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Abstract. Cloud segmentation plays a very important role in
astronomical observatory site selection. At present, few re-
searchers segment cloud in nocturnal all-sky imager (ASI)
images. This paper proposes a new automatic cloud segmen-
tation algorithm that utilizes the advantages of deep-learning
fully convolutional networks (FCNs) to segment cloud pixels
from diurnal and nocturnal ASI images; it is called the en-
hancement fully convolutional network (EFCN). Firstly, all
the ASI images in the data set from the Key Laboratory of
Optical Astronomy at the National Astronomical Observato-
ries of Chinese Academy of Sciences (CAS) are converted
from the red–green–blue (RGB) color space to hue satura-
tion intensity (HSI) color space. Secondly, the I channel of
the HSI color space is enhanced by histogram equalization.
Thirdly, all the ASI images are converted from the HSI color
space to RGB color space. Then after 100 000 iterative train-
ings based on the ASI images in the training set, the optimum
associated parameters of the EFCN-8s model are obtained.
Finally, we use the trained EFCN-8s to segment the cloud
pixels of the ASI image in the test set. In the experiments
our proposed EFCN-8s was compared with four other algo-
rithms (OTSU, FCN-8s, EFCN-32s, and EFCN-16s) using
four evaluation metrics. Experiments show that the EFCN-8s
is much more accurate in cloud segmentation for diurnal and
nocturnal ASI images than the other four algorithms.

1 Introduction

Cloud plays an important role in the Earth’s thermal balance
and water cycle, which is one of the important indicators
for astronomical observatory site selection (Stephens, 2005).
Cloud coverage and movements affect the time of astronom-

ical observations. At present, cloud observations rely mainly
on satellite remote sensing and ground-based observations.
A detailed review has been given about the advantages and
disadvantages of satellite remote sensing and ground-based
observations (Tapakis and Charalambides, 2013). Satellite
cloud images can provide large-scale distribution structure
information on cloud in a wide range. Different types and
distribution patterns of cloud can provide rich weather infor-
mation, but the description accuracy of thin clouds and low
cloud is not high enough to accurately reflect local weather
conditions and changes in the atmosphere. The ground-based
cloud observation range is small, and it can provide local in-
formation such as cloud block size and arrangement. It has
the advantages of flexible observation points, easy operation,
being convenient and fast, and producing mostly visible-light
images, with rich image information. However, if relying on
the experience of observers to perform manual observation,
the observation result is easily restricted by human factors,
resulting in a lack of objectivity and accuracy, and the au-
tomatic detection and recognition of cloud images cannot
be realized. Therefore, the development of automated cloud
detection and identification equipment has become an in-
evitable trend.

With the development of hardware technologies such as
charge-coupled devices and digital image processing, many
ground-based full-sky cloud-measuring instruments have
been successfully developed. Currently, the most representa-
tive instruments include the Whole Sky Imager (WSI; John-
son et al., 1989), Total Sky Imager (TSI; Long and Deluisi,
1998; Long et al., 2006), Infrared Cloud Imager (ICI; Shaw
et al., 2005; Thurairajah and Shaw, 2005; Nugent et al.,
2009, 2013), All Sky Imager (ASI; Cazorla et al., 2008),
Whole Sky Infrared Cloud Measuring System (WSIRCMS;
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Sun et al., 2008), Total Sky Cloud Imager (TCI; Yang et al.,
2012), All-Sky Infrared Visible Analyzer (ASIVA; Klebe et
al., 2014), Whole Sky Camera (WSC; Kuji et al., 2018), and
All Sky Camera (ASC; Aebi et al., 2018). The above instru-
ments provide hardware support for analyzing ground-based
cloud images, making the automated observation of ground-
based cloud images possible.

Benefiting from these cloud-measuring instruments, many
ground-based cloud segmentation algorithms have appeared.
Atmospheric molecular scattering is inversely proportional
to the fourth power of the wavelength, and cloud parti-
cle scattering is not closely related to wavelength, so the
sky is blue and the cloud appears white in daytime. There-
fore, threshold algorithms have become the mainstream for
ground-based cloud detection. Long et al. (2006) proposed a
cloud detection algorithm based on color thresholds to ex-
tract the regions of the cloud using 0.6 as a single fixed
threshold in red-to-blue (R/B) ratio bands. Different from
the ratio R/B, Heinle et al. (2010) revamped the criterion
and adopted using the difference value of R–B to segment
clouds. Then, upper and lower thresholds for each attribute
to segment the cloud were proposed, which are determined
by the average and standard deviations of the saturation val-
ues (Souza-Echer et al., 2006). Yang et al. (2015) analyzed
the imaging of color cameras and proposed a new algo-
rithm, which is green-channel background subtraction adap-
tive threshold, to automatically detect cloud within ground-
based total-sky visible images. Yang et al. (2016) proposed
an improved total-sky cloud segmentation algorithm, clear-
sky background differencing (CSBD), using a real clear-sky
background to improve the cloud segmentation accuracy. To
remove the difference of atmospheric scattering and obtain a
homogeneous sky background, Yang et al. (2017) proposed
a cloud segmentation algorithm using a new red–green–blue
(RGB) channel operation by combining the advantages of the
threshold and differencing algorithms.

Li et al. (2011) combined the fixed and adaptive threshold
algorithm and proposed an effective cloud segmentation al-
gorithm called the hybrid threshold algorithm (HTA). Ghon-
ima et al. (2012) compared the pixel red–blue ratio (RBR)
to the RBR of a clear-sky library (CSL) for more accurate
cloud segmentation. Different from the various algorithms
mentioned above, Calbo and Sabburg (2008) presented sev-
eral features that are computed from the threshold image, ex-
tracted from statistical measurements of image texture, based
on the Fourier transform of the image, and can be useful for
cloud segmentation of all-sky images. Peng et al. (2015) de-
signed a classifier-based pipeline of identifying and tracking
clouds in three-dimensional space to utilize all three total-
sky imagers for multisource image correction to enhance the
overall accuracy of cloud detection. Shi et al. (2017) used
a superpixel-based graph model (GM) to integrate multi-
ple source information and proposed a new ground-based
cloud detection algorithm to solve the problem that with a
single information source, it is difficult to split the cloud

from the clear sky. By analyzing components and different
color spaces using partial least squares regression, Dev et al.
proposed a supervised segmentation framework to segment
ground-based cloud pixels without any manually defined pa-
rameters (Dev et al., 2017a). Neto et al. (2010) described a
new segmentation algorithm using Bayesian inference and
multidimensional Euclidean geometric distance to segment
the cloud and sky patterns in image pixels on the RGB color
space. Calbo et al. (2017) proposed sensitivity as the thin
boundary between clouds and aerosols. Roman et al. (2017)
presented a new cloud segmentation strategy using high dy-
namic range images from a sky camera and ceilometer mea-
surements, which is also able to segment the obstruction
of the sun. With the development of neural networks, algo-
rithms in the field of deep learning (LeCun et al., 1989; Ning
et al., 2005; Hinton and Salakhutdinov, 2006; Krizhevsky et
al., 2017; Shelhamer et al., 2017) began to be applied to cloud
segmentation. Moreover, Cheng and Lin (2017) segmented
cloud using supervised learning with multi-resolution fea-
tures. The features include multi-resolution information and
local structure extracted from local image patches with dif-
ferent sizes.

The algorithms proposed above are all for segmenting
cloud from total-sky images in the daytime. For nocturnal
ASI images of cloud and sky background, pixel values are
very low and difficult to distinguish. The effect of sunlight
on nocturnal ASI images is very weak, but weak light such
as moonlight and starlight have a great influence on it. There-
fore, nocturnal ASI images are more noisy than diurnal ASI
images. Gacal et al. (2016) proposed an algorithm to seg-
ment nocturnal cloud images using a single fixed threshold
method. The algorithm uses temporal averaging to estimate
cloud cover based on the segmentation results of images near
the zenith. However, due to factors such as moonlight, light-
ing, and weather conditions, it is difficult to accurately seg-
ment cloud pixels by a single fixed threshold method. Dev
et al. (2017b) proposed a superpixel-based algorithm to seg-
ment nocturnal sky–cloud images, and the first nocturnal
sky–cloud image segmentation database was introduced to
the public in their paper. Dev et al. (2019) first integrated
diurnal and nocturnal image segmentation into one frame-
work. They proposed a lightweight deep-learning architec-
ture called CloudSegNet and achieved good results. How-
ever, so far, few researchers have segmented nocturnal cloud
images. Accordingly, we propose a new automatic cloud seg-
mentation algorithm that utilizes the advantages of deep-
learning algorithm fully convolutional networks (FCNs); it is
called an enhancement fully convolutional network (EFCN).
Section 2 describes the ASI device and the data set of ASI
images. Section 3 shows the proposed EFCN in detail. In
Sect. 4, we conducted three sets of experiments to segment
cloud pixels with the proposed algorithm and four other al-
gorithms. Then we analyzed the experimental results in de-
tail based on four evaluation metrics. Finally, Sect. 5 gives a
summary and some suggestions for future work.
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Figure 1. ASI device and ASI image. (a) ASI device including a
fish-eye lens, an industrial camera, and a clear glass cover. (b) Orig-
inal RGB color ASI image (2592×1728 pixels) and (c) resized RGB
color ASI image of (b) (1408× 1408 pixels).

2 Device and data description

The cloud images used in this paper are taken by an ASI
and provided by the Key Laboratory of Optical Astronomy
at the National Astronomical Observatories of CAS. Fig-
ure 1a demonstrates the ASI device. Like other all-sky cloud-
measuring instruments, the key equipment of the ASI in-
cludes a fish-eye lens, an industrial camera, and a clear glass
cover. The device can cover a field of view larger than 180◦.
The camera is protected by the clear glass cover to prevent
damage by wind, rain, snow, and fog, and it can capture one
24-bit RGB color space ASI image per 3 s. The resolution
of the original RGB color space ASI images is 2592× 1728
pixels as shown in Fig. 1b. We randomly select 1124 origi-
nal RGB color space ASI images to construct our data set,
including 369 original diurnal ASI images and 755 origi-
nal nocturnal ASI images. We define the original ASI im-
ages taken from 07:00 (UTC/GMT+08:00) the morning un-
til 19:00 at night as diurnal ASI images and those taken from
19:00 at night until 07:00 the next morning as nocturnal ASI
images. In the data set, we randomly select 1054 original
RGB color space ASI images as the training set, including
343 original diurnal ASI images and 711 original nocturnal
ASI images. Another 70 original ASI images in the data set
are selected as the test set, with 26 original diurnal ASI im-
ages and 44 original nocturnal ASI images.

The effective area of the original RGB color space ASI
images is a circular region with a diameter including 1408
pixels. Therefore, each image of the data set is resized into
1408× 1408 pixels as shown in Fig. 1c. We manually label
the pixels belonging to cloud of each resized ASI image in
the training set and test set using the software LabelMe, cre-
ating the ground truth of the data set. We first open the im-
age to be labeled in the software LabelMe. Second, we label
the cloud pixels with multiple closed curves to ensure that
the cloud pixels are inside the curve and the sky background
is outside the curve. We then set the labeled cloud pixel to
blue and the unlabeled sky background to black. A json file
is generated after labeling. Finally, we convert the json file
into a labeled image. Figure 2 shows eight diurnal and noc-
turnal resized RGB color space ASI images in the data set
and the corresponding ground truth of the eight diurnal and

Figure 2. Diurnal and nocturnal original RGB color ASI images in
the data set and the corresponding ground truth of the ASI images.
(a) Diurnal original RGB color ASI images in the data set, (b) cor-
responding ground truth ASI images from (a), (c) nocturnal origi-
nal RGB color ASI images in the data set, and (d) corresponding
ground truth of ASI images from (c).

nocturnal resized ASI images. Figure 2a shows the diurnal
resized ASI images in the data set, and their corresponding
ground truth is shown in Fig. 2b. Figure 2c denotes the noc-
turnal resized ASI images in the data set. Figure 2d presents
the corresponding ground truth of the nocturnal resized ASI
images from Fig. 2c. In Fig. 2b and c, white pixels indicate
the cloud and black pixels indicate the sky background. The
device used for training is a server equipped with a NVIDIA
GeForce GTX 1080ti×2 with 11×2 GB memory. The deep-
learning framework used in the experiments is TensorFlow,
and the software programming environment is Python 3.5.

3 Automatic cloud segmentation algorithm

This section describes the proposed EFCN, which utilizes the
deep-learning algorithm FCN to segment cloud pixels from
diurnal and nocturnal ASI images. Firstly, we sketch the pro-
posed EFCN, and then the details of the EFCN are described.
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Figure 3. Basic components of FCN model including convolu-
tional layers, pooling layers, activation functions, and deconvolu-
tional layers.

3.1 Sketch on EFCN for ASI image segmentation

The proposed EFCN is an improvement of FCN. Firstly, the
resized ASI images in the data set are converted from the
RGB color space to the HSI color space (RGB–HSI). Sec-
ondly, the I channel is separated from HSI color space. The I
channel is then equalized by histogram equalization in order
to enhance the intensity and maintain a constant saturation
and hue of the resized ASI images. Thirdly, the ASI images
in the data set are converted from the HSI color space back
to the RGB color space (HSI–RGB), and we use the training
set to train the EFCN model. The associated parameters are
obtained. Finally, the test set is input to the trained model to
segment cloud pixels in the ASI images and assess the per-
formance of the model. The different steps will be explained
in the following subsections.

3.2 EFCN

Fully convolutional networks are a powerful visual deep-
learning algorithm for semantic segmentation (Shelhamer et
al., 2017). By replacing the fully connected layers of tradi-
tional convolutional neural networks (CNNs) with convolu-
tional layers, the FCN reduces the number of network param-
eters, improves the segmentation speed, and shows a good
result on semantic segmentation through training end to end
and pixel to pixel (Cheng and Lin, 2017). The basic compo-
nents of FCN include convolutional layers, pooling layers,
activation functions, and deconvolutional layers, as shown in
Fig. 3. At present, FCNs are widely used in medical image
processing, remote sensing image processing, computer vi-
sion, and other fields (Yuan et al., 2017; Jiao et al., 2017;
Lopez-Linares et al., 2018; Zeng and Zhu, 2018).

However, the FCN has some disadvantages in segmenting
cloud pixels in diurnal and nocturnal ASI images. Therefore,
the EFCN is proposed based on the VGG-16 network to re-
place the fully connected layer of VGG-16 with a convolu-
tional layer and outputs an up-sampled prediction. Enhance-
ment fully convolutional networks can accept input diurnal
and nocturnal ASI images in any size, producing a predic-
tion for each pixel, with the output of the prediction being the

same size as the input ASI image. Unlike CNN, the EFCN
can classify ASI images at the pixel level. Figure 4 illus-
trates the detailed architecture of the EFCN model, including
the RGB–HSI layer, histogram equalization layer, HSI–RGB
layer, convolutional layers, pooling layers, deconvolutional
layers, skip architecture, and activation functions.

Images from an all-sky imager are usually not very clear
due to complex weather conditions, especially at night. We
need to use an image enhancement method to process the ASI
images for better features and visual effects. Using histogram
equalization to equalize any channel of the RGB color space
can cause a change in the hue and saturation of ASI images.
However, the ASI images are enhanced in the I channel of
HSI color space, and the hue and saturation channels remain
constant. We convert the ASI images from the RGB to HSI
color space and use histogram equalization to equalize the
I channel of the HSI color space. Then the images are con-
verted from the HSI back to RGB color space to obtain the
enhanced images. This method is stable and fast. The EFCN
model in Fig. 4 has eight convolutional layers. The num-
ber of convolution kernels is different for each convolutional
layer. We define the size and stride of the convolutional ker-
nel. Each convolutional kernel has the same size and stride.
The size is 3× 3 and the stride is 1. The role of the convolu-
tional layer is to extract features from images, and different
convolutional layers can extract different features. In order
to ensure that the size of the feature map after convolution
is consistent with the size before convolution, we use a zero
pad operation. The convolution calculation formula can be
expressed as follows:
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where l represents the number of layers in the neural net-
work, v represents feature maps, n represents convolutional
kernels, bC represents the bias of output feature maps, Nv

represents the collection of input feature maps, and f repre-
sents an activation function. This paper adopts the rectified
linear unit (ReLU) as an activation function. The ReLU acti-
vation function is defined as follows:

f
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where l represents the number of layers in the neural net-
work, and v represents feature maps. A pooling operation is
a down-sampling process. The pooling layer is located after
the convolution layer, which can further extract features, re-
duce the size of the feature maps, speed up calculations, and
prevent overfitting. This paper uses the max-pooling method.
Through the max-pooling operation, the size of the feature
maps is reduced by half. After eight convolution operations
and five pooling operations as shown in Fig. 4, the resolu-
tion of the input ASI image is reduced by 2, 4, 8, 16, and
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Figure 4. Detailed architecture of EFCN model including RGB–HSI layer, histogram equalization layer, HSI–RGB layer, convolutional
layers, pooling layers, deconvolutional layers, skip connection, and activation functions.

32 times. Meanwhile, we get two heat maps as shown in
map6 in Fig. 4. Heat maps are one of the most important
high-dimensional feature maps. Our goal is to separate the
cloud from the sky background, so we need to get two heat
maps. Following that, a very important step is to up-sample
the heat maps so that the two heat maps in map6 are enlarged
to the same size as the input ASI image.

We use a deconvolution operation to up-sample the two
heat maps in map6 that are output from the last convolutional
layer, enlarge them by 32 times, and return them to the same
size as the input ASI image, while retaining the spatial infor-
mation in the original input image so that we can generate
and predict each pixel. Finally, we use the argmax1 function
to classify each pixel. The pixel classification is determined
by the maximum value of the corresponding pixel positions
of the two heat maps in map7. We get the 32 up-sample
prediction and refer to this model as EFCN-32s. However,
EFCN-32s is too rough to restore the features in the input
image well. The segmentation result is not very accurate, and
some details cannot be restored. Therefore, we propose a skip
connection structure. The heat maps in map6 are up-sampled
by a factor of 2 through the deconv2 layer and then integrated
with the feature maps in map4. The integrated feature maps
are up-sampled by a factor of 16 through the deconv3 layer
to obtain the feature maps of the same size as the input ASI
image. We get the 16 up-sample prediction after the argmax2
function and refer to this model as EFCN-16s. The integrated
feature maps are up-sampled by a factor of 2 through the
deconv4 layer and then integrated with the feature maps in
map3. The second integrated feature maps are up-sampled
by a factor of 8 through the deconv5 layer to obtain feature

maps of the same size as the input ASI image. We get the 8
up-sample prediction after the argmax3 function and refer to
this model as EFCN-8s.

Table 1 summarizes the parameters of the proposed EFCN,
which are shown in Fig. 4. Here “HE” represents histogram
equalization, “conv” represents the convolution operation,
“pool” represents the max-pooling operation, and “deconv”
represents the deconvolution operation. The up-sampled pre-
diction is the same size as the input ASI image.

The complete proposed automatic cloud segmentation
based on EFCN-8s is summarized as follows in Algorithm 1.

We illustrate the framework of the proposed automatic
cloud segmentation algorithm based on EFCN-8s in Fig. 5.
Figure 5a presents the input test ASI image of the EFCN-8s
model captured in daytime, which is enhanced by the method
of histogram equalization as shown in Fig. 5b. Figure 5c
presents the cloud segmentation result using the trained
EFCN-8s model. Figure 5d presents the input test ASI image
of the EFCN-8s model captured at night, which is enhanced
by the method of histogram equalization as shown in Fig. 5e.
Figure 5f presents the cloud segmentation result using the
trained EFCN-8s model.

4 Experimental results

We design three sets of experiments to segment the cloud
pixels from the resized diurnal and nocturnal ASI images and
analyze the experimental results in detail based on four eval-
uation metrics.
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Figure 5. Framework of the complete proposed automatic cloud segmentation based on EFCN-8s. (a) Original diurnal ASI image from
the test set, which is the input test image of the EFCN-8s. (b) Enhanced diurnal ASI image using the histogram equalization, (c) diurnal
cloud segmentation result using the trained EFCN-8s, (d) original nocturnal ASI image from the test set, which is the input test image of the
EFCN-8s, (e) enhanced nocturnal ASI image using the histogram equalization, and (f) nocturnal cloud segmentation result using the trained
EFCN-8s.

4.1 Experiments

We randomly select 1124 ASI images as our data set, includ-
ing 369 diurnal ASI images and 755 nocturnal ASI images.
We use the software LabelMe to label these ASI images. The
1054 ASI images and the corresponding labels are randomly
selected as the training set, including 343 diurnal images and
711 nocturnal images. Another 70 ASI images and corre-
sponding labels are used as a test set, including 26 diurnal
ASI images and 44 nocturnal ASI images. The training set is
iteratively trained on the EFCN-8s model, which is iterated
100 000 times, and the best model parameters are obtained.
The data from the test set are used to verify the robustness
and accuracy of EFCN-8s. We design three sets of experi-
ments to segment cloud pixels from the ASI images. In the
first set of experiments, the cloud pixels are segmented in
the diurnal ASI images. In the second set of experiments, the
cloud pixels are segmented in the nocturnal ASI images. In
the third set of experiments, the cloud pixels are segmented
in the diurnal and nocturnal ASI images.

In the first set of experiments, we used the proposed
EFCN-8s, EFCN-16s, EFCN-32s, FCN-8s, and OTSU algo-
rithms to segment cloud pixels in the diurnal ASI images.
The OTSU algorithm is a classic automatic threshold selec-
tion algorithm for image segmentation without parameters
or supervision (Otsu, 1979). This algorithm is one of the
most commonly used image segmentation algorithms with a

discriminant to determine the optimal threshold without any
prior information. The cloud segmentation results are shown
in Fig. 6. Figure 6a presents the resized diurnal ASI images,
and Fig. 6b shows the enhanced diurnal ASI images. Fig-
ure 6c denotes the ground truth of the corresponding ASI im-
ages. The results of cloud segmentation by OTSU, FCN-8s,
EFCN-32s, EFCN-16s, and EFCN-8s are shown in Fig. 6d–
h, respectively.

As shown in Fig. 6, the OTSU has good cloud segmen-
tation accuracy under a clear-sky background without sun-
light. However, the segmentation accuracy is poor when sun-
light is visible in the images or the brightness of the im-
ages is low. For the EFCN-32s, the recognition accuracy is
improved compared with the OTSU algorithm. The EFCN-
16s segments cloud better than EFCN-32s, but the details
of cloud are not recognized. In addition to the diurnal ASI
images with visible sun, the segmentation performance of
the FCN-8s is usually good. The recognition accuracy of the
EFCN-8s is very good for almost all the diurnal ASI images.
The details of the cloud can be identified without the influ-
ence of sunlight.

In the second set of experiments, we used the proposed
EFCN-8s to segment cloud pixels in the nocturnal ASI im-
ages and compared the result with the EFCN-16s, EFCN-32s,
FCN-8s, and OTSU algorithms. The different experimental
segmentation results are shown in Fig. 7. Figure 7a presents
the resized nocturnal ASI images, and Fig. 7b shows the en-
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Figure 6. Results of different cloud segmentation algorithms.
(a) Original diurnal ASI images, (b) enhanced diurnal ASI images,
(c) ground truth of the corresponding ASI images in (a), (d) results
of OTSU, (e) results of EFCN-32s, (f) results of EFCN-16s, (g) re-
sults of FCN-8s, and (h) results of the proposed EFCN-8s.

Table 1. Detailed parameters of the proposed EFCN-8s for seg-
menting cloud pixels from ASI images.

Name Kernel Stride Pad Output size

Input image – – – 1408× 1408× 3
RGB–HSI – – – 1408× 1408× 3
HE – – – 1408× 1408× 3
HSI–RGB – – – 1408× 1408× 3
conv1-1 3× 3 1 Yes 1408× 1408× 64
conv1-2 3× 3 1 Yes 1408× 1408× 64
pool1 2× 2 2 No 704× 704× 64
conv2-1 3× 3 1 Yes 704× 704× 128
conv2-2 3× 3 1 Yes 704× 704× 128
pool2 2× 2 2 No 352× 352× 128
conv3-1 3× 3 1 Yes 352× 352× 256
conv3-2 3× 3 1 Yes 352× 352× 256
conv3-3 3× 3 1 Yes 352× 352× 256
pool3 2× 2 2 No 176× 176× 256
conv4-1 3× 3 1 Yes 176× 176× 512
conv4-2 3× 3 1 Yes 176× 176× 512
conv4-3 3× 3 1 Yes 176× 176× 512
pool4 2× 2 2 No 88× 88× 512
conv5-1 3× 3 1 Yes 88× 88× 512
conv5-2 3× 3 1 Yes 88× 88× 512
conv5-3 3× 3 1 Yes 88× 88× 512
pool5 2× 2 2 No 44× 44× 512
conv6 3× 3 1 Yes 44× 44× 4096
conv7 3× 3 1 Yes 44× 44× 4096
conv8 3× 3 1 Yes 44× 44× 2
deconv1 3× 3 32 Yes 1408× 1408× 2
deconv2 3× 3 2 Yes 704× 704× 2
deconv3 3× 3 16 Yes 1408× 1408× 2
deconv4 3× 3 2 Yes 352× 352× 2
deconv5 3× 3 8 Yes 1408× 1408× 2
argmax1 (FCN-32s) – – No 1408× 1408× 1
argmax2 (FCN-16s) – – No 1408× 1408× 1
argmax3 (FCN-8s) – – No 1408× 1408× 1

hanced nocturnal ASI images. Figure 7c denotes the ground
truth of the corresponding ASI images. The different results
of cloud segmentation are shown in Fig. 7d–h.

As shown in Fig. 7, the proposed EFCN-8s shows the best
segmentation results. The results of EFCN-32s, EFCN-16s,
and FCN-8s are better, and the segmentation results are close.
However, the details of cloud are not recognized. The exper-
imental results using OTSU are very poor. Most of the sky
background pixels are mistakenly segmented into cloud pix-
els.

In the third set of experiments, the cloud pixels in the diur-
nal and nocturnal ASI images are segmented simultaneously.
The segmentation results of the proposed EFCN-8s and the
other four algorithms are shown in Fig. 8. Figure 8a presents
the diurnal ASI image, the ground truth of the correspond-
ing ASI image, and the segmentation results of the proposed
EFCN-8s and the other four algorithms. Figure 8b presents
the nocturnal ASI image, the ground truth of the correspond-
ing ASI image, and the segmentation results of the proposed
EFCN-8s and the other four algorithms. As shown in Fig. 8,

www.atmos-meas-tech.net/12/4713/2019/ Atmos. Meas. Tech., 12, 4713–4724, 2019
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Figure 7. Results of different cloud segmentation algorithms.
(a) Original nocturnal ASI images, (b) enhanced nocturnal ASI
images, (c) ground truth of the corresponding ASI images in (a),
(d) results of OTSU, (e) results of EFCN-32s, (f) results of EFCN-
16s, (g) results of FCN-8s, and (h) results of the proposed EFCN-8s.

Table 2. Comparison of cloud segmentation results of different al-
gorithms on diurnal ASI images. The enhanced performance values
are highlighted in bold font.

Algorithms Pixel acc Mean acc Mean IU fw IU

OTSU 0.7751 0.8041 0.6235 0.3448
FCN-8s 0.9086 0.8914 0.7800 0.4239
EFCN-32s 0.9226 0.8859 0.8048 0.4308
EFCN-16s 0.9229 0.8870 0.8049 0.4309
EFCN-8s 0.9424 0.9120 0.8481 0.4467

consistent with the results obtained in experiment 1 and ex-
periment 2, the proposed EFCN-8s has the best segmentation
results, which verifies that the proposed algorithm is robust.

4.2 Evaluation metrics

In order to better evaluate the results of the experiments, we
adopt four effective evaluation metrics to analyze the exper-
imental results, which covered pixel accuracy and region in-
tersection over union (IU) (Shelhamer et al., 2017). The four
effective evaluation metrics, including pixel accuracy (pixel
acc), mean accuracy (mean acc), mean IU, and frequency-
weighted IU (fw IU), are defined as follows.

pixel acc=
∑k

i=1pii∑k
i=1
∑k

j=1pij

(3)

meanacc=
1
k

∑k

i=1

pii∑k
j=1pij

(4)

mean IU=
1
k

∑k

i=1

pii∑k
j=1pij +

∑k
j=1pji −pii

(5)

fwIU=
1∑k

i=1
∑k

j=1pij

∑k

i=1

pii∑k
j=1pij +

∑k
j=1pji −pii

(6)

Pixel accuracy (pixel acc), mean accuracy (mean acc),
frequency-weighted IU (fw IU), mean IU, and k indicate that
each ASI image in the test set can be segmented into the k

class, including clouds and sky background; pij represents
the number of pixels of class i predicted to class j . Among
the above four metrics, mean IU is the most commonly used
metric because it is simple and representative.

4.3 Experimental results comparison

To better demonstrate the performance of the proposed
EFCN-8s, we adopt four evaluation metrics defined in the
previous section to compare the segmentation results with
other algorithms including OTSU, FCN-8s, EFCN-32s, and
EFCN-16s.

Table 2 lists the performance of different algorithms on the
cloud segmentation of diurnal ASI images in the first set of
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Figure 8. Results of different diurnal and nocturnal cloud segmentation algorithms. (a) Results of different diurnal cloud segmentation
algorithms. (b) Results of different nocturnal cloud segmentation algorithms. (a1) Original diurnal ASI image, (a2) ground truth of the
corresponding ASI image in (a1), (b1) original nocturnal ASI image, (b2) ground truth of the corresponding ASI image in (b1), (a3),
(b3) results of OTSU, (a4), (b4) results of EFCN-32s, (a5), (b5) results of EFCN-16s, (a6), (b6) results of FCN-8s, and (a7), (b7) results of
the proposed EFCN-8s.

Table 3. Comparison of cloud segmentation results of different al-
gorithms on nocturnal ASI images. The enhanced performance val-
ues are highlighted in bold font.

Algorithms Pixel acc Mean acc Mean IU fw IU

OTSU 0.6290 0.6546 0.4868 0.2585
FCN-8s 0.9379 0.9118 0.8578 0.4430
EFCN-32s 0.9414 0.9243 0.8679 0.4465
EFCN-16s 0.9437 0.9311 0.8773 0.4493
EFCN-8s 0.9504 0.9335 0.8849 0.4541

experiments. From Table 2, we have the following observa-
tions. Firstly, the mean IU in the traditional OTSU result is
0.6235. The mean IU of the deep-learning algorithm FCN-8s
is raised by 0.1565 to 0.7800. The EFCN-32s based on VGG-
16 increased the mean IU by 0.8048. The EFCN-16s adds the
skip connection structure that integrates the features of map6
and map5, resulting in a mean IU of 0.8049. The proposed
EFCN-8s integrates the features of map6, map5, and map4,
achieving a significant improvement to a mean IU of 0.8481.
Secondly, the skip connection structure and image enhance-
ment can improve the accuracy of segmentation. Moreover,
we find that the proposed algorithm works better for diurnal
ASI image segmentation.

Table 3 lists the performance of different algorithms on the
cloud segmentation of nocturnal ASI images in the second
set of experiments. For nocturnal ASI images, the proposed
EFCN-8s demonstrates strong advantages. When compared
with other algorithms, it shows an increase of 0.1673 in pixel
acc compared with OTSU, an increase of 0.0206 in mean acc
compared with FCN-8s, an increase of 0.0433 in mean IU
compared with EFCN-32s, and an increase of 0.0158 in fw
IU compared with EFCN-16s.

Comparing Tables 2 and 3, we can get the following obser-
vations. Firstly, the traditional threshold algorithm OTSU has
a better segmentation result on diurnal ASI images than noc-
turnal ASI images. Secondly, the deep-learning algorithms

Table 4. Comparison of cloud segmentation results of different al-
gorithms on diurnal and nocturnal ASI images. The enhanced per-
formance values are highlighted in bold font.

Algorithms Pixel acc Mean acc Mean IU fw IU

OTSU 0.7021 0.7294 0.5552 0.3017
FCN-8s 0.9234 0.9017 0.8224 0.4329
EFCN-32s 0.9284 0.9025 0.8365 0.4369
EFCN-16s 0.9308 0.8993 0.8327 0.4373
EFCN-8s 0.9459 0.9251 0.8686 0.4501

FCN-8s, EFCN-32s, EFCN-16s, and EFCN-8s can extract
the deep features of the ASI images and integrate multiple
features. At the same time, due to the influence of sunlight,
the nocturnal ASI image segmentation results are better than
the diurnal ASI images.

Table 4 lists the performance of different algorithms on
the cloud segmentation of diurnal and nocturnal ASI images
in the third set of experiments. Table 4 shows that the re-
sults obtained in the third set of experiments are consistent
with the first and second set of experiments. The proposed
EFCN-8s has the best segmentation results compared with
the other four algorithms (OTSU, FCN-8s, EFCN-32s, and
EFCN-16s). The mean IU of the proposed EFCN-8s in ex-
periment 3 increases by 0.0205 compared with experiment 1
and decreases by 0.0163 compared with experiment 2. This
result verifies that the proposed EFCN-8s is robust.

5 Conclusions

Cloud segmentation is a huge challenge for astronomical re-
searchers today. This paper proposed a new automatic cloud
segmentation algorithm, EFCN-8s, to segment cloud pixels
from diurnal and nocturnal ASI images. The cloud images
were taken by the ASI provided by the Key Laboratory of
Optical Astronomy at the National Astronomical Observato-
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ries of CAS. We used the software LabelMe to semantically
label the ASI images and created the ground truth. The pro-
posed EFCN-8s was based on the VGG-16 net. Histogram
equalization enhances the intensity of the images, and the
skip connection integrated the different features of the image
together. The two operations, including histogram equaliza-
tion and the skip connection, were applied to increase the
segmentation performance.

To verify the performance of the proposed algorithm, we
designed three sets of experiments. In the first set of exper-
iments, the proposed EFCN-8s was used to segment the di-
urnal ASI images. It reduced the influence of the sun and
a good segmentation result was obtained on the test set. In
the second set of experiments, the EFCN-8s extracted multi-
dimensional features for nighttime ASI images and also had
good segmentation results. In the third set of experiments, the
cloud pixels in the diurnal and nocturnal ASI images were
segmented simultaneously. The results were consistent with
the first and second set of experiments, which verified that
the proposed EFCN-8s was robust. After that, the EFCN-8s
was compared with four other algorithms including OUSU,
FCN-8s, EFCN-32s, and EFCN-16s. To better verify the per-
formance, we adopted four evaluation metrics to measure the
segmentation results. The results show that the EFCN-8s is
much more accurate at cloud segmentation for diurnal and
nocturnal ASI images than the other four algorithms.

It should be noted that the EFCN-8s still has some lim-
itations. Firstly, it can be seen from Tables 1 and 2 that the
EFCN-8s is better than diurnal ASI images for nocturnal ASI
image segmentation. This may be due to interference from
the sun. Secondly, since the ground truth of the data set is
manually labeled by us, it has some errors for the true values
of cloud. In future work, we will remove the interference of
the sun first and use a more advanced approach to label the
data sets.
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