithms. For 16 February 2014, 0.67
to 0.92 UTC, Kneifel et al. (2015) reported high values of
microwave-radiometer-derived liquid water path of 100 to
500 g m−2 and clear signatures of large aggregates in the
dual-wavelength ratios of Ka-band and W-band reflectivities
below 2 km as well as in the reflectivity fall streak feature at
0.85 UTC that were also seen in the X–Ka dual-wavelength
ratios around 0.85 UTC. The general structures of the lay-
ers of Doppler peak number detected by PEAKO, Shupe_04,
and Polyfit12 again agree to a large extent, whereas Mi-
croARSCL detects a higher number of peaks in both cases
(Figs. A2 and B2). The fall streak feature which exhibits
particle size sorting was better detected by PEAKO and Mi-
croARSCL than by the other two algorithms. The increase
in number of peaks at 0.67 to 0.75 UTC can be explained
by the presence of large needle aggregates of sometimes
more compact and sometimes very open structure as ex-
plained in Kneifel et al. (2015), which lead to the inter-
esting multimodal Doppler spectrum with up to four peaks
as shown in Fig. B4d. Ground-based in situ observations
show that during 0.75–0.85 UTC aggregates and rimed par-
ticles with enhanced terminal velocities were present and
that the number of large aggregates was further found to de-
crease while the number of increasingly rimed aggregates
further increased until 1 UTC. Radio-sounding observations
on 15 February 2014 at 23.2 UTC show a thin layer at 0.8–
0.9 km altitude which is subsaturated with respect to ice and
liquid and which might explain the decrease to one found
Doppler peak at this altitude.

Figure A1. Like Fig. 4 but for 16 February 2014, 0.67–0.92 UTC,
at 0–4 km height.
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Figure A2. Like Fig. 5 but for 16 February 2014, 0.67–0.92 UTC,
at 0–4 km height.
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Figure A3. Like Fig. 6 but for the case study period on 16 February 2014, 0.66–0.92 UTC, at 0–4 km altitude.
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Figure A4. Four example spectra selected from the case study on 16 February 2014, 0.63–0.92 UTC. Please note that the y axis scale is
different for each of the spectrum plots.
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Appendix B: Case study from 21 February 2014,
23.01–23.10 UTC (training data set 3)

The training data set of 21 February 2014, 23.01 to
23.25 UTC, which is also a case study of Kneifel et al.
(2015), is described in Appendix B. For 23.01 to 23.25 UTC,
Kneifel et al. (2015) report the transition from a low con-
centration of strongly rimed particles (lump graupel) to ag-
gregate snowfall with large snowfall rates and increasing
size and number of the aggregates. The fast transition of
the snowfall from rimed particles to aggregates results in
the bimodal Doppler spectra (with two found peaks) at 23
to 23.05 UTC and monomodal spectra afterwards. For this
case study, PEAKO and Shupe_04 and Polyfit12 agree well
with the situation described in Kneifel et al. (2015), while
MicroARSCL overestimates the number of peaks, especially
in the turbulent boundary layer and near 4 km altitude.

Figure B1. Like Fig. 4 but for 21 February 2014, 23.01–23.25 UTC,
at 0.2–4 km height.

Figure B2. Like Fig. 5 but for 21 February 2014, 23.01–23.25 UTC,
at 0.2–4 km height.
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Figure B3. Like Fig. 6 but for the case study period on 21 February 2014, 23.01–23.25 UTC, at 0.2–4 km altitude.
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Figure B4. Three example spectra selected from the case study on 21 February 2014, 23.01–23.25 UTC. Please note that the y axis scale is
different for each of the spectrum plots.
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Appendix C: Case study from 7 February 2014,
23.75–24 UTC (test data set 2)

The second test data set of 7 February 2014, 23.75 to
24 UTC, is characterized by dendritic ice particles (Kneifel
et al., 2015) and a slanted fall streak feature extending from
near 4 to 1 km from 23.75 to 23.9 UTC (Fig. C1) with bi-
modal Doppler spectra (Figs. C2 and C4). Ground-based in
situ observations report mostly small, open-structured aggre-
gates (which are later replaced by more compact spheroidal
habits) as well as a small number of spherical probably rimed
particles.

Figure C1. Like Fig. 4 but for 7 February 2014, 23.75–24 UTC, at
0.2–4 km height.

Figure C2. Like Fig. 5 but for 7 February 2014, 23.75–24 UTC, at
0.2–4 km height.
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Figure C3. Like Fig. 6 but for the case study period on 7 February 2014, 23.75–24 UTC, at 0.2–4 km altitude.
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Figure C4. Four example spectra picked from the case study on 7 February 2014, 23.75–24 UTC. Please note that the y axis scale is different
for each of the spectrum plots.
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Appendix D: Sensitivity study on the effect of different
smoothing schemes and spatiotemporal averaging scales

To assess the influence of different smoothing schemes and
spatiotemporal averaging space on the algorithm’s perfor-
mance, a sensitivity study was performed. Two smoothing
methods available in MATLAB are the moving average and
the locally weighted scatterplot smoothing (lowess) schemes.
Lowess is very similar to loess with the difference that lowess
utilizes a first-degree polynomial, which is fit to the data sub-
set defined by span. We trained PEAKO in different configu-
rations using the first training data set (Table 1). The PEAKO
configurations tested were the following:

– averaging over five spectra on a temporal scale and five
spectra on a spatial scale, which results in an averaging
timescale of 10 s and an averaging height of 150 m (the
average spectrum is smoothed using the loess method).

– omitting time–height averaging altogether prior to
smoothing the spectra using loess.

– keeping the spatiotemporal averaging fixed at the de-
fault of 16 s and 90 m but using moving average smooth-
ing instead of the loess method.

– keeping the spatiotemporal averaging scale fixed at the
default and using lowess instead of loess.

The optimized parameters obtained after training PEAKO in
each of the above-listed configurations were applied to the
case study presented in Fig. 5. Figure D1 shows the results.

The panels in Fig. D1 all display a similar pattern with
respect to peak number. This is not surprising because the
training process of PEAKO is the same for each of the meth-
ods, i.e., the three adjustable parameters are adjusted to ob-
tain the best agreement with the human-created training data.
A change in the spatiotemporal averaging scale towards more
neighbors in height and fewer neighbors in time does not al-
ter the result significantly. However, performing time–height
averaging prior to smoothing at all is important as can be
seen in the third panel in Fig. D1: if no spatiotemporal av-
eraging is carried out before smoothing, the features de-
tected by PEAKO become less coherent and more noisy.
Figure D1d and e explore the effect of different smoothing
schemes on the algorithm performance. Both moving aver-
age and lowess methods are able to reproduce the features
detected by PEAKO in the default configuration only with
some minor deviations.

Figure D1. Number of Doppler spectrum peaks detected by
PEAKO in five different configurations for the selected case study
on 21 February 2014 from 22.54 to 22.77 UTC, at 2 to 6 km altitude.
(a–e) Number of peaks detected by PEAKO in the default configu-
ration (16 s temporal and 90 m spatial averaging prior to loess); this
plot is equivalent to Fig. 5a; number of peaks detected using 10 s
temporal and 150 m spatial averaging followed by loess; number of
peaks detected without time–height averaging prior to loess; num-
ber of peaks detected using 16 s and 150 m time–height averaging
followed by smoothing using the moving average method; number
of peaks detected using 6 s and 150 m time–height averaging fol-
lowed by lowess.
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