

Supplement of

Addition of fast gas chromatography to selected ion flow tube mass spectrometry for analysis of individual monoterpenes in mixtures

Michal Lacko et al.

Correspondence to: Michal Lacko (michal.lacko@jh-inst.cas.cz)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

	H ₃ O ⁺			NO^+			O 2 ^{+.}		
	k	m/z	Products (b.r.)	k	m/z	Products (b.r.)	k	m/z	Products (b.r.)
α-pinene	2.3ª,	81	C ₆ H ₉ ⁺ (30 ^a , 39 ^b),	2.0ª,	92	$C_7H_8^+$ (16 ^b),	2.0ª,	92	C7H8 ⁺ (18 ^a , 22 ^b),
-	2.4 ^{a*}	137	$C_{10}H_{17}^+$ (67 ^a , 61 ^b)	2.0 ^{a*} ,	136	$C_{10}H_{16}^+$ (85 ^a , 77 ^b)	1.9 ^{a*} ,	93	C7H9 ⁺ (52 ^a , 56 ^b),
				2.3 ^b			2.1 ^b	121	$C_9H_{13^+}(12^a, 12^b)$
β-pinene	2.4ª,	81	C ₆ H ₉ ⁺ (33 ^a , 40 ^b),	2.1ª,	136	$C_{10}H_{16}^+$ (93 ^a , 89 ^b)	2.1ª,	93	C7H9 ⁺ (56 ^a , 19 ^b),
	2.6 ^{a*}	137	$C_{10}H_{17}^+$ (64 ^a , 60 ^b)	2.2 ^{a*} ,			2.1 ^{a*} ,	121	$C_9H_{13}^+$ (49 ^b),
				2.1 ^b			2.0 ^b	136	$C_{10}H_{16}^+$ (11 ^a)
R-limonene	2.6ª,	81	C ₆ H ₉ ⁺ (22 ^a , 29 ^b),	2.2ª,	136	$C_{10}H_{16}^+$ (91 ^a , 89 ^b)	2.2ª,	68	$C_5H_8^+$ (10 ^b),
	2.6^{a^*}	137	C ₁₀ H ₁₇ ⁺ (73 ^a , 68 ^b)	2.2 ^{a*} ,			2.1ª*,	92	C7H8 ⁺ (10 ^b),
				2.2 ^b			2.2 ^b	93	C ₇ H ₉ ⁺ (26 ^a , 30 ^b),
								94	C7H10 ⁺ (11 ^a , 12 ^b),
								107	$C_8H_{11}^+$ (11 ^b),
								121	$C_9H_{13}^+$ (14 ^a , 13 ^b),
								136	$C_{10}H_{16^+}(11^a, 11^b)$
3-carene	2.3ª,	81	C ₆ H ₉ ⁺ (19 ^a , 24 ^b),	2.1ª,	136	$C_{10}H_{16}^+$ (86 ^a , 81 ^b)	2.0ª,	92	$C_7H_8^+$ (11 ^b),
	2.4^{a^*}	137	$C_{10}H_{17^+}$ (78 ^a , 76 ^b)	2.0 ^{a*} ,			2.0 ^{a*} ,	93	C7H9 ⁺ (41 ^a , 45 ^b),
				2.2 ^b			1.9 ^b	121	$C_9H_{13^+}$ (20 ^a , 20 ^b),
								136	$C_{10}H_{16}^{+}(14^{a})$
myrcene	2.6ª,	81	$C_6H_{9^+}$ (26 ^a , 30 ^b),	2.3ª,	92	$C_7H_{8^+}(11^b),$	2.2ª,	69	$C_5H_{9^+}(10^b),$
	$2.7^{a^{*}}$	137	$C_{10}H_{17^+}$ (59 ^a , 58 ^b)	2.2 ^{a*} ,	93	C7H9 ⁺ (22 ^a , 34 ^b),	2.2 ^{a*} ,	92	C7H8 ⁺ (70 ^b),
				2.2 ^b	136	$C_{10}H_{16}^+$ (61 ^a , 55 ^b)	2.2 ^b	93	$C_7H_{9^+}(61^a)$
camphene	2.4ª,	81	$C_6H_{9^+}(14^b),$	2.1ª,	136	$C_{10}H_{16}^+$ (87 ^a , 79 ^b),	2.0ª,	93	C7H9 ⁺ (13 ^a , 19 ^b),
	2.6^{a^*}	137	$C_{10}H_{17}^+$ (88 ^a , 86 ^b)	2.1ª*,	166	$NO^+C_{10}H_{16}(11^b)$	2.1ª*,	107	$C_8H_{11}^+$ (10 ^b),
				2.3 ^b			2.2 ^b	121	$C_9H_{13^+}$ (44 ^a , 49 ^b)
α-terpinene		81	$C_6H_{9^+}(10^b),$	2.0 ^b	136	$C_{10}H_{16}^+$ (87 ^a , 99 ^b),	2.0^{b}	93	C7H9 ⁺ (16 ^b),
		137	$C_{10}H_{17}^+$ (87 ^b)					121	$C_9H_{13}^+$ (42 ^b),
								136	$C_{10}H_{16^+}(33^b)$
γ-terpinene		81	$C_6H_{9^+}(17^b),$	2.1 ^b	135	$C_{10}H_{15}^+$ (18 ^b),	1.9 ^b	92	$C_7H_8^+$ (12 ^b),
		137	$C_{10}H_{17}^+$ (81 ^b)		136	$C_{10}H_{16}^+$ (87 ^a , 75 ^b),		93	$C_7H_{9^+}$ (46 ^b),
								121	C9H13 ⁺ (21 ^b),
								136	$C_{10}H_{16}^{+}(14^{b})$

Table S1: Summary of reaction rate constants and branching ratios of investigated monoterpenes. All presented rate constants have units of 10⁻⁹ cm³s⁻¹. Only significant products are given, for witch branching ratios are at least 10%.

^a (Schoon et al., 2003); ^b (Wang et al., 2003); ^c Present result based on SIFT-MS measurements; ^d Present result based on fastGC-SIFT-MS measurements; * theoretical data based on the method of Su and Chesnavitch (Su and Chesnavich, 1982); b.r. stands for branching ratio; Dimension of rate constants is 10⁻⁹cm³s⁻¹.

Figure S1: Chromatograms of a monoterpene mixture analysed by the MXT-1 column for different profiles of the heating voltage. Profiles were analysed by SIFT-MS using the H_3O^+ reagent ion.

Figure S2: Chromatograms of individual monoterpenes analysed using the MXT-1 column at a constant temperature of column ~40 °C. The profile is associated with the profile shown in the bottom of Figure S1. Profiles were analysed by SIFT-MS using the H_3O^+ reagent ion. Intensity of α -pinene was reduced.

Figure S3: SIFT-MS spectra of coniferous samples analysed by H_3O^+ reagent ions. The marked ions with m/z 81 and m/z 137 were used for analysis of monoterpenes.

Figure S4: Chromatograms of a monoterpene mixture analysed by the MXT- Volatiles column for different heating voltages. Profiles were analysed by SIFT-MS using the H_3O^+ reagent ion.

Figure S5: Sample no. 1 (Pincea punges)

Figure S6: Sample no. 2 (Abies concolor)

Figure S7: Sample no. 3 (Pinus nigra)

References

Schoon, N., Amelynck, C., Vereecken, L., and Arijs, E.: A selected ion flow tube study of the reactions of H_3O^+ , NO^+ and O_2^+ with a series of monoterpenes, International Journal of Mass Spectrometry, 229, 231-240, 2003. Su, T., and Chesnavich, W. J.: Parametrization of the ion–polar molecule collision rate constant by trajectory calculations, The Journal of Chemical Physics, 76, 5183-5185, 1982.

Wang, T., Španěl, P., and Smith, D.: Selected ion flow tube, SIFT, studies of the reactions of H_3O^+ , NO^+ and O_2^+ with eleven $C_{10}H_{16}$ monoterpenes, Int. J. Mass Spec., 228, 117-126, 2003.