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Supplementary material 

S1. Data processing with a bespoke automated R package 
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Figure S1. Data architecture of the bespoke software for the transparent and reproducible management and post-

processing of data transmitted from the PAM network. Data is held in a relational database management system 

(RDBMS) in PostgreSQL to provide complex query capabilities and to create relationships between different 

components of the data itself. Data querying and post-processing is performed in R software and was selected as an 

established, open-source system where several independent but interoperable packages were used to address a wide 

range of statistical analysis and visualisation techniques. The user is required to input the metadata (grey) in the 

relational database containing information on deployment periods, reference instrumentation, hardware settings, 

maintenance schedule etc. The code can be executed with automated scheduled tasks (green) to output ratified 

databases (red). Level 0 produces time-series graphs and maps to facilitate fast visual inspection of the data and sends 

reports by email to improve efficiency of the maintenance of the PAM network. Levels 1 and 2 focus on the conversion 

of raw measurements to physical units and the quality assurance/ quality control of the personal exposure 

measurements. Dashed lines indicate work that will be presented in upcoming publications: 1) the creation of 

automated algorithms to classify time-activity-location profiles of individuals to estimate activity-weighted exposure; 

and, 2) the disaggregation of outdoor and indoor sources to overall personal exposure using information extracted from 

the wireless sensor network.  20 
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S2. Sensor reproducibility 

To evaluate the reproducibility of the sensors, the coefficient of determination between the raw PM measurements 

and working electrode readings of all EC sensor pairs during the four co-locations in the UK and China in both 

seasons are presented in Table T1. All EC sensors show excellent correlations across the network with mean R2 

> 0.80 with the exception of the NO2 sensors during the non-heating season in China, possibly affected by the

high temperatures that the sensors were exposed to (see subsection). The coefficient of determination between the 

OPC-N2 sensors was high across seasons and settings (R2 > 0.91); however, the gradient was lowest in the UK 

co-location during the heating season.  

Table S1. Summary of reproducibility between sensors in outdoor co-locations in China and the UK that ranged from 

7 to 19 days during the heating and non-heating season. Linear fitting equations between sensors generated the 

coefficient of determination (R²) and the gradient [m] matrices. The average values of all N sensors for each variable 

are given, the standard deviations (σ) indicate the variation within the sensor network. The corresponding summary 

of the linear models with the reference instruments is presented in Table 3.  

Heating season Non-heating season 

China 

(Dec- Jan) 

UK 

(Oct- Nov) 

China 

(June) 

UK 

(April) 

Internal PAM temperature (C) 10.5 (5.3-18.0) 15.9 (11.0–20.8) 40.2 (32.7–45.8) 17.7 (12.2–26.8) 

Internal RH (%) 27 (14-44) 52 (39 -59) 38 (23 – 55) 52 (34 – 60) 

N sensors N =59 N=3 N=59 N= 3 

CO Maximum mixing ratio (ppb) 6845 357 916 276 

R² (σ) 1.00 (0.01) 0.98 (0.00) 0.94 (0.03) 0.94 (0.00) 

NO Maximum mixing ratio (ppb) 132 19 5 6 

R² (σ) 0.89 (0.17) 0.80 (0.01) 0.81 (0.07) 0.94 (0.005) 

NO₂ Maximum mixing ratio (ppb) 98 35 42 19 

R² (σ) 0.97 (0.04) 0.98 (0.00) 0.60 (0.12) 0.89 (0.03) 

O₃ Maximum mixing ratio (ppb) 33 30 109 44 

R² (σ) 0.91 (0.05) 0.80 (0.00) 0.90 (0.03) 0.96 (0.01) 

PM₂.₅ Maximum conc. (μg m-³) 432 32 110 37 

R² (σ) 0.95 (0.17) 0.91 (0.05) 0.96 (0.01) 0.98 (0.01) 
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S3. Outdoor co-locations 

S3.1 Outdoor co-locations during the heating season

Figure S2. Outdoor co-location of PAMs with reference instruments in Cambridge for three weeks during 

the heating season. The PAMs had been previously deployed for two years to participants of a London 

cohort with chronic pulmonary disease. (a): Time series of two PAMs (blue, black) and the reference 

instruments (red). Time resolution is 20 sec averaged over 1 minute for comparison with the reference 

instruments. Due to unavailable data, the PM measurements of the PAM are presented without the RH 

correction resulting in an over-prediction of PM mass during certain periods. (b): correlation between 

PAMs and (c) correlation between PAM and reference. The 1:1 line in black; and gradients m in red.  
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S3.2 Outdoor co-locations during the non-heating season

Figure S3. Outdoor co-location of PAMs with reference instruments in Beijing China during the non-heating season 

(June). The PAMs have been previously deployed in China for two months to participants of a cardio-pulmonary 

cohort. Due to malfunctioning of the TEOM in PKU during the non-heating season, measurements from a TEOM in a 

nearby governmental site (Haidianwanliu, time resolution 1 hour) were used for comparison with the PAM. (a): Time 

series of two PAMs (blue, black) and the reference instruments (red) in 1-minute time resolution. (b): correlation 

between PAMs and (c): correlation between PAM and reference. The 1:1 line (x=y) in black; and gradients m in red. 
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Figure S4. Outdoor co-location of PAMs with reference instruments in the UK during the non-heating season (April-

May). (a): Time series of two PAMs (blue, black) and the reference instruments (red) in 1-minute time resolution. (b): 

correlation between PAMs and (c): correlation between PAM and reference. The 1:1 line (x=y) in black and gradients 

m in red. 



7 

S4. Deployment temperatures 

Figure S5. Histogram of internal temperatures of 60 PAMs recorded during the co-location period with reference 

instruments (pink) and deployment to participants (cyan) during the non-heating season in China. The co-location with 

the reference instruments on the roof of Peking university took place from 28/06/2017 to 16/07/2017, the field 

deployment was conducted in Beijing and Pinggu from 22/05/2017 to 26/06/2017. Internal temperatures of the PAMs 

are on average 7 ℃ higher than ambient temperatures.  

S5. Indoor co-location 

Figure S6. Indoor co-location of a PAM with portable commercial instrumentation (Table 2) in an urban flat in 

China during the non-heating season. Time resolution of the measurements is 1-minute. Time series of PM1 (a) and 

PM10 (b) mass measured with the PAM (blue) next to a commercial portable spectrometer (GRIMM 1.108, red). 

Mass concentrations for PM were calculated from particle counts within the size range 0.38 -17 μm and same aerosol 

density for both instruments. (c): Corresponding scatterplots show an excellent agreement between commercial 

instrument and the PAM making them suitable for the quantification of indoor pollution levels. The 1:1 line is in 

black and gradient (m) in red.
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S6 Effects of fast environmental changes on EC sensor performance 

To investigate the effect of fast environmental changes on sensor performance, a controlled experiment was set 

up at a residential house in an urban background area in Cambridge. One PAM was deployed outdoor and a second 

PAM was deployed indoors. A third PAM was moved rapidly between an indoor and an outdoor location while a 

detailed time record (“diary”) of the transition movements was kept (Figure S7, top). Commonly encountered 

residential indoor emission sources such as cooking (e.g. 11:30) and cigarette smoking (e.g. 17:30, PM 

measurements) were then introduced. The temperature difference between the indoor and the outdoor 

microenvironment was about 15℃ (from 25℃ indoors to 10℃ outdoors) resulting in an RH difference of about 

20% (30% indoors vs 50% outdoors). While the temperature sensor inside the PAM showed a relatively slow 

response when moved between indoors and outdoors, a rapid response of the RH sensor was evident (Figure S7, 

derivative of RH). The environmental changes were identified based on the time-derivative of the RH and were 

clearly distinguished from emission events (cooking, smoking). PM measurements were not affected by the rapid 

temperature changes; however, short-term transient changes were noticed in the measurements of the EC 

sensors. Figure S8 demonstrates that the recovery time of the NO, NO₂ and O₃ sensors was shorter (< 5 min) 

than that of the CO sensor (15 min).  
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Figure S7. An experiment to characterise sensor responses to rapid environmental changes between different 

microenvironments. Time-series of one PAM deployed outdoors (black), a second PAM was deployed indoors (red) 

and a third PAM (grey, original signal) was moved rapidly between the indoor and the outdoor environment in the 

premises of a residence in an urban background area in Cambridge, UK. The rapid temperature changes resulted in 

sharp responses of the EC sensors whereas the PM measurements stay unaffected. A selective algorithm based on the 

on the time-derivative of the RH (dRH) was applied on the data of the moving PAM to flag and remove the false 

responses (blue line, filtered data) without filtering out short-term pollution events. 
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Figure S8. Close-up of one indoor-outdoor transition. The dotted orange line shows the original signal before 

removing the false temperature response. The blue line shows the remaining measurement after the removal. The 

stabilisation time after the transition depends on the sensor type with higher times for CO (15 min) and faster 

recovery times for the rest of the sensors (5 min). 


