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Abstract. Detection and quantification of greenhouse-gas
emissions is important for both compliance and environment
conservation. However, despite several decades of active re-
search, it remains predominantly an open problem, largely
due to model errors and assumptions that appear at each
stage of the inversion processing chain. In 2015, a controlled-
release experiment headed by Geoscience Australia was car-
ried out at the Ginninderra Controlled Release Facility, and a
variety of instruments and methods were employed for quan-
tifying the release rates of methane and carbon dioxide from
a point source. This paper proposes a fully Bayesian ap-
proach to atmospheric tomography for inferring the methane
emission rate of this point source using data collected dur-
ing the experiment from both point- and path-sampling in-
struments. The Bayesian framework is designed to account
for uncertainty in the parameterisations of measurements,
the meteorological data, and the atmospheric model itself
when performing inversion using Markov chain Monte Carlo
(MCMC). We apply our framework to all instrument groups
using measurements from two release-rate periods. We show

that the inversion framework is robust to instrument type and
meteorological conditions. From all the inversions we con-
ducted across the different instrument groups and release-
rate periods, our worst-case median emission rate estimate
was within 36 % of the true emission rate. Further, in the
worst case, the closest limit of the 95 % credible interval to
the true emission rate was within 11 % of this true value.

1 Introduction

Methane (CH4) is an important transition fuel for decarbon-
isation of the global energy system (International Energy
Agency, 2017). As countries increase the renewable energy
mix into their existing electricity networks, CH4 can firm up
network stability and supply (International Energy Agency,
2017; Jenkins et al., 2018). Utilisation of biogas or natu-
ral gas with carbon capture and storage offers a lower cost
pathway to achieve deep decarbonisation targets (Sepulveda
et al., 2018). One of the disadvantages of CH4, however, is
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that its global warming potential is much greater than that of
carbon dioxide (CO2), so that only a few percent of losses
of CH4 into the atmosphere can negate any climate-change
mitigation advantages from reducing conventional coal-fired
power production (Kinnon et al., 2018). For this reason, it is
critical that losses of CH4 along the supply chain are accu-
rately accounted for to ensure public confidence in climate-
change mitigation benefits of switching to natural gas. Un-
fortunately, while several types of instrumentation are avail-
able to aid the detection and estimation of fugitive emissions,
harnessing acquired data for reliable emission detection and
quantification remains a notoriously difficult problem.

Several controlled-release experiments of CH4 and CO2
have been conducted in order to improve techniques for
estimating greenhouse-gas emissions (Flesch et al., 2004;
Lewicki and Hilley, 2009; Loh et al., 2009; Etheridge et al.,
2011; Humphries et al., 2012; van Leeuwen et al., 2013;
Luhar et al., 2014; Jenkins et al., 2016; Ars et al., 2017).
Building on this body of work, in 2015 a CH4 and CO2
controlled-release experiment was held at the Ginninderra
Controlled Release Facility in Canberra, Australia (Feitz
et al., 2018). This large multidisciplinary, multi-institutional
blind-release trial (i.e. the participants did not know the
true release rate) simultaneously assessed eight different
CH4 emission-rate estimation techniques, using data from
both mobile and stationary instrumentation. These eight
techniques included tracer ratio techniques, backwards La-
grangian stochastic modelling, forward Lagrangian stochas-
tic modelling, Lagrangian stochastic footprint modelling,
and atmospheric tomography techniques. A full description
of the methods and results is given in Feitz et al. (2018).

Every group involved in the analysis presented in Feitz
et al. (2018) used a unique combination of instrumenta-
tion and estimation technique when carrying out the anal-
ysis, making it hard to establish the respective merits (or
otherwise) of the employed techniques from the inversion
results. Nonetheless, an interesting observation from the
study is that none of the eight techniques deployed dur-
ing the blind-release trial had a leakage uncertainty range
(95 % interval) that included the true emission rate, while
some estimates (including one obtained using atmospheric
tomography) were factors of 2 or more off from the true
value. Given that atmospheric methane concentration and
meteorological instrument measurement uncertainty is gen-
erally low for each of the different approaches, it suggests
that the techniques that were used did not adequately ac-
count for the variability of atmospheric measurements or
the uncertainty introduced through parameterisation of at-
mospheric mixing conditions (e.g. Monin–Obukhov lengths
and/or Pasquill stability classes; see Sect. 3.1) and atmo-
spheric dispersion/transport model uncertainty.

A number of studies have highlighted the importance
of atmospheric-model error in estimating emission rates or
fluxes (e.g. Chevallier et al., 2010; Basu et al., 2018). For
example, Peylin et al. (2002) showed that flux estimates

are sensitive to the chosen spatio-temporal resolution of the
fluxes and the chosen transport model. Uncertainty in the me-
teorological fields driving the transport model is also known
to play a big role (e.g. Miller et al., 2015). While ensemble
inversions are frequently used to highlight the sensitivity of
the results to atmospheric models and meteorological fields,
learning unknown parameters associated with transport con-
currently with the emission rate is not often done. This is
largely due to the computational implications of such an ap-
proach. Key here are the use of surrogate models (or emu-
lators) to obtain simplified transport representations. For ex-
ample, Lucas et al. (2017) use decision/regression trees as a
surrogate for FLEXPART-WRF (a sophisticated atmospheric
transport model integrating weather research and forecasting
into a Lagrangian particle dispersion model), which allows
for quick simulation at various parameter settings that can in
turn be used to make inference. For the Ginninderra data we
employ the more traditional Gaussian plume model, which
can be seen as a surrogate for a full-blown transport model.
While known to work well in the small domain (an area of
approximately 100m×100m) setting we consider (e.g. Rid-
dick et al., 2017), importantly this plume model is quick to
simulate from, giving us the opportunity to calibrate it while
estimating the emission release rate (e.g. Borysiewicz et al.,
2012). As we see in our sensitivity analysis of our results in
Sect. 6, online plume-model calibration is crucial for obtain-
ing accurate emission-rate estimates with our data.

The transport model plays an important role in inverse
modelling. Calibration of the transport model from observa-
tions can be done within the classic inverse theory framework
of Tarantola (2005). This framework is in turn seated within a
Bayesian paradigm, which underpins several of the inversion
systems in place today (see, for example, Flesch et al., 2004;
Humphries et al., 2012; Hirst et al., 2013; Ganesan et al.,
2014; Luhar et al., 2014; Houweling et al., 2017; White et al.,
2019). Inference in such cases is often done using sampling
techniques such as Markov chain Monte Carlo (MCMC) or
importance sampling (e.g. Rajaona et al., 2015). Quick eval-
uation of the transport/dispersion model (or surrogate) is cru-
cial when repeatedly evaluating it within an MCMC frame-
work; the Gaussian plume model is hence a popular choice
in these frameworks (e.g. Jones et al., 2016; Wang et al.,
2017). MCMC is also our method of choice for Bayesian
atmospheric tomography, because it allows relatively easy
computation of posterior distributions of parameters that are
deeply nested within a hierarchical model. It is also ideally
suited for the case of point-source emissions, where the di-
mensionality of the latent space is low (unlike, for example,
when performing regional emission quantification).

Atmospheric tomography, a term inspired from medical
imaging, combines data from a collection of measurement
sites with Bayesian inversion to detect and quantify emis-
sions. The primary contribution of this article is an exten-
sion of the atmospheric tomography technique described in
Sect. 2.4.2 of Feitz et al. (2018). In Feitz et al. (2018), atmo-
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spheric tomography was only used on one type of instrument
and did not account for uncertainty in the transport model.
The technique we propose accounts for uncertainty in our
data, in our process models, and in our parameters; is ap-
plicable to both point- and path-sampling instruments; and
takes into account instrument-specific bias. Inference is made
on all unknown parameters using MCMC, and uncertainty in
the transport-model parameters are propagated to our poste-
rior inferences on the release rate. We demonstrate the ef-
ficacy and utility of the unifying Bayesian framework on
data from point- and path-sampling instruments used in the
Ginninderra experiment. A secondary contribution is the cu-
rated provision of a data set containing a large portion of the
Ginninderra data at a 5 min resolution, which we hope will
serve as a resource for other researchers to validate their own
emission-rate estimation techniques on. The data and scripts
required to reproduce the results in this article are available
from https://github.com/Lcartwright94/BayesianAT (last ac-
cess: 1 August 2019).

The remainder of the article is organised as follows. Sec-
tion 2 gives an overview of the experimental setup and the
data collected during the 2015 Ginninderra experiment. Sec-
tion 3 describes the atmospheric transport model used, while
Sect. 4 details the hierarchical model we employ and the
Bayesian methodology we develop for emission-rate esti-
mation. Section 5 gives the results from application of our
Bayesian atmospheric tomography technique on the Ginnin-
derra data. Section 6 examines how our results would change
if certain components in our model (e.g. relating to the plume
model) are (erroneously) assumed fixed and known. Sec-
tion 7 concludes.

2 The 2015 Ginninderra release experiment

A full description of the experimental setup, measurement
techniques, and quantification methods used in the 2015 Gin-
ninderra release experiment are given in Feitz et al. (2018).
Briefly, CH4 (together with CO2 and nitrous oxide) was re-
leased from a small chamber located in a fallow agricul-
tural field from 23 April to 12 June 2015 and from 23 to
24 June 2015. A variety of CH4 sensors were placed around
the release chamber. The measurement data considered in
this study were obtained from two Picarro G2201-i analysers
(positioned in the predominant upwind (NW) and downwind
(SE) location of the release chamber, labelled Picarro.West
and Picarro.East, respectively), four eddy covariance (EC)
towers equipped with Li-COR 7700 open-path CH4 sen-
sors (labelled EC.A, EC.C, EC.D, and EC.E, respectively),
two scanning Fourier-transform infrared (FTIR) spectrome-
ters with four retro-reflectors terminating six measurement
paths (labelled P1 to P6, respectively), and a scanning Gas-
Finder 2 Boreal laser with seven reflectors forming seven
measurement paths (labelled R1 to R7, respectively); see the
left panel of Fig. 1. Meteorological data were collected from

EC.A equipped with a Vaisala HMP50 relative humidity and
temperature sensor, a CSI EC150 CO2–H2O sensor, a Li-
COR 7700 CH4 sensor, a Kipp and Zonen CNR4 radiome-
ter, a CSI CSAT3 sonic anemometer, and a Gill WindSonic
anemometer. Wind speed and wind direction were measured
by the CSAT3 sonic anemometer and the Gill WindSonic
anemometer. As part of data quality control, horizontal wind
speed and wind direction data from the two instruments were
compared, with no arising issues. Both sonic anemometers
were using factory calibration. Wind directions were deter-
mined by manually aligning the sonic anemometers so that
the reference direction was true north. Data from CSAT3
sonic anemometer were logged at 10 Hz and data from the
Gill WindSonic anemometer at 1 Hz.

The gases were released at a height of 0.3 m, and the stan-
dard CH4 release rate was 5.8 g min−1, limited mostly to day-
light hours. On brief occasions, the CH4 release rate was var-
ied between 2.9 and 20 g min−1 to enable testing of mobile
CH4 sensor platforms. Towards the end of the experiment
(8–12 June), the CH4 release rate was decreased from 5.8 to
5.0 g min−1, and the setup for the Boreal laser measurements
was modified with the number of retro-reflectors and paths
reduced to six (labelled R8 to R13, respectively; see the right
panel of Fig. 1). The location of all other CH4 sensors did not
change over the duration of the experiment. The Picarro anal-
ysers were not deployed until 21 May, and the CH4 release
rate on 23 and 24 June was constantly varied. Hence, in this
article we only consider data between 21 May and 12 June,
excluding 26 and 27 May where the release rate was also
constantly varied.

The data set used to obtain the results presented in Sect. 5
was compiled by pooling together the separate meteorologi-
cal and concentration data sets used in the Ginninderra exper-
iment. A common resolution of 5 min was chosen; that is, all
measurements of concentration and meteorological variables
were averaged over a regular set of 5 min intervals. Measured
CH4 concentrations were then matched with corresponding
meteorological measurements by time and placed into long-
table format, with each row corresponding to a unique data
point. For path measurements, two extra columns were used
to denote the end-point coordinates of the paths.

Initial preprocessing was carried out to provide a com-
plete data set without outliers. First, data containing miss-
ing values considered critical for emission-rate estimation
(in particular, air temperature, air pressure, wind speed, and
wind direction) were removed from the data set. Second,
data points corresponding to upwind measurements that were
more than three median absolute deviations away from the
instrument’s median upwind measured concentration were
determined to be outliers and hence removed. A point mea-
surement was classified as upwind if the angle subtended
from the source by a line joining the instrument location to
the plume centreline was more than 45◦. A path measure-
ment was classified as upwind if the angles subtended at ev-
ery point along the path were more than 45◦.
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Figure 1. (a) Layout of instruments in the 2015 Ginninderra release experiment between 21 May and 7 June 2015. (b) Layout of instruments
between 8 and 12 June 2015. R1 to R13 are the paths formed between the Boreal laser and reflectors; P1 to P6 are the paths formed between
the FTIR spectrometers and retro-reflectors; EC.A to EC.E are the EC towers; and Picarro.East and Picarro.West are the Picarro analysers.
All coordinates are relative to EC.A, which is situated at the origin.

3 Transport modelling

In this section we detail the plume model employed and how
it is used to supply model-predicted concentrations for the
path measurements.

3.1 Gaussian plume dispersion modelling

As outlined in Sect. 1, we use a transport model that is sim-
ply parameterised, and easy to evaluate, so that it can be cali-
brated online. One of the simplest models that works well on
the short distances we consider is the Gaussian plume dis-
persion model (e.g. Wark et al., 1998, chap. 4). Here the true
emission rate is denoted by Q in grams per second (g s−1),
the height of the CH4 point source by H in metres (m), and
the total number of observations by N . The classic Gaussian
plume model is given by

C
(
xi,yi,zi,Q,Ui,H,θki

)
=

Q

2πUiσyi ,kiσzi ,ki
exp

(
−

y2
i

2σ 2
yi ,ki

)
[

exp

(
−
(zi −H)

2

2σ 2
zi ,ki

)
+ exp

(
−
(zi +H)

2

2σ 2
zi ,ki

)]
, (1)

where C is the model-predicted concentration in grams
per cubic metre (g m−3) of CH4 at a single spatial point
(xi,yi,zi) in metres (m) along the direction of the plume
corresponding to the ith measurement, Ui is the wind speed
associated with the ith measurement in metres per second
(m s−1), ki ∈ {A,B,C,D,E,F } represents the Pasquill sta-

bility class (a categorisation reflective of the expected level
of horizontal and/or vertical spread of the atmospheric par-
ticles after emission; see Pasquill, 1961) associated with the
ith measurement, and θki represents plume-specific parame-
ters used to construct the standard deviations σzi ,ki and σyi ,ki .
These standard deviations of the plume in the vertical and
horizontal directions are given by

σzi ,ki = akix
bki
i ,

σyi ,ki = 0.4651xi tan(νi),

respectively, where νi = 0.01745
(
cki − dki ln(xi/1000)

)
.

Note that the coefficients aki ,bki ,cki ,dki correspond to
the ith measurement and depend on the stability class
associated with that measurement, ki ∈ {A,B,C,D,E,F }.
Values for these coefficients by stability class are given in
Wark et al. (1998, chap. 4) and shown here in Table 1 for
completeness. We collect the plume-specific parameters
in θki ≡ (aki ,bki ,cki ,dki )

′, where ′ denotes the transpose
operator.

The stability class to which an observation is allocated
is classically based on (i) the Monin–Obukhov length (the
theoretical height at which turbulence is produced by buoy-
ancy and mechanical forces in equal amounts; see Sienfeld
and Pandis, 2006, chap. 16) and (ii) an effective roughness
length. The Monin–Obukhov length (L value) is given by
L=−u3

∗ξv/(qg(w
∗ξ∗v )s) (Jacobson, 2005, chap. 8), where

u∗ is the frictional velocity, ξv is the mean virtual potential
temperature, (w∗ξ∗v )s is the surface virtual potential temper-
ature flux, q is the von Kármán constant, and g is the accel-
eration due to gravity. In our case we used WindTrax (http://
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Table 1. Stability classes to which observations within the Ginninderra experiment are allocated, and the corresponding values of aki ,bki ,cki ,
and dki used to construct the horizontal (σyi ,ki ) and vertical (σzi ,ki ) standard deviations of the plume when xi is in metres (m).

Stability class (ki ) Stability condition aki bki cki dki

A Extremely unstable 0.17993 0.94470 24.167 2.5334
B Moderately unstable 0.14506 0.93198 18.333 1.8096
C Slightly unstable 0.11025 0.91465 12.500 1.0857
D Neutral 0.084739 0.86974 8.3330 0.72382
E Slightly stable 0.075005 0.83660 6.2500 0.54287
F Moderately stable 0.054370 0.81558 4.1667 0.36191

www.thunderbeachscientific.com/windtrax.html, last access:
27 March 2019) to determine the L value for each observa-
tion; we provide the L values with the compiled data. We
set the effective roughness length z0 = 0.01 m, correspond-
ing to a relatively flat area, with short or no grass, and min-
imal buildings/trees/other obstacles; see Sienfeld and Pan-
dis (2006, chap. 16) and World Meteorological Organisation
(2008, chap. 5). This is a suitable choice for the Ginninderra
site. We used the results of Golder (1972) to allocate a stabil-
ity class to each observation based on the L values provided
by WindTrax and z0 = 0.01 m.

The coefficients typically used for each stability class
could be off by a factor of 2 or more (Wark et al., 1998,
chap. 4). To show that this is also the case with our categori-
sation scheme, in Fig. 2 we show the Gaussian-plume-model-
predicted outputs together with the observed data enhance-
ments (see Sect. 4.1) at one of our measurement locations
(namely, EC.A) between 21 May and 7 June, when scaling
σyi ,ki by 1, 2.5, and 4, respectively. Clearly, with no scaling
the predicted plume is too narrow, while with a scaling of 4 it
is too broad. A scaling of 2.5 gives good agreement. Impor-
tantly, since in Eq. (1) Q only serves to scale the predicted
concentrations (i.e. make them larger or smaller by a con-
stant factor), it is apparent that this plume-scaling factor is
identifiable, in the sense that we can learn it from the data
while estimating the emission rate (provided the source is
active). Online plume-model calibration fits naturally within
the MCMC framework discussed in Sect. 4.

3.2 Low wind speeds

It is well known that the Gaussian plume model is less ac-
curate for low wind speeds (e.g. Turner, 1994, chap. 2). One
reason for this is that the wind speed Ui is in the denomi-
nator of the scaling coefficient of Eq. (1); hence, the plume
model prediction becomes very sensitive to Ui as it tends
towards zero. This is problematic as Ui , although often as-
sumed known, is an average calculated from noisy measure-
ments taken over some time span (in our case 5 min) and is
thus itself noisy. From Eq. (1) we see that, when conditioned
on all other parameters, the variance of Ci is proportional to
the variance of the inverse of Ui , which can be very large
for small Ui . Instead of removing data at low wind speeds as

is often done (e.g. Feitz et al., 2018), we analyse the theo-
retical relationship between the variance of the inverse wind
speed and Ci . We then use this relationship to discount low-
wind-speed model predictions in the Bayesian framework in
a principled manner. While the analyst still needs to choose
a cutoff below which to model this relationship, in separate
studies we found that our inferences are not particularly sen-
sitive to the chosen cutoff. Moreover, we found that down-
weighting instead of excluding was necessary for making
inference when not many observations associated with high
wind speeds were available.

Each wind speed Ui is an average of a number of wind
speeds (say nUi ) recorded over 5 min. Therefore Ui is a sam-
ple mean and thus an unbiased estimator of the true (popula-
tion) mean wind speed, say µUi , over this time interval. By

the central limit theorem,√nUi (Ui−µUi )
D
−→ Gau(0,σ 2

Ui
),

whereD implies convergence in distribution, Gau(µ,σ 2) de-
notes the Gaussian distribution with mean µ and variance
σ 2, and σ 2

Ui
is the variance of the wind speeds over the ith

time interval, which was derived from the raw (disaggre-
gated) data. We can then use the delta method (e.g. Casella
and Berger, 2002, chap. 5) to deduce that

√
nUi

(
1
Ui
−

1
µUi

)
D
−→ Gau

(
0,
(

d

dµUi

(
1
µUi

))2

σ 2
Ui

)
.

Hence, the variance of 1/Ui is approximately(
d

dµUi

(
1
µUi

))2

σ 2
Ui
=

1
µ4
Ui

σ 2
Ui
∝

1
µ4
Ui

.

Therefore, conditional on all other terms in Eq. (1), the
variance of the model-predicted concentrations increases as
a quartic of the true inverse wind speed. This is important, as
it means that model predictions at low wind speeds, say less
than 1 m s−1, could be highly uncertain; we show a way of
handling this uncertainty when we detail the Bayesian inver-
sion model in Sect. 4.

3.3 Predicted concentrations for point and path
measurements

The plume model given by Eq. (1) sets the x axis as its centre-
line and the CH4 source at the origin. The predicted plume-
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Figure 2. Predicted (blue) and observed (red) enhancements in parts per million (ppm) at EC.A between 21 May and 7 June 2015 when
scaling σyi ,ki by 1, 2.5, and 4, respectively. The mean-squared errors (MSE) between the observed and the predicted enhancements are also
shown. Of the three, the best agreement between predicted and observed values occurs when σyi ,ki is scaled by 2.5.

model concentration at a physical location (̃xi, ỹi, z̃i) is thus
found by first applying a spatial shift and time-dependent ro-
tation (by wind direction) to (̃xi, ỹi, z̃i) in order to obtain
(xi,yi,zi), which is then used to compute a model-predicted
concentration (conditional onQ,Ui ,H , and θki ). Conversion
to parts per million (ppm) is done via the ideal gas law.

Let Ci be a model-predicted concentration
(i = 1,2, . . .,N ). If Ci corresponds to a point measurement,
then one needs only to evaluate Eq. (1) at the transformed
point-measurement location to obtain a predicted concen-
tration. If Ci corresponds to a path measurement, however,
it represents an average of concentrations along the path.
Denote the transformed end points of the straight-line path
in the horizontal plane as (xi,1,yi,1) and (xi,2,yi,2), respec-
tively. The line between the given points in the horizontal
plane can be parameterised by ρi(s)= (ρx,i(s),ρy,i(s))

′,

where

ρx,i(s)= sxi,2+ (1− s)xi,1, s ∈ [0,1],

ρy,i(s)= syi,2+ (1− s)yi,1, s ∈ [0,1],

so that

Ci =
1
Ti

1∫
0

C
(
ρx,i(s),ρy,i(s),zi,Q,Ui,H,θki

)
∥∥∥∥dρi(s)

ds

∥∥∥∥ ds, (2)

where Ti ∈ R+ is the path length and ‖ · ‖ is the standard
Euclidean norm. In our case, Ti =

∥∥∥ dρi (s)
ds

∥∥∥ is not a function
of s, and so Eq. (2) simplifies to

Ci =

1∫
0

C(ρx,i(s),ρy,i(s),zi,Q,Ui,H,θki )ds.

This integral can be approximated numerically
over a fine partitioning of J segments P =

{[s0, s1], [s1, s2], . . ., [sJ−1, sJ ]}, where 0= s0 < s1 <
.. . < sJ−1 < sJ = 1. Then

Ci ≈

J∑
j=1

C(ρx,i(s
∗

j ),ρy,i(s
∗

j ),zi,Q,Ui,H,θki )1s,

where1s ≡ sj −sj−1 = 1/J and s∗j =
sj+sj−1

2 . In our exper-
iments we set J = 100.

4 Bayesian atmospheric tomography

We are ultimately interested in obtaining a range of plausi-
ble values for the emission rate, Q, a posteriori, (i.e. after
we have observed some data). In this section we present a
hierarchical statistical model that relates Q to the observed
concentrations via the Gaussian plume model. Although Q
itself is univariate, the model contains several other unknown
parameters that capture our uncertainty about the physical
and the measurement processes; inferences on these param-
eters and Q are made simultaneously. For ease of exposition
we adopt the terminology of Berliner (1996) to describe the
model, which we also summarise graphically in Fig. 3. The
top layer in the hierarchy is the data model (the model for the
observations, Y , Sect. 4.1), the middle layer is the process
model (the model for Q, Sect. 4.2), and the bottom layer
is the parameter model (the unknown parameters not of di-
rect interest, τ , ωy,ωz, Sect. 4.3). In Sect. 4.4 we outline the
MCMC strategy we use to make inference with the model.

4.1 The data model

Let Ỹ ≡ (Ỹ1, Ỹ2, . . ., ỸN )
′ denote the measured concentra-

tions averaged over 5 min intervals. We model each of these
averaged measurements as Ỹi = Ci+Xi+εi,where Ci is the

Atmos. Meas. Tech., 12, 4659–4676, 2019 www.atmos-meas-tech.net/12/4659/2019/



L. Cartwright et al.: Detection and quantification of methane emissions 4665

Figure 3. Directed acyclic graph showing the conditional depen-
dence relationships between the data (enhancements) Y and the er-
ror components ε (Sect. 4.1); the emission rate Q (Sect. 4.2); and
the unknown parameters τ ,ωy , and ωz (Sect. 4.3).

ith Gaussian-plume-predicted concentration, Xi is the sum
of the ith CH4 background concentration and instrument-
specific bias, and εi denotes the random error associated
with the ith observed CH4 concentration. The background
concentration and bias can be explicitly modelled and pre-
dicted (Ganesan et al., 2015). Here, as in Zammit-Mangion
et al. (2015), we estimate Xi as the 5th percentile of all the
measurements from the instrument associated with the ith
measurement. Figure 4 compares the raw averaged concen-
trations to those corrected for background and instrument-
specific bias, which we term enhancements, when plotted
against wind direction (in degrees east of north).

Now, let Y ≡ (Y1,Y2, . . .,YN )
′ denote the enhancements,

and ε ≡ (ε1,ε2, . . .,εN ). It is straightforward to verify that

Yi = Ỹi −Xi

= Ci + εi, i = 1, . . .,N.

Therefore, Yi is made up of two main components of variabil-
ity: the Gaussian-plume-predicted concentration and a ran-
dom error term. We assume that the εi terms are Gaussian
and independent but that they are not identically distributed.
Specifically, εi contains two components of variation, one
pertaining to the error characteristics of the instrument and
one to the stability class with which we have categorised
the measurement. Recall also from Sect. 3.2 that we model
the variance of the predicted concentrations to be propor-
tional to a quartic of the true mean inverse wind speed for
Ui < 1 m s−1.

First, we capture instrument-specific measurement er-
ror characteristics and stability-condition-specific variation
by introducing an auxiliary variable mi (mi = 1,2, . . .,M),
where M is the total number of unique combinations of sta-
bility class and instrument type, and consider M different
precision (i.e. inverse variance) parameters {τmi } that need
to be estimated, one for each combination. Second, we take
the influence of low wind speeds into account by assuming
that the precision of εi is τmi multiplied by Ûi , where, for

Ui > 0,

Ûi =

{
U4
i 0<Ui < 1,

1 Ui ≥ 1,
(3)

which encapsulates our prior belief that observed model–
measurement mismatch variability at low wind speeds (in
this case under 1 m s−1) is dominated by the low wind speed.

Putting these two components together, we have that, con-
ditional on the instrument type and stability class encoded in
mi ,

εi |mi ∼ Gau(0,1/(Ûiτmi )), i = 1, . . .,N.

We detail the prior distribution for τmi in Sect. 4.3.1.

4.2 The process model

The process of interest in this application is the emission rate,
Q, which we assume is constant. Since in this application
Q≥ 0, we model it using a half-normal prior distribution (a
Gaussian distribution with mean zero truncated from below
at zero),

p(Q)=


√

2
σQ
√
π

exp
(
−

Q2

2σ 2
Q

)
, Q ∈ [0,∞)

0 otherwise,
(4)

with a standard deviation parameter, σQ, which is known
and fixed. In our case we fixed σQ to 1.5 g s−1 (90 g min−1),
which results in a relatively uninformative prior distribution.

While addressing nonnegativity, half-normal priors do not
contain a point mass at zero and thus do not encode a prior
belief that there is a possibility of having exactly a zero emis-
sion rate. As a consequence, a posterior estimate or even a
credible interval that includes zero is not possible. A spike-
and-slab distribution (Mitchell and Beauchamp, 1998) con-
sisting of a diffuse uniform distribution with a point mass at
zero could be alternatively used at the cost of a slightly more
complex model.

4.3 The parameter model

Our parameter model is divided into two parts: one pertaining
to the precision parameters {τmi } in the random-error com-
ponent in the data model; and the other to the standard de-
viations in the Gaussian-plume dispersion models which, as
shown in Sect. 3.1, are also uncertain.

4.3.1 The precision parameters

For conjugacy with the Gaussian likelihood, we model each
τmi using a Gamma prior distribution, with shape parameter
α and rate parameter β:

p(τmi )=
βα

0(α)
τα−1
mi

e−βτmi , i = 1, . . .,N.
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Figure 4. (a) Raw averaged concentrations, plotted by instrument and against wind direction. (b) Enhancements obtained by subtracting off
the background and instrument-specific bias.

In our application we set α = 1.058 and β = 0.621. These
values were chosen through quantile matching, such that the
1st and 99th percentiles of the distribution of 1/√τmi are
approximately 0.35 and 6.5 ppm, respectively (giving a mode
close to 0.7 ppm). Values for these percentiles were selected
based on prior exploratory data analysis of the measurements
that were taken upwind of the source.

4.3.2 The Gaussian plume model parameters

From separate studies into the reliability of the model values
for σyi ,ki and σzi ,ki , briefly discussed in Sect. 3.1, we con-
cluded that these parameters could indeed be off by factors
of 2 or more and that, if they are off, they are so by simi-
lar amounts for each stability class. These factors correspond
to vertical shifts of the Pasquill stability curves when plot-
ted on a log–log scale (e.g. Wark et al., 1998, chap. 4). We
thus replaced σyi ,ki and σzi ,ki in Eq. (1) with σ̃yi ,ki and σ̃zi ,ki ,
respectively, where

σ̃yi ,ki ≡ ωyσyi ,ki

and
σ̃zi ,ki ≡ ωzσzi ,ki ,

and ωy,ωz ∈ R+ are scaling parameters for σyi ,ki and σzi ,ki ,
respectively (Borysiewicz et al., 2012).

We use Gamma prior distributions for ωy and ωz. In our
application we set the shape parameters equal to 1.6084 and
the rate parameters equal to 0.7361. These parameters give
approximate 1st and 99th percentiles of 0.1 and 8, respec-
tively, and a mode close to 1 (representative of no scalar in-
fluence on σyi ,ki or σzi ,ki ). This reflects our prior belief that
the standard deviations could be up to an order of magnitude
off from those derived using classical Pasquill stability-class
theory.

4.4 Bayesian inference

Recall Y ≡ (Y1,Y2, . . .,YN )
′ are the N observed en-

hancements, and let U ≡ (U1,U2, . . .,UN )
′ and 2≡

(θk1 ,θk2 , . . .,θkN )
′. Further, let τ ≡ (τ1,τ2, . . ., τM)

′ be the
M parameters associated with each combination of instru-
ment type and stability class. The posterior distribution of
the emission rate Q is then given by

p(Q | Y ,U ,H,2)

∝

∞∫
0

∞∫
0

∫
RM+

p(Y ,τ ,ωy,ωz |Q,U ,H,2)p(Q) dτ dωy dωz

=p(Q)

∞∫
0

∞∫
0

∫
RM+

p(Y |Q,τ ,ωy,ωz,U ,H,2)

p(τ )p(ωy)p(ωz)dτ dωy dωz,

where p(Q) is given by Eq. (4) and p(Y |

Q,τ ,ωy,ωz,U ,H,2) is the likelihood, which is Gaussian.
Computation of the posterior distribution p(Q |

Y ,U ,H,2) involves a high-dimensional integral that
is analytically intractable. We therefore use MCMC, specifi-
cally a Gibbs sampler, to obtain samples from the posterior
distributions of Q, τ , ωy , and ωz (see Gelman et al., 2013,
for a comprehensive introduction to MCMC). The Gibbs
sampler samples each parameter one at a time from their re-
spective full conditional distributions, where conditioning is
done using the most recent samples of all other parameters.

In the case of τ , use of Gamma prior distributions leads
to full conditional distributions that are also Gamma. Hence,
sampling τ is straightforward. However, the prior distribu-
tions on the other parameters are not conjugate priors, and
hence the full conditional distributions for each of these
are not available in closed form. We therefore use standard
Metropolis-within-Gibbs to sample from these conditional
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distributions, with Gaussian proposals and adaptive scaling
during the early stages of the MCMC algorithm. Specifically,
for each parameter, the standard deviation of the proposal
was increased or decreased as appropriate whenever the ac-
ceptance rate fell below 10 % or exceeded 80 %.

5 Results and discussion

5.1 Observing system simulation experiment

In this section we discuss results from applying our model to
simulated data in an observing system simulation experiment
(OSSE). To mimic the conditions in the real experiment,
we simulated enhancements using the actual Boreal and EC
instrument locations, meteorological observations from the
Ginninderra data, and realistic variances for the random-error
components. We considered the two release-rate periods sep-
arately, using a 6 g min−1 emission rate in the first and a
12 g min−1 emission rate in the second. As in the real exper-
iment, the first Boreal laser/reflector setup (seven paths) was
used in the first release-rate period, while the second setup
(six paths) was used in the second release-rate period; the
EC tower locations were kept constant for both periods. We
set the precisions τmi = 4 for mi = 1, . . .,M and the scaling
factors ωy = ωz = 2 to assess the algorithm’s ability to cali-
brate the plume online. Following data simulation, we used
MCMC to generate 60 000 samples, left out 20 000 of these
as burn-in, and used a thinning factor of 10. Adaptation of the
Metropolis samplers was only done during burn-in. Conver-
gence was assessed through visual inspection of the MCMC
trace plots.

We made inference on Q, as well as all other parameters
in the model, for the Boreal- and EC-simulated data and the
two emission rate settings. Table 2 shows the posterior me-
dian emission rates, the 95 % posterior credible intervals for
the emission rate, and the intervals for the plume standard
deviation scaling parameters ωy and ωz. In all cases, we see
that the true (simulated) emission rate is captured within our
posterior credible intervals and that the median estimates are
very close to the true values. Interestingly, we see that while
the plume-scaling coefficients have been accurately recov-
ered in most cases, the posterior uncertainty over ωy for the
Boreal lasers is very wide. This suggests that ωy might not be
identifiable for path measurements, possibly because the av-
eraging effect of the line integral renders the measured con-
centration insensitive to a specific plume width in the hori-
zontal direction.

5.2 Application to the Ginninderra data set

In this section we discuss results from applying our model to
enhancements from the compiled Ginninderra data. We con-
sidered several settings. In the first setting, we estimated the
emission rate separately for each of the four instrument types
and for each release-rate period (5.8 and 5.0 g min−1) when

the source was active. In addition, for each release-rate pe-
riod we estimated the emission rate for all the instruments
combined, yielding a total of 10 inversion results. In the sec-
ond setting we estimated the emission rate for the same 10
cases but for periods when the source was switched off. In
the third setting we again considered the same 10 cases but
using only measurements that were taken when upwind of
the source. These three settings serve to demonstrate how our
inferences adapt to the various settings one might encounter
in the field. In particular, online plume calibration is almost
impossible in the latter two settings, and we expect this to
result in large posterior uncertainties on the scaling coeffi-
cients, and also the emission rate in the third setting. In the
second setting downwind measurements are present. There-
fore, while online plume calibration is again almost impos-
sible since there is no active source, the absence of a source
(Q= 0 g min−1) should be reflected in our posterior infer-
ences (recall, however, that use of a half-normal prior distri-
bution precludes the possibility of a zero emission rate being
estimated; see Sect. 4.2).

As in the OSSE, we generated 60 000 MCMC samples,
left out 20 000 of these as burn-in, and used a thinning factor
of 10. In line with what we observed in the OSSE, our initial
results showed that, more often than not, ωy is not identifi-
able (leading to wide posterior distributions and poor MCMC
mixing) when attempting to estimate the emission rate with
the source switched on with path measurements. We there-
fore chose to fix ωy = 1 (but not ωz) for path measurements,
and this choice is reflected in all the results discussed below.

The left panel of Fig. 5 summarises our results for Q in
the first setting (both upwind and downwind measurements
with the source switched on); full results are given in the first
10 rows of Table A1. While our posterior inferences are re-
flective of the true underlying emission rate, unlike in the
OSSE we see that with the real data the true values were
not always captured within our 95 % posterior credible inter-
vals. This suggests that there are other important factors at
play (e.g. with the meteorological data such as ambient tem-
perature or wind direction, which we assume are fixed and
known) that are not (or not fully) accounted for in our model.
A close inspection of the residuals at EC.A revealed mild
deviations from our Gaussianity assumption, while posterior
predictive distributions on left-out EC tower data in a reanal-
ysis revealed coverage probabilities (specifically, empirical
probabilities computed from the quantity of validation data
falling into the 68 % and 95 % prediction intervals, respec-
tively) that are slightly too large. Nevertheless, our worst-
case scenario, obtained with the combination of all instru-
ments in the 5.0 g min−1 release-rate period, had an interval
limit which was only 0.55 g min−1 (approximately 11 %) off
from the true value, while all posterior medians were within
36 % of the true value (within 22 % if one ignored results
from the Picarro analysers during the 5.0 g min−1 release-
rate period). This is encouraging because a single, common
inference method was used to obtain the inferences from data
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Table 2. Posterior median emission rates in grams per minute (g min−1), and the posterior 95 % credible intervals of the emission rate in
grams per minute, ωy , and ωz from the OSSE. Results shown are from simulated data corresponding to the Boreal lasers (B) and EC towers
(E) when the emission rate is 6 g min−1 (E1 and B1) and 12 g min−1 (E2 and B2).

Median Q Q ωy ωz

B1 6.0718 (5.7847,6.3511) (0.17978,7.1675) (1.8871,2.1378)
E1 6.0369 (5.5695,6.5300) (1.7510,2.1051) (1.7382,2.2167)
B2 12.122 (11.820,12.409) (0.17451,6.7320) (1.9066,2.0295)
E2 11.756 (10.884,12.761) (1.7785,2.0533) (1.7810,2.2151)

Figure 5. (a) Posterior empirical distributions of the emission rate Q in grams per minute (g min−1), for the Boreal lasers (B), FTIR
spectrometers (F), EC towers (E), Picarro analysers (P), and the ensemble of all instruments (BFEP), for each release-rate period (1 and 2)
during the Ginninderra experiment. The 5.8 g min−1 release-rate period is shown in red (B1, F1, E1, P1, and BFEP1), while the 5.0 g min−1

release-rate period is shown in blue (B2, F2, E2, P2, and BFEP2). The vertical dashed lines denote the respective true emission rates, the
black dots denote the median estimates, and the black vertical bars denote the upper and lower limits of the 95 % posterior credible intervals.
(b) Same as (a) but showing results obtained using measurements taken when the methane point source was inactive. In both cases, we can
recover a reasonable range of estimates for the emission rate, with no 95 % posterior credible interval being far from the true emission rate.
Further, we see that the posterior emission rate credible intervals move towards zero when the source is inactive, as desired.

at a common temporal resolution – no manual instrument-
specific tuning was carried out. The approach thus seems rel-
atively robust to instrument type; in Sect. 6 we show this is
no longer the case once certain components in our model are
assumed fixed and known.

The first 10 rows of Table A1 also show the 95 % poste-
rior credible intervals for ωy and ωz. None of the obtained
credible intervals for ωy contain 1, and the results corrob-
orate the conclusion from our exploratory data analysis in
Sect. 3.1 that a plausible value for ωy is about 2 or 3. This
result lends credence to our ability to calibrate the Pasquill
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stability-class curves corresponding to σyi ,ki while estimat-
ing the emission rate with point measurements. There was
less agreement on ωz in the inversions, suggesting that some-
thing more complex than a simple scaling is required (or that
the model used for σzi ,ki is, in this case, inappropriate) for
calibrating the Pasquill stability-class curves corresponding
to σzi ,ki . Nonetheless, in Sect. 6 we show that our emission-
rate estimates from point measurements were relatively less
sensitive to the assumption ωz = 1 than to the assumption
ωy = 1.

The right panel in Fig. 5 summarises our results for Q
in the second setting (both upwind and downwind measure-
ments with the source switched off), while full results are
given in the second set of 10 rows in Table A1. Recall from
Sect. 4.2 that, due to the choice of prior overQ (a half-normal
distribution), it is not possible for the 95 % credible inter-
val to include zero. Clearly, however, the intervals for Q are
close to zero and are suggestive of a small emission rate. As
expected, the plume standard deviation scaling parameters
are not well-constrained in this setting when the source is
off: narrow credible intervals on the emission rate here are
only possible when the measurement is largely insensitive to
the plume shape. This is indeed the case for the Boreal paths,
some of which pass very close to the source. With other in-
strument configurations, uncertainty in the plume scalings
dominates. In some cases (FTIR spectrometers and Picarro
analysers in the 5.0 g min−1 release-rate period) our MCMC
algorithm did not converge after the 60 000 samples; these
results are thus omitted from Fig. 5 and Table A1.

The bottom 10 rows in Table A1 give full results in the
third setting (upwind measurements only with the source
switched on). In this setting the 95 % posterior credible in-
tervals produced for the emission rates are very wide (most
with a range of over 100 g min−1), as are those produced for
ωy and ωz: our posterior distributions are largely uninfor-
mative. This was expected since upwind measurements con-
tain no information on both the emission rate and the plume
model parameters. These results from upwind measurements
serve as verification and confirm that we are indeed relying
on useful information from downwind measurements when
making inference on the emission rate and other parameters
that appear within our model.

6 Sensitivity of results to model components

As detailed throughout Sect. 4, the Bayesian model we
employ contains many parameters that are updated using
MCMC. A natural question to ask is whether all these pa-
rameters do need to be updated and what the effects on the
emission rate inferences are when instead some of these are
assumed fixed and known. Specifically, we are interested in
seeing what happens when (i) considering only one single
precision parameter τ for all of the data regardless of stabil-
ity class and/or instrument group, (ii) considering one τmi per

instrument group only, (iii) not accounting for plume-model
variability in low wind speeds (i.e. setting Û = 1), (iv) not
updating ωy when using point measurements, (v) not updat-
ing ωz, and (vi) not updating both ωy and ωz when using
point measurements. The 95 % credible intervals for Q in
grams per minute for all these settings and for each of the 10
groupings considered in Sect. 5 are given in Table A2.

Grouping the precision parameters {τmi } by instrument
only (instead of by instrument and stability class) had a
slightly negative impact on the emission-rate estimates ob-
tained during the second release-rate period but less so during
the first release-rate period. Assuming (and fixing)ωz = 1 for
both the point and path measurements also did not have a se-
rious impact on the emission-rate estimates. Note that this
does not mean that these components are not relevant in the
general model – for example, from our estimates of ωz in Ta-
ble A1 we see ωz = 1 would be a plausible choice for this
experiment if one opted to fix ωz (while ωy = 1 would not
be).

On the other hand several components in our model appear
to be crucial to obtaining reasonable emission-rate estimates.
Using a single precision parameter to capture all observed
variability due to measurement error and the stability-class
categorisation clearly had a negative impact on our emission-
rate estimates. Similarly, assuming the variability of the mea-
surements is independent of wind speed when performing in-
version resulted in 95 % posterior credible intervals on the
emission rate that are considerably shifted in the negative
direction. A similar observation was made by Feitz et al.
(2018, p. 207) when analysing data from the Boreal lasers.
There, observations with wind speeds below 1.5 m s−1 were
removed to mitigate this effect.

The scaling factor ωy is clearly also crucial for obtain-
ing emission-rate estimates of practical significance for point
measurements, with the ensuing emission-rate estimates of-
ten being off by nearly a factor of 2 when ωy = 1 is assumed.
As expected, the width of the credible intervals on the emis-
sion rate decreased substantially when ωy = ωz = 1 was as-
sumed, indicating that ωy and ωz play a big role in quanti-
fying uncertainty on the emission rate. Therefore, as noted
in other studies discussed in Sect. 1, incorporating uncer-
tainty in the transport model by treating parameters within
the model itself as uncertain (note that this is different from
adding another component of variability in the data model, as
is often done) is likely to have a positive impact on emission-
rate estimates and uncertainty quantification.

7 Conclusions

In this article we have proposed a fully Bayesian model for
atmospheric tomography that takes into account uncertainty
in the data measurement process, the physical processes, and
parameters appearing in the transport model, when estimat-
ing the emission rate. We see that the model is robust to dif-
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ferent instrument types and configurations, and it provides
useful inferences on the emission rate and the plume disper-
sion model used. When applied to the Ginninderra data using
a variety of instruments in different release-rate periods, we
obtain 95 % posterior credible intervals on the emission rate
that either encapsulate the true emission rate or have a limit
which is no more than 11 % from the true value.

The methods developed in this study are ideal for quanti-
fying local-scale leaks from industrial facilities or from the
subsurface (e.g. well heads, buried pipelines, or gas leakage
up geological fractures and faults) where a surface leak has
been detected but needs to be quantified. It can be used where
physical access to the source location is limited, e.g. gas bub-
bling from a creek or where measurement is hazardous. De-
pending on the circumstance, detection of leakage can take
many different forms, from visible bubble detection, optical
gas imaging, handheld sniffers, noise detection, helicopters
equipped with lasers, drones equipped with gas sensors, to
monitoring die-off in vegetation using remote sensing tech-
niques. Surface leakage typically expresses as small, concen-
trated hotspots if sourced from the subsurface (Feitz et al.,
2014; Forde et al., 2019), for which the quantification ap-
proach outlined in this article is ideally suited. Equipment
placement can be optimised around the leakage site (i.e. pre-
vailing upwind/downwind) for optimal quantification.

In most applications neither the number of sources nor the
source location is known. As such, the framework we con-
struct should be seen as a foundational building block that
needs to be extended appropriately for each specific applica-
tion. For example, if the source location is not known, then
source localisation can be incorporated into the Bayesian
framework as discussed by Humphries et al. (2012). If there
are multiple possible sites, and these locations are not known,
then the framework needs to be further extended to incorpo-
rate multiple Gaussian plume models (one for each site), and
joint localisation–inversion will be required. While these ex-
tensions are straightforward both mathematically and com-
putationally, in practice they are unlikely to be effective for
detection of leakage over large spatial scales. Gas fields or
geological storage sites can cover areas of tens to hundreds
of square kilometres. Unless there is a high density of sen-
sors (≈ 100 m scale, van Leeuwen et al., 2013; Jenkins et al.,
2016), the sensitivity of detection will be poor (Wilson et al.,
2014; Luhar et al., 2014). It is however relatively straight-
forward to effectively extend the methodology to when the
emission is from an area rather than a point source.

Our work is closely connected to other atmospheric to-
mography techniques but with some small, significant, differ-
ences. Luhar et al. (2014) used a backward Lagrangian parti-
cle model to simulate the trajectories of methane and carbon
dioxide backwards in time to localise the source and estimate
the emission rates. Their approach yielded good quality es-
timates for the methane emission rates but highly uncertain
estimates for the carbon dioxide emission rates and source
location parameters. Twenty-three runs of the Lagrangian

model required approximately 1 h of computing time, and
therefore their framework becomes problematic with thou-
sands of observations as we have in our study. More perti-
nently, online calibration of the atmospheric transport model
would be virtually impossible without the construction and
use of a surrogate model or emulator (e.g. Harvey et al.,
2018). In the study of Humphries et al. (2012), carbon diox-
ide and nitrous oxide emission rates and source locations
were estimated relatively well. We do not consider the local-
isation problem but otherwise extend their method to handle
various instrument types and a number of extra levels of un-
certainty. The case in our sensitivity analysis in which we fix
ωy = ωz = 1 yields a model that is structurally very similar
to that of Humphries et al. (2012); we see from our results
that having this hard constraint is not a tenable assumption
in practice. Our work also has close connections with that
of Ars et al. (2017) where the Pasquill stability class for an
observation is chosen from a subset of appropriate stability
classes, based on the best fit of model-predicted values to
observed values. While this may help fit the Gaussian plume
dispersion model to the data, it does not take into account
the uncertainty arising from stability-class choice. Further, if
all plume model standard deviations are off by a factor of 2
or more, there is a distinct possibility that no stability class
yields a good fit. Online calibration of these standard devi-
ations is needed to account for lack-of-fit arising from the
inherently simple Gaussian plume model.

Our results provide interesting insights into the design and
monitoring of sensor networks for detecting and quantify-
ing methane emissions. For example, our sensitivity analy-
sis in Sect. 6 showed that estimates using the two Picarro
analysers were particularly sensitive to assumptions made on
the model plume parameters. Moreover, when uncertainty on
these parameters was considered, the release-rate estimates
from these instruments tended to be uncertain. This is de-
spite the Picarro analysers being among the more accurate
and expensive instruments used in the study. Uncertainty in
our experiment is, as is often the case, dominated by that in
the transport model. Hence, the number of instruments used,
the proximity of the instruments to the source, and their con-
figuration around the source appear to be more important
design criteria than instrument accuracy when the inferen-
tial target is emission-rate quantification of a point source. In
particular, having more (less expensive) instruments set up to
cover many more possible wind directions is better than hav-
ing only one or two more expensive instruments with which
to monitor emissions. If one is limited to using a small num-
ber of instruments, then those giving path measurements are
preferable to those giving point measurements, as the for-
mer will be able to capture a larger range of wind direc-
tions. Our results also provide insight on the transport model
used. For example, close inspection of our posterior infer-
ences for τ indicated that, across all instrument groups and
for both release-rate periods, the model–data mismatch was
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much lower for the more neutral stability classes C and D
than for the more stable/unstable classes A and F.

The fully Bayesian framework we adopt is adaptable to
various scenarios. We envision, for example, that source lo-
calisation (e.g. Humphries et al., 2012; Hirst et al., 2013)
could be done in tandem with plume-model calibration
within an inversion framework, provided several instruments
in suitable configurations (as in the Ginninderra experiment)
are available. Future work will also investigate how un-
certainty in other meteorological variables such as wind-
direction, as well as the stability-class categorisation adopted
(possibly via z0), could be incorporated within the model.

Code and data availability. Software code and data are available
at https://github.com/Lcartwright94/BayesianAT (last access: 1 Au-
gust 2019 Cartwright, 2019).
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Appendix A: Full results

Table A1. Posterior median emission rate in grams per minute (g min−1), and the posterior 95 % credible intervals for the emission rate in
grams per minute, ωy , and ωz, for the Boreal lasers (B), FTIR spectrometers (F), EC towers (E), Picarro analysers (P), and an ensemble
of all instruments (BFEP), for each release-rate period (5.8 g min−1 (1), and 5.0 g min−1 (2)) under various settings. Dashes correspond to
parameters that were not updated via MCMC. Results for which MCMC did not converge are marked as n/a.

Setting Group Median Q Q ωy ωz

B1 5.9833 (5.4733,6.5593) – (3.2062,4.2104)
F1 6.7301 (6.1985,7.2937) – (1.4347,1.8164)
E1 6.6048 (6.2942,6.9537) (2.4946,2.7848) (1.0868,1.1954)
P1 4.9028 (4.2710,5.6136) (2.6065,3.6707) (0.41664,0.64341)

Source on BFEP1 5.9008 (5.7050,6.1038) (2.3360,2.5640) (1.1944,1.2989)
(upwind and downwind) B2 5.1552 (4.2571,6.1820) – (0.84608,1.1288)

F2 4.0525 (3.2838,4.8497) – (0.66723,1.0944)
E2 4.2017 (3.6297,4.8923) (1.4899,2.1671) (0.90941,1.0981)
P2 3.2135 (2.1071,4.7236) (2.0250,5.2798) (0.34677,0.63648)
BFEP2 3.9455 (3.5054,4.4543) (1.7138,2.5325) (0.97964,1.1437)

B1 0.52073 (0.40106,0.71608) – (1.3051,5.0262)
F1 0.72641 (0.36438,1.5935) – (1.2565,9.0531)
E1 1.6906 (0.95997,3.2742) (10.768,21.971) (3.1036,11.826)
P1 1.7798 (0.61237,5.6367) (3.3985,13.853) (0.31311,7.3589)

Source off BFEP1 0.65416 (0.52512,0.87510) (7.0545,12.789) (2.2381,5.3166)
(upwind and downwind) B2 0.52202 (0.31479,0.77494) – (0.84995,1.5319)

F2 n/a n/a – n/a
E2 0.85549 (0.32681,3.3683) (2.3136,11.371) (0.50337,7.9746)
P2 n/a n/a n/a n/a
BFEP2 0.72846 (0.34557,1.5735) (2.7823,9.5185) (0.97971,7.1704)

B1 62.452 (2.7445,206.22) – (0.16883,6.8461)
F1 61.651 (3.2040,207.05) – (0.17249,6.5361)
E1 16.136 (7.5484,41.030) (4.5921,6.9288) (1.2708,8.7488)
P1 22.913 (2.0052,168.70) (0.15931,9.2038) (0.23560,7.7829)

Source on BFEP1 15.723 (7.1673,39.188) (4.7485,6.9568) (1.4798,8.8789)
(upwind only) B2 88.353 (5.6799,244.48) – (0.27891,6.0868)

F2 58.568 (2.7772,192.74) – (0.18217,6.4708)
E2 39.728 (3.2357,180.33) (0.23683,5.7448) (0.19650,6.8680)
P2 42.996 (1.9088,185.75) (0.13023,5.2626) (0.18403,6.9436)
BFEP2 37.909 (2.9071,186.65) (0.22048,5.4364) (0.28261,7.1149)
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Table A2. Posterior 95 % credible intervals for the emission rates in grams per minute (g min−1) for the Boreal lasers (B), FTIR spectrometers
(F), EC towers (E), Picarro analysers (P), and an ensemble of all instruments (BFEP), for each release-rate period (5.8 g min−1 (1), and
5.0 g min−1 (2)) and for various alterations to the model as detailed in Sect. 6. Dashes correspond to the redundant case (e.g. ωy = 1 was
assumed for all path measurements in the full model).

Full model Assuming Assuming
Group for mi = τmi = τ instrument {τmi } are only Assuming

1, . . .,M group dependent Û = 1

B1 (5.4733,6.5593) – (4.7238,5.6727) (2.6092,3.1975)
F1 (6.1985,7.2937) – (5.9526,7.1190) (3.6482,4.7116)
E1 (6.2942,6.9537) – (6.2062,7.0047) (5.4894,5.9759)
P1 (4.2710,5.6136) – (4.8748,6.1139) (2.9868,3.9053)
BFEP1 (5.7050,6.1038) (4.7252,5.2433) (5.8133,6.2731) (3.4032,3.6424)
B2 (4.2571,6.1820) – (4.0863,6.4436) (2.5337,3.5319)
F2 (3.2838,4.8497) – (2.7180,4.2555) (1.4055,2.1349)
E2 (3.6297,4.8923) – (3.2692,9.4560) (3.1329,4.1516)
P2 (2.1071,4.7236) – (1.6784,4.7147) (1.8451,3.0813)
BFEP2 (3.5054,4.4543) (2.5283,3.4837) (2.3224,3.2790) (1.9421,2.4779)

Group Assuming Assuming Assuming
ωy = 1 ωz = 1 ωy = ωz = 1

B1 – (4.0341,4.7974) –
F1 – (5.4152,6.3851) –
E1 (3.3635,3.7084) (6.8646,7.5289) (3.6129,3.8937)
P1 (2.0142,2.5424) (5.8880,7.5225) (2.6043,3.4691)
BFEP1 (3.6176,3.8644) (5.9888,6.3946) (3.8251,4.0726)
B2 – (4.3543,5.7021) –
F2 – (3.2608,4.7770) –
E2 (2.6442,3.5321) (3.6982,4.7588) (2.7116,3.3605)
P2 (0.93638,5.2326) (1.8757,4.2556) (0.91678,1.9052)
BFEP2 (2.4699,3.0227) (3.6202,4.5213) (2.5319,3.0744)
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