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Abstract. Total column water vapor (TCWV) is important
for the weather and climate. TCWV is derived from the
Ozone Monitoring Instrument (OMI) visible spectra using
the version 4.0 retrieval algorithm developed at the Smith-
sonian Astrophysical Observatory. The algorithm uses a re-
trieval window between 432.0 and 466.5 nm and includes
updates to reference spectra and water vapor profiles. The
retrieval window optimization results from the trade-offs
among competing factors.

The OMI product is characterized by comparing against
commonly used reference datasets – global positioning sys-
tem (GPS) network data over land and Special Sensor Mi-
crowave Imager/Sounder (SSMIS) data over the oceans. We
examine how cloud fraction and cloud-top pressure affect
the comparisons. The results lead us to recommend filtering
OMI data with a cloud fraction less than f = 0.05–0.25 and
cloud-top pressure greater than 750 mb (or stricter), in addi-
tion to the data quality flag, fitting root mean square (RMS)
and TCWV range check. Over land, for f = 0.05, the over-
all mean of OMI–GPS is 0.32 mm with a standard deviation
(σ ) of 5.2 mm; the smallest bias occurs when TCWV= 10–
20 mm, and the best regression line corresponds to f = 0.25.
Over the oceans, for f = 0.05, the overall mean of OMI–
SSMIS is 0.4 mm (1.1 mm) with σ = 6.5 mm (6.8 mm) for
January (July); the smallest bias occurs when TCWV= 20–
30 mm, and the best regression line corresponds to f = 0.15.
For both land and the oceans, the difference between OMI
and the reference datasets is relatively large when TCWV is
less than 10 mm. The bias for the version 4.0 OMI TCWV is
much smaller than that for version 3.0.

As test applications of the version 4.0 OMI TCWV over a
range of spatial and temporal scales, we find prominent sig-
nals of the patterns associated with El Niño and La Niña, the

high humidity associated with a corn sweat event, and the
strong moisture band of an atmospheric river (AR). A data
assimilation experiment demonstrates that the OMI data can
help improve the Weather Research and Forecasting (WRF)
model skill at simulating the structure and intensity of the
AR and the precipitation at the AR landfall.

1 Introduction

Water vapor is of profound importance for weather and cli-
mate. Through condensation, it forms clouds that modify
albedo, affect radiation and interact with particulate matter.
In addition, latent heat released from water vapor condensa-
tion can influence the atmospheric energy budget and circu-
lation. Water vapor is the most abundant greenhouse gas, ac-
counting for∼ 50 % of the greenhouse effect (Schmidt et al.,
2010). Thus, monitoring the spatial and temporal distribu-
tions of water vapor is crucial for understanding water-vapor-
related processes.

Water vapor has been measured using a variety of in situ
and remote sensing techniques from the ground, air and
space. Satellite data provide a global perspective and are in-
dispensable for constraining reanalysis products (Dee et al.,
2011; Gelaro et al., 2017). The current satellite water vapor
datasets are evaluated through the Global Energy and Water
cycle Exchanges (GEWEX) Water Vapor Assessment pro-
gram (Schröder et al., 2019). These datasets are derived from
visible, near-infrared (NIR), infrared (IR), microwave and
global positioning system (GPS) measurements. Each dataset
has its own characteristics and contributes to the understand-
ing of water vapor in its own way. For example, microwave
data are useful for both clear-sky and cloudy-sky conditions
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but are best suited for nonprecipitating ice-free oceans due
to the complications associated with land-surface emissivity;
NIR data are best suited for the land, as the surface albedo
is low over the oceans; IR data are available over all surface
types but are strongly influenced by clouds and less sensi-
tive to the planetary boundary layer; visible data are sensitive
to the boundary layer over both land and the oceans but are
complicated by uncertainties in clouds and aerosols (Wagner
et al., 2013).

Total column water vapor (TCWV, also called integrated
water vapor – IWV – or precipitable water vapor – PWV)
can be retrieved from the 7ν water vapor vibrational polyad
band (around 442 nm) despite the weak absorption (Wagner
et al., 2013). This made it possible to derive TCWV from
instruments measuring in the blue wavelength range. Since
water vapor is a weak absorber here, saturation of spectral
lines is not of concern (Noël et al., 1999). Moreover, the sim-
ilarity between the land and ocean surface albedo in the blue
wavelength range suggests a roughly uniform sensitivity of
the measurement over the globe (Wagner et al., 2013). How-
ever, weaker absorption tends to result in larger relative un-
certainties, especially for a low TCWV amount.

Using the visible spectra measured by the Ozone Monitor-
ing Instrument (OMI), Wang et al. (2014) retrieved version
1.0 TCWV from 430–480 nm and publicly released the data
on the Aura Validation Data Center (AVDC; https://avdc.
gsfc.nasa.gov, last access: 17 September 2019). Wang et
al. (2016) found that the version 1.0 data generally agree with
ground-based GPS data over land but are significantly lower
than the microwave observations over the oceans. They found
that using a narrower retrieval window (427.7–465 nm) in
version 2.1 could improve the data over the oceans without
adversely affecting the results over land much. However, the
version 2.1 data were only generated for a few test months
and not released to the public. An interim version 3.0 OMI
TCWV product was available at the AVDC. Compared with
version 2.1, version 3.0 uses the reference spectrum for water
vapor from the latest HITRAN database (Gordon et al., 2017)
and that for liquid water from Mason et al. (2016), as well as
the newest cloud product (Veefkind et al., 2016). The ver-
sion 3.0 retrieval window (427.0–467.0 nm) is adjusted from
that for version 2 within 2 nm on each end based on fitting
uncertainty for a randomly selected test orbit.

This paper focuses on version 4.0 OMI TCWV, which has
replaced version 3.0 at the AVDC. We present the version
4.0 retrieval algorithm, which incorporates a more vigorous
systematic optimization for the retrieval window and mis-
cellaneous updates. We characterize the performance of the
version 4.0 dataset by comparing with well-established ref-
erences, such as the GPS network data and Special Sensor
Microwave Imager/Sounder (SSMIS) observations. We also
assess the performance of version 4.0 against that of version
3.0. To provide a practical guide to users of the new data,
we investigate the influence of cloud fraction and cloud-top
pressure on the comparisons. Based on the results, data fil-

tering criteria are recommended. As an additional check on
the version 4.0 product, we show test applications of the data
to a range of spatial and temporal scales, including El Niño–
La Niña, a corn sweat event and an atmospheric river (AR)
event. For the first time, a data assimilation experiment for
the AR event demonstrates that the OMI TCWV data can
provide a useful constraint for weather prediction.

2 Retrieval algorithm

OMI, onboard the Aura spacecraft, is a UV–visible imaging
spectrometer (Levelt et al., 2006). It has been making daily
global observations at a nominal 13×24 km nadir resolution
from a 13:30 Equator crossing local time polar orbit since
October 2004. The UV–visible channel of OMI covers 350–
500 nm at a spectral resolution of about 0.5 nm.

TCWV is derived from the OMI visible spectrum us-
ing a two-step approach. First, the slant column density
(SCD; molecules cm−2) is retrieved from a spectral fit-
ting algorithm. Then, the vertical column density (VCD;
molecules cm−2) is calculated from the ratio of SCD and air
mass factor (AMF) (Palmer et al., 2001). VCD can be con-
verted to TCWV using 1023 molecules cm−2

= 29.89 mm.
The details of the two-step procedure can be found in
González Abad et al. (2015). The specifics of version 4.0 are
discussed below.

The version 4.0 spectral fitting parameters are summa-
rized in Table 1. In the nonlinear least-squares fitting, we
consider wavelength shift, under-sampling, closure polyno-
mials (3rd-order multiplicative and additive), reference spec-
troscopic spectra of water vapor, interfering molecules (O3,
NO2, O4, liquid water, C2H2O2 and IO) and Raman scatter-
ing (the Ring effect, vibrational Raman scattering of air and
the water Ring effect). In comparison with previous versions,
version 4.0 no longer fits the common mode (i.e., the mean
of the fitting residual; González Abad et al., 2015). It turns
out that the common mode for land is different than that for
ocean (Wang et al., 2014). Previous retrievals derive a com-
mon mode for each orbit swath using the pixels in the low
latitudes, which often includes both land and ocean scenes.
Thus, the derived common mode depends on the proportion
of land versus ocean pixels of the spacecraft orbit and is not
universally suitable for all the pixels of the swath. Statistics
for Orbit 10 423 show that although the mean SCD differs lit-
tle between the retrievals with and without the common mode
in the fitting (0.1 mm), the standard deviation of SCD be-
tween them can be significant (1.7 mm). Most of the settings
in Table 1 are shared between versions 3.0 and 4.0, except
that version 3.0 uses HITRAN 2016 (Gordon et al., 2017)
as the water vapor reference spectrum and includes a com-
mon mode in the fitting but does not consider the vibrational
Raman scattering of air (Lampel et al., 2015a). We revert to
the HITRAN 2008 water vapor spectrum (Rothman et al.,
2009) in version 4.0 because validation results show that it

Atmos. Meas. Tech., 12, 5183–5199, 2019 www.atmos-meas-tech.net/12/5183/2019/

https://avdc.gsfc.nasa.gov
https://avdc.gsfc.nasa.gov


H. Wang et al.: OMI TCWV version 4 5185

leads to better agreement with the GPS and SSMIS TCWV
data (Sect. 3). We did not apply the correction of Lampel et
al. (2015b) to the HITRAN 2008 water vapor spectrum. It
was recently found that HITRAN 2016 is adversely affected
by an issue with line broadening for water vapor in the blue
wavelength range, and improvements are being made for the
next HITRAN release (the HITRAN group, personal com-
munication, 28 June 2019).

To optimize the retrieval window, we randomly selected
OMI Orbit 10 426 (on 1 July 2006) to examine the effect
of varying the starting and ending wavelengths around the
7ν water vapor absorption band. The orbit swath contains
60× 1644 ground pixels and covers parts of Australia, the
Pacific, China and other areas. We systematically adjust the
starting wavelength within 426.0–435.0 nm and the ending
wavelength within 460.0–468.5 nm, both at 0.5 nm steps.

In previous versions, the fitting window is selected based
on the fitting uncertainty (Wang et al., 2014, 2016). For ver-
sion 4.0, we consider the following four factors. (1) Figure 1a
shows that the median of the fitting root mean square error
(RMS) is smaller toward the lower right corner of the domain
(i.e., longer start wavelength and shorter end wavelength).
(2) Figure 1b shows that the medium fitting uncertainty of
water vapor SCD decreases toward the upper left corner.
(3) Figure 1c shows that the fraction of valid retrievals for the
orbit generally increases toward the upper part of the domain.
Valid retrievals here refer to those that pass the main data
quality check (MDQFL= 0) and have positive SCDs. The
main data quality check ensures that the fitting has converged
and that the SCD is< 5×1023 molecules cm−2 (149.45 mm)
and within 2σ of the fitting uncertainty. The SCD thresh-
old here is meant to filter out large outliers. For reference,
the largest TCWV of the GPS and SSMIS datasets used in
Sect. 3 is about 75 mm. At low latitudes at which TCWV is
large, more than 90 % of the OMI AMFs are between 0.5 and
2.0. (4) The length of the retrieval window increases with the
difference between the end and start wavelengths. The gen-
eral patterns exhibited by Orbit 10 426 in Fig. 1 also hold for
Orbit 10 423, which cuts across the Pacific near the dateline.

Ideally, we would like to have a small fitting RMS to re-
duce the residual’s amplitude and structure, a small fitting
uncertainty to reduce error, a large fraction of valid data to
increase data volume and a long retrieval window to include
more information into the fitting. However, these criteria can-
not be met simultaneously. As a compromise, we select the
wavelength interval between 432.0 and 466.5 nm as the re-
trieval window for version 4.0. For Orbit 10 426, this leads
to a median fitting RMS of 8.1×10−4, a median SCD uncer-
tainty of 5.4 mm, a valid fraction of 0.75 and a window length
of 34.5 nm (Fig. 1). Figure 1d shows that the median SCD for
Orbit 10 426 varies between 34.6 and 37.6 mm. This 3 mm
difference corresponds to an 8 % variation and exhibits a
complex pattern within the domain. The version 4.0 retrieval
window leads to a median SCD of 35.5 mm for Orbit 10 426,
which is near the beginning of the middle third of the SCD

range. The ratio between the median SCD uncertainty and
the median SCD (i.e., the relative SCD uncertainty) is about
0.15. Note that this value is for the whole orbit, which in-
cludes a wide range of SCDs. As shown in Fig. S1 in the Sup-
plement, the relative SCD uncertainty is > 1.2 for SCD= 0–
10 mm; it drops to about 0.4 for SCD= 10–20 mm and to
about 0.1 for SCD > 40 mm.

The AMF is calculated by convolving scattering weights
with the shape of the water vapor vertical profile (González
Abad et al., 2015). The scattering weight is interpolated from
the same lookup table as that used in Wang et al. (2016). The
scene-specific information used in the AMF calculation is
listed in Table 2. By propagating typical errors for surface
albedo (15 %), cloud fraction (10 %) and cloud-top pressure
(15 %), we find that the AMF error due to scattering weight
for a typical orbit (Orbit 10 426) is mostly < 3 %, though
for cloudy pixels, the error can be 15 % or more. Version
4.0 uses the 0.5◦× 0.667◦ monthly mean MERRA-2 water
vapor profile (Gelaro et al., 2017) for the month and year
corresponding to the retrieval, while previous versions used
the monthly mean of 2007 for all years. To evaluate the er-
ror associated with gas profiles, we compare the TCWV cal-
culated using the daily MERRA-2 profile against that cal-
culated using the monthly MERRA-2 profile for July 2006
(for TCWV within the 0–75 mm range). Results show that
(TCWV(daily)–TCWV(monthly)) has a mean (median) of
0.3 mm (0 mm) with a standard deviation of 5.0 mm. When
comparing the TCWV calculated using the daily MERRA-2
profile against that calculated using the daily ERA-Interim
profile for July 2006, we find that (TCWV(MERRA-2)–
TCWV(ERA-Interim)) has a mean (median) of −0.1 mm
(0 mm) with a standard deviation of 2.8 mm. Thus, gas pro-
files can introduce substantial scatter to the retrieved TCWV.
AMF is highly sensitive to clouds (Wang et al., 2014;
Vasilkov et al., 2017). Version 4.0 uses the cloud informa-
tion from Veefkind et al. (2016). The primary difference with
the Acarreta et al. (2004) cloud product used in versions 1.0
and 2.1 is the cloud-top pressure for cloud fraction f < 0.3.
In addition to the factors in Table 2, the aerosol and surface
bidirectional reflectance distribution functions (BRDFs) in-
fluence the AMF (Lorente et al., 2017; Vasilkov et al., 2017)
but have not been considered in the retrieval yet.

3 Validation

To validate the version 4.0 OMI TCWV data, we compare
them against two commonly used reference datasets – a GPS
network dataset for land and a microwave dataset for the
oceans.

www.atmos-meas-tech.net/12/5183/2019/ Atmos. Meas. Tech., 12, 5183–5199, 2019



5186 H. Wang et al.: OMI TCWV version 4

Table 1. Parameters used in the version 4.0 spectral fitting for OMI total column water vapor.

Wavelength shift Solar reference spectrum Dobber et al. (2008)

Target H2O 288 K, Rothman et al. (2009)

Interference O3 228 K, Brion et al. (1993)
molecules NO2 220 K, Vandaele et al. (1998)

O4 293 K, Thalman and Volkamer (2013)
Liquid water Mason et al. (2016)
C2H2O2 296 K, Volkamer et al. (2005)
IO 298 K, Spietz et al. (2005)

Raman Ring effect Chance and Spurr (1997)
scattering Water Ring Chance and Spurr (1997)

Air vibrational Raman Lampel et al. (2015a)

Other Additive polynomial 3rd order
Multiplicative polynomial 3rd order
Under-sampling Chance et al. (2005)

Figure 1. Sensitivity of the retrieval to the start and end wavelengths (nm) of the retrieval window for OMI Orbit 10 426. (a) Median of
fitting RMS× 104; (b) median of water vapor SCD fitting uncertainty in millimeters; (c) valid fraction for retrievals; (d) median SCD in
millimeters.

3.1 OMI and GPS over land

To assess the version 4.0 OMI TCWV over land, we com-
pare against the GPS network data downloaded from NCAR
(Wang et al., 2007) (https://rda.ucar.edu/datasets/ds721.1/,
last access: 17 September 2019). The GPS data are composed
of 2-hourly TCWV at International GNSS Service (IGS),
SuomiNet and GEONET stations, and they have an estimated
error of< 1.5 mm (Wang et al., 2007; Ning et al., 2016). The

subset of IGS–SuomiNet data for the whole year of 2006 is
used in this paper. The geographical distribution of the sta-
tions can be found in Wang et al. (2016). Most of the stations
are concentrated in North America and Europe, and a few are
scattered on other continents.

OMI TCWV data are filtered using the following crite-
ria. The stripes in Level 2 swaths due to systematic in-
strument error are removed using the SCD scaling proce-
dure described in Wang et al. (2016). The pixels affected by
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Table 2. Parameters used in AMF calculation.

Solar zenith angle
OMI L1B dataView zenith angle

Relative azimuth angle

Surface albedo OMLER (Lambert equivalent
reflectance); Kleipool, et al. (2008)

Cloud fraction OMCLDO2 (derived from O2–O2);
Veefkind et al. (2016)

Cloud-top pressure

Surface pressure MERRA-2 monthly data (0.5◦× 0.667◦);
Gelaro et al. (2017)

Water vapor profile

OMI’s row anomaly are filtered out (http://projects.knmi.nl/
omi/research/product/rowanomaly-background.php, last ac-
cess: 17 September 2019), as are negative or extremely large
(i.e., TCWV> 75 mm) values. For the clear-sky comparison
in Fig. 3, we require cloud fraction < 5 % and cloud-top
pressure > 750 mb, in addition to MDQFL= 0 and fitting
RMS< 0.001. The cloud fraction and cloud-top pressure are
from the OMCLDO2 cloud product (Veefkind et al., 2016)
and are included in the Level 2 OMI product for ease of data
filtering. On a typical day (1 July 2006), among the OMI
data that pass the MDQFL and TCWV range test, cloud frac-
tion< 0.05 accounts for 35 % of the data, cloud-top pressure
> 750 mb accounts for 53 % of the data and RMS < 0.001
accounts for 72 % of the data.

To colocate GPS and OMI data, we select the GPS data
observed between 12:00 and 15:00 LT. This 3 h local time
range covers the OMI overpass time. We average the quali-
fied OMI data within 0.25◦ longitude× 0.25◦ latitude of the
GPS stations for each day. To minimize the influence of local
topography (e.g., mountain peaks, river valleys), if a station’s
elevation is more than 250 m different than the mean eleva-
tion within the corresponding 0.25◦×0.25◦ grid square, then
it is excluded from the analysis. The 0.25◦× 0.25◦ topog-
raphy was downloaded from http://www.temis.nl/data/topo/
dem2grid.html. The comparison between OMI and GPS is
made for TCWV within the range of 0–75 mm as the largest
TCWV for the GPS data is about 75 mm. The colocating pro-
cedure leads to about 11 000 colocated data points for the
entire year of 2006.

Figure 2 shows the comparison between the resulting colo-
cated GPS and version 4 OMI TCWV. Figure 2a shows the
histogram of OMI–GPS (in 0.5 mm bins). The bin from−0.5
to 0.0 mm corresponds to the peak of the distribution. The
overall mean (median) of OMI–GPS is 0.32 mm (0.35 mm),
with a standard deviation of 5.2 mm. The mean (median) ab-
solute error is 3.9 mm (3.0 mm).

Figure 2b shows the joint distribution of the colocated GPS
and version 4.0 OMI data. The count for each 0.5 mm bin
is normalized by the maximum of all bins. About 34 % of
the data have TCWV< 10 mm, 72 % have TCWV< 20 mm
and 90 % have TCWV< 30 mm. There is a general linear

correlation between GPS and OMI data, with a correla-
tion coefficient of r = 0.87 (R2

= 0.76). The linear regres-
sion line (OMI= 2.22+ 0.88×GPS, where OMI and GPS
TCWV are in millimeters) has a significant positive inter-
cept and a slope that is less than one. This indicates a pos-
itive bias of OMI against GPS for small TCWV and a neg-
ative bias for large TCWV. Indeed, as indicated at the top
of the panel, the mean of OMI–GPS for each 10 mm GPS
TCWV bin decreases from 1.7 mm for TCWV= 0–10 to
−2.3 mm for TCWV= 40–50 mm, though the fraction of
data for TCWV> 40 mm is < 3 %. The corresponding stan-
dard deviation (σ ) increases from 3.5 to 7.9 mm. The min-
imum bias of 0.2 mm occurs for TCWV in the 10–20 mm
bin. The large positive bias of the 0–10 mm bin (compared
with the TCWV of the bin) has a significant adverse effect
on the regression line. For TCWV> 10 mm, the regression
line (OMI= 1.51+ 0.91×GPS) is better.

In comparison, although version 3.0 OMI is similarly cor-
related with GPS (correlation coefficient r = 0.86), it has a
much larger positive bias of 2.8 mm (with a standard devi-
ation of 5.5 mm). The large bias is attributed to the much
larger SCD of version 3.0 (Fig. S2b), as the AMFs of both
versions roughly follow the 1 : 1 line (Fig. S2a). Sensitiv-
ity tests show that the larger version 3.0 SCD is primary
due to the water vapor reference spectrum. If the water va-
por reference spectrum in version 4.0 is replaced with that
of version 3.0 (Test 1), then the median SCD increases by
about 4.5 mm for Orbit 10 423 (Fig. S2c). Modifying the re-
trieval window for version 3.0 cannot sufficiently reduce the
retrieved SCD and therefore cannot create significantly bet-
ter agreement with the reference TCWV data. As version 4.0
shows a better performance, this paper focuses on character-
izing version 4.0 to provide useful information to potential
users. In subsequent discussions, OMI data refer to version
4.0 unless specified otherwise.

OMI TCWV retrieval is highly sensitive to clouds (Wang
et al., 2014). In Fig. 3, we examine the effect of OMI cloud
fraction threshold (f ) on the comparison while keeping other
data filtering criteria the same as those for Fig. 2 (i.e., cloud
fraction < f , cloud-top pressure > 750 mb, MDQFL= 0,
fitting RMS < 0.001 and 0<TCWV< 75 mm). From f =

0.05 to f = 0.55, the number of colocated data pairs (N )
more than triples, the mean of OMI–GPS increases from
0.32 to 1.66 mm and the standard deviation of OMI–GPS
increases from 5.2 to 6.1 mm. The linear correlation coef-
ficient (r) increases from r = 0.87 at f = 0.05 to r ∼ 0.90
at f = 0.15, then levels off for larger cloud fraction thresh-
olds. It should be noted that the error in cloud-top pres-
sure decreases with cloud fraction in the OMCLDO2 product
(Veefkind et al., 2016). As a result, f = 0.05 corresponds to
the largest uncertainty in cloud-top pressure, and the error
will propagate into OMI TCWV through AMF, leading to a
smaller correlation coefficient than those for larger f values.

In addition, as shown by the GPS versus OMI joint
distributions for different cloud fraction thresholds in
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Figure 2. Comparison between colocated GPS and OMI TCWV
(mm) for all days in 2006. The data filtering criteria include cloud
fraction < 5 %, cloud-top pressure > 750 mb and others discussed
in the text. (a) Relative frequency of occurrence for OMI–GPS
(mm). (b) Normalized joint distribution of GPS versus OMI TCWV
(mm). The three lines of text from top to bottom indicate the per-
centage of data points (first), the mean of OMI–GPS in millimeters
(second) and the standard deviation of OMI–GPS in millimeters
(third) for each 10 mm GPS TCWV, respectively. The 1 : 1 line is
plotted for reference.

Fig. 4, the f ≥ 0.15 cases have larger effective dynam-
ical ranges, which tend to favor better correlations. For
example, there is a larger fraction of data pairs with
TCWV> 30 mm for f = 0.15 than for f = 0.05. The
regression line for f = 0.15 (OMI= 1.26+ 0.96×GPS)
shows an apparent improvement over that for f = 0.05
(OMI= 2.22+ 0.88×GPS). The best regression line is ar-
guably that for f = 0.25 (OMI= 1.16+ 0.99×GPS) or f =
0.35 (OMI= 1.19+ 1.00×GPS), though the mean bias and
scatter are larger than those for f < 0.25 (Fig. 4).

In brief, f = 0.05 leads to the lowest overall bias and scat-
ter of the colocated data; f = 0.15 doubles the number of
colocated data pairs and leads to the largest improvement in
the correlation coefficient; f = 0.25 (or 0.35) leads to the
best linear regression line; the bias and standard deviation

increase with cloud fraction threshold. Hence, cloud fraction
thresholds in the range of f = 0.05–0.25 seem reasonable for
filtering OMI TCWV, depending on applications.

To further characterize the effect of cloud fraction thresh-
old on the comparison between GPS and OMI, in Fig. 5 we
examine the mean and standard deviation (σ ) of OMI–GPS
for each 10 mm GPS TCWV bin. The results are derived
from the same sets of colocated GPS and OMI data as those
used in Figs. 3 and 4. The filled symbols are for the cases in
which the number of GPS and OMI data pairs within the cor-
responding TCWV bin is > 1 % of the total number of data
pairs, and the open symbols are for< 1 %. As the filled sym-
bols represent better statistics, we will focus on them below.

Figure 5a shows that the means of OMI–GPS vary±4 mm,
following “V-shaped” curves whose minima occur in the
TCWV= 20–30 mm bin except for f = 0.05. The curves
shift upward with increasing cloud fraction thresholds, sug-
gesting that OMI cloudy-sky TCWV is generally larger
than OMI clear-sky TCWV. Other things being equal, cloud
formation indicates water vapor saturation and therefore a
larger amount of TCWV than under clear-sky conditions.
The smallest absolute bias for 10<TCWV< 20 mm oc-
curs at f = 0.05, that for 20<TCWV< 30 mm occurs at
f = 0.25 and that for 30<TCWV< 40 mm occurs at f =
0.15. The f = 0.15 and f = 0.25 curves show the best over-
all performance according to Fig. 5a as they are within
1 mm of zero for 10<TCWV< 40 mm, while other curves
come within 1 mm of zero in narrower TCWV ranges. Fig-
ure 5b shows the relative bias, which is defined as the mean
of (OMI–GPS) /GPS. The relative biases decrease sharply
from ∼ 40 % to ∼ 5 %, as GPS TCWV increases from the
TCWV= 0–10 mm bin to the TCWV= 10–20 mm bin, and
generally stay less than ∼ 5–10 % for larger TCWV val-
ues. Figure 5c shows that σ increases from ∼ 3.5 mm for
TCWV= 0–10 mm to ∼ 9.5 mm for TCWV= 40–50 mm
(the percentage of data with TCWV> 50 mm is very small).
In most cases, larger cloud fraction thresholds correspond to
larger σ values. This is consistent with the larger dynamical
range (due to a larger fraction of data with high TCWV) for
a larger cloud fraction threshold (Fig. 4). In fact, the relative
scatter, defined as the mean of σ /TCWV, shows little differ-
ence among the f values (Fig. 5d). The relative scatter de-
creases with TCWV, with the sharpest decrease from∼ 0.7 to
∼ 0.3 between TCWV= 0–10 mm and TCWV= 10–20 mm
(Fig. 5d). The relative scatter continues to decrease for larger
TCWV and the overall scatter is about 20 %.

In short, version 4.0 OMI agrees with GPS within
1 mm for 10<TCWV< 40 mm when f = 0.15 and f =

0.25 are used; when f = 0.05 is used, the bias and scat-
ter are the smallest for 10<TCWV< 20 mm; but, for
TCWV< 10 mm, OMI TCWV is too high and has large rel-
ative scatter. The latter is expected from the low signal-to-
noise ratio when TCWV< 10 mm in the OMI retrieval.
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Figure 3. Dependence of various parameters on the cloud fraction threshold (f ) used for filtering OMI data. Other filtering criteria remain
the same as those for Fig. 2. The parameters are (a) the number of colocated OMI and GPS data pairs; (b) the linear correlation coefficient
between OMI and GPS TCWV; (c) the mean of OMI–GPS in millimeters; and (d) the standard deviation of OMI–GPS in millimeters. Results
are derived from the colocated version 4.0 OMI and GPS data for the whole year of 2006.

3.2 OMI and SSMIS over ocean

To evaluate version 4.0 OMI TCWV over the oceans, we
compare against the microwave TCWV data from SSMIS on-
board the Defense Meteorological Satellite Program (DMSP)
F16 satellite. The SSMIS data are derived by Remote Sens-
ing Systems (RSS) using their version 7 algorithm (http://
www.remss.com/, last access: 17 September 2019) and have
a retrieval accuracy of better than 1 mm (Wentz, 1997; Mears
et al., 2015). For clear-sky comparison, we use the daily
0.25◦× 0.25◦ SSMIS data for January and July 2006 and
filter out the pixels affected by rain and cloud liquid water.
Diedrich et al. (2016) found that the diurnal cycle in TCWV
is generally within 1 % to 5 % of the daily mean, with a min-
imum between 06:00 and 10:00 LT and a maximum between
16:00 and 20:00 LT. To reduce the influence of the diurnal
cycle, we average the SSMIS data for the ascending and de-
scending orbits of F16 (∼ 20:00 and 08:00 LT in 2006).

We generate daily 0.25◦×0.25◦ Level 3 OMI TCWV from
the de-striped Level 2 OMI swaths, with the requirement that
MDQFL= 0, fitting RMS< 0.001, 0<TCWV< 75 mm,
cloud fraction < 0.05 and cloud-top pressure > 750 mb.
There are typically 15 Level 2 swaths per day. The gridding
program uses a tessellation method that weighs the contri-
bution of a Level 2 data point by its area within the Level 3
grid square and its spectrum fitting uncertainty (Wang et al.,
2014, 2016). The filtered daily Level 3 SSMIS and OMI data

are compared for each month. We find 548 223 and 847 678
colocated data pairs for January and July 2006, respectively.

Figure 6a and c show the distribution of OMI–SSMIS for
January and July 2006. For July, the mean of OMI–SSMIS
is 1.1 mm with a standard deviation of 6.8 mm, and the mean
absolute error of OMI–SSMIS is 5.2 mm. For January, the
mean error, standard deviation and mean absolute error are
0.4, 6.5 and 5.0 mm, respectively. This suggests a slightly
better agreement for January than for July. In comparison
with the OMI–GPS over land (Sect. 3.1), OMI–SSMIS over
the oceans has a somewhat larger bias and standard devia-
tion. However, as TCWV over the oceans is generally larger
than that over land (compare Figs. 6 and 2), the relative bias
and scatter are actually similar.

Figure 6b and d show the normalized joint distribution
of SSMIS versus OMI for January and July 2006. The cor-
relation coefficients are r = 0.84 and 0.82 for January and
July, respectively. For January, OMI–SSMIS remains within
0.6 mm of zero for TCWV in the 10–40 mm range but is
1.5 mm for TCWV in the 0–10 mm range (only a small frac-
tion of data pairs have TCWV> 40 mm). For July, OMI–
GPS is 0.8 mm for the TCWV= 20–30 mm bin and varies
between 0.8 and 1.4 mm for TCWV in the 10–50 mm range
(only a small fraction of data pairs have TCWV< 10 mm
or > 50 mm). For TCWV bins that have > 5 % of the data
pairs, the standard deviation of OMI–SSMIS varies between
4.1 and 8.1 mm. Overall, version 4.0 OMI data compare rea-
sonably well with SSMIS data for TCWV in the 10–40 mm
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Figure 4. Normalized joint distributions of GPS versus version 4.0
OMI TCWV for different cloud fraction thresholds. Results are de-
rived from the colocated data pairs for 2006. The OMI data filtering
criteria are the same as those for Fig. 3. In each panel, the 1 : 1 line
is plotted in black, and the linear regression line is plotted in gray
and indicated by the formula in the lower right corner.

range, with the smallest bias occurring in the TCWV= 20–
30 mm bin.

The agreement between version 4.0 OMI with SSMIS is
better than that between version 3.0 OMI and SSMIS. For
July 2006, using the same data filtering criteria as before, we
find that version 3.0 OMI–SSMIS has a mean of 3.2 mm with
a standard deviation of 7.8 mm. The bias is much larger than
that for version 4.0 OMI–SSMIS. Again, this is because of
the much larger SCD of version 3.0 OMI TCWV due to the
water vapor reference spectrum (Fig. S1).

Table 3 shows the effect of cloud fraction threshold (f )
on the comparison between SSMIS and version 4.0 OMI
TCWV. The comparisons are performed using daily filtered
Level 3 data for July 2006. For SSMIS, we only filter out
pixels affected by rain. To investigate the influence of clouds,

cloud liquid water is not used to filter the SSMIS data here.
This is less restrictive than the criteria used for Fig. 6 as the
SSMIS pixels with cloud liquid water are filtered out in Fig. 6
for the “clear-sky” comparison there. For OMI, we require
MDQFL= 0, RMS< 0.001, 0<TCWV< 75 mm, cloud-top
pressure> 750 mb and cloud fraction< f . Results show that
OMI is higher than SSMIS by 0.02–3.07 mm for f = 0.05–
0.45. The difference between the f = 0.05 case in Table 3
and the f = 0.05 case in Fig. 6 is due to the relaxed SS-
MIS filtering criteria. The closest agreement in terms of the
mean and standard deviation of OMI–SSMIS occurs when
f = 0.05. The number of SSMIS and OMI data pairs more
than doubles between f = 0.05 and f = 0.15. The linear
correlation coefficient varies between 0.82 and 0.85 within
the range of f values considered. The best linear regression
line (OMI= 0.70+ 1.02×SSMIS) occurs when f = 0.15.
Therefore, for OMI over the oceans, we recommend using
cloud fraction threshold f = 0.05–0.15 in combination with
the other usual data filtering criteria, though users are ad-
vised to make their own decisions based on their tolerance
and applications.

Lowering the value for the cloud-top pressure threshold
also leads to larger bias and scatter. For example, when
cloud fraction threshold f = 0.05 and cloud-top pressure
> 500 mb are used, the mean and standard deviation of OMI–
SSMIS become 0.80 and 7.9 mm; both are larger than those
for f = 0.05 in Table 3, though the linear regression line
improves to OMI= 0.63+ 1.01×RSS due to an increase
in the dynamical range of TCWV. It should be noted that
the OMCLDO2 cloud product shows good agreement with
ground-based observations for clouds at altitudes lower than
2.5 km, at which single cloud layers dominate, but shows sig-
nificant bias and large scatter for clouds at altitudes higher
than 2.5 km, at which multi-layer clouds dominate (Veefkind
et al., 2016). Thus, OMI TCWV data corresponding to low
cloud-top pressure (high altitude) should be used with cau-
tion. Relaxing the filtering criteria for both cloud fraction
and cloud-top pressure will lead to larger bias and scat-
ter; therefore, it is not recommended. As an example, for
cloud fraction < 0.15 and cloud-top pressure > 300 mb, the
mean (standard deviation) of OMI–SSMIS becomes 2.8 mm
(9.0 mm) for July 2006.

4 Applications

4.1 El Niño–La Niña

In Fig. 7, we examine the signals associated with El Niño
and La Niña in version 4.0 OMI TCWV. Figure 7a shows
the multivariate ENSO index (MEI) from NOAA (Wolter and
Timlin, 1998) (https://www.esrl.noaa.gov/psd/enso/mei/, last
access: 17 September 2019). Positive (negative) values cor-
respond to El Niño (La Niña) conditions. We examine the
anomalies in TCWV for July 2010 (MEI=−1.103, La Niña)
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Figure 5. Parameters for each 10 mm TCWV bin. Curves with different colors are for different cloud fraction thresholds f as indicated in (b).
The OMI filtering criteria remain the same as those for Figs. 3 and 4. Symbols are filled if the fraction of data pairs within the TCWV interval
is> 1 % of all the available data pairs and are open otherwise. The parameters are (a) mean OMI–GPS in millimeters, (b) relative bias defined
as mean (OMI–GPS) /GPS, (c) the standard deviation (σ ) of OMI–GPS in millimeters and (d) relative scatter defined as σ /GPS. Results
are for all days in 2006. Dashed lines are meant to facilitate visualization.

Figure 6. Comparisons between version 4.0 OMI and SSMIS over the oceans for (a, b) January 2006 and (c, d) July 2006. (a) The relative
occurrence frequency of OMI–SSMIS (mm). (b) The normalized joint distribution of SSMIS versus OMI TCWV (mm).
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Table 3. Effect of cloud fraction threshold on the comparison between SSMIS and version 4.0 OMI TCWV for July 2006.

f N P (%) Mean σ MAE r R2 b k

0.05 1 048 879 7.4 0.02 7.11 5.39 0.82 0.67 1.43 0.95
0.15 2 837 032 20.0 1.38 7.82 5.84 0.84 0.71 0.70 1.02
0.25 3 932 468 27.8 2.20 8.09 6.09 0.84 0.71 1.11 1.04
0.35 4 819 185 34.0 2.73 8.22 6.24 0.85 0.72 1.45 1.05
0.45 5 537 003 39.1 3.07 8.26 6.32 0.85 0.72 1.62 1.06

f : OMI cloud fraction threshold; N : number of qualifying data pairs; P : percentage of qualifying data pairs with
respect to the total number of qualifying SSMIS data points; Mean: mean of OMI–SSMIS in millimeters; σ :
standard deviation of OMI–SSMIS in millimeters; MAE: mean absolute error OMI–SSMIS in millimeters; r:
correlation coefficient between SSMIS and OMI; R2: coefficient of determination for linear regression
OMI= b+ k×SSMIS, where OMI and SSMIS are in millimeters; b: intercept of linear regression; k: slope of
linear regression.

Figure 7. (a) Multivariate ENSO index. Dashed vertical lines indicate July 2010 and July 2015. (b) TCWV (mm) climatology for July
derived from version 4.0 OMI data. TCWV anomaly (mm) with respect to the climatology for (c) July 2010 and (d) July 2015.

and July 2015 (MEI= 1.981, El Niño) in Fig. 7c and d. Al-
though these events are strong within the OMI record (from
2005 to the present), they are mild in comparison with the ex-
trema. Between 1950 and 2018, the maximum MEI is 3.008
(in March 1983) and the minimum MEI is −2.247 (in June
1955).

To examine the changes in OMI TCWV under different
conditions, we first generate the monthly Level 3 (0.5◦×
0.5◦) OMI TCWV using the Level 2 data for July 2005 and
July 2015 using the method described in Sect. 3.2 (with a
cloud fraction threshold of f = 0.15 and a cloud-top pres-
sure threshold of 750 mb). Then, using the same data filter-
ing criteria, we derive the climatology for July using all the
Level 2 July data between 2005 and 2015 (Fig. 7b). Finally,

we plot the deviations from the climatology (mm) for July
2010 and July 2015 in Fig. 7c and d, respectively.

The TCWV anomalies exhibit large-scale patterns. The
pattern for July 2015 largely opposes that for July 2010. Par-
ticularly, in July 2015 under El Niño conditions, TCWV is
higher in the equatorial central and eastern Pacific and lower
in the Indonesia region, while in July 2010 under La Niña
conditions, TCWV is lower in the tropical eastern Pacific
and equatorial western Pacific and higher in Indonesia and
the Indian Ocean. The overall patterns largely conform to
the results derived from the Hamburg Ocean Atmosphere Pa-
rameters and Fluxes from Satellite Data (HOAPS; Shi et al.,
2018).
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Figure 8. Level 3 (0.25◦×0.25◦) OMI TCWV (mm) generated us-
ing the Level 2 data during (a) 18–24 July 2016 and (b) 1 June–
31 August 2016. (c) The difference of (a)–(b) in millimeters. The
abbreviations for the states most affected by the event are indicated
in the map.

4.2 Corn sweat

“Corn sweat” refers to a hot and humid condition associated
with heat waves, which results in large evapotranspiration
rates in the Midwestern United States where cropland is often
the dominant land usage type. Besides evaporation, transpi-
ration by plants, such as corn, draws water from the soil to
the atmosphere, enhancing the humidity and increasing the
heat index. A corn sweat event from 18 to 24 July in 2016
made news in the US. This event is examined in Fig. 8 using
the version 4.0 OMI TCWV.

Figure 8a and b show the Level 3 (0.25◦× 0.25◦) OMI
TCWV for 18–24 July (7 d) and 1 June–31 August (JJA) in
2016, respectively. The 7 d period corresponds to the corn
sweat event. The 0.25◦× 0.25◦ Level 3 data are derived us-
ing the same filtering criteria as those used for Fig. 7. Fig-
ure 8c indicates the anomaly associated with the corn sweat
event relative to the JJA mean. High TCWV is observed for

Figure 9. WRF simulations of TCWV (mm) for the Midwestern US
on 21 July 2016 for the run (a) with and (b) without evapotranspi-
ration.

the 7 d period from the Gulf Coast to the Midwestern US.
Besides the gulf region, the largest TCWV enhancements (of
up to 18+mm) occur in parts of Iowa (IA), Missouri (MO),
Illinois (IL) and Indiana (IN). Elevated TCWV is also ob-
served by several GPS stations in the general area during the
same time period, though coincident OMI data are not found
at the stations (Fig. S3). At a few GPS stations, high TCWV
persisted a couple more days after 24 July, which is most
likely related to a change in the weather. As shown by the
surface pressure observations at the GPS stations, the Mid-
west is under the control of a high-pressure system during
the corn sweat period and a low-pressure system afterwards
(Fig. S4).

To assess the significance of evapotranspiration for the
Midwestern US during the corn sweat event, we carried out
a sensitivity study using the Weather Research and Fore-
casting (WRF) model v3.9.1 (Skamarock et al., 2008). The
model was run on a 36 km parent domain and a 12 km
nested domain, covering the relevant areas of the US. The
physics parameterizations included the WRF Single-Moment
(WSM) 6-Class Microphysics (Hong and Lim, 2006), the
Kain–Fritsch (KF) subgrid cumulus parameterization (Kain,
2004), the Yonsei University (YSU) planetary boundary
layer scheme (Hong et al., 2006), the Noah Land-Surface
Model (Ek et al., 2003; Chen and Dudhia, 2001) and the
Rapid Radiative Transfer Model (RRTM). Horizontal turbu-
lent diffusion was based on the standard Smagorinsky 1st-
order closure. The initial and lateral boundary conditions
were from the 3-hourly NCEP North American Regional
Reanalysis (NARR) at 32 km resolution. To reduce the un-
certainty associated with lateral boundary conditions for the
nested domain, we nudged the model in the parent domain to-
ward the reanalysis but left the nested domain running freely.

To diagnose the contribution of evapotranspiration, the
model was run from 19 to 22 July 2016 with and with-
out evapotranspiration (calculated in the Noah Land-Surface
Model). The results for 21 July are shown in Fig. 9. TCWV is
generally lower in the interior of the domain for the run with-
out evapotranspiration (No ET). The higher TCWV in the No
ET run near the southern boundary reflects nonlinear water
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Figure 10. The Level 3 (a, d) climatology, (b, e) data on 6 November 2006 and (c, f) anomaly on 6 November 2006 with respect to the
climatology for (a, b, c) version 4.0 OMI TCWV (mm; 0.5◦× 0.5◦) and (d, e, f) the OMI ozone mixing ratio (ppb; 1◦× 1◦) interpolated to
200 mb.

vapor transport from the gulf region. Turning off evapotran-
spiration not only directly affects the water vapor flux from
the surface but also indirectly influences other meteorolog-
ical variables, such as winds. Thus, there is a difference in
the water vapor flux across the domain boundary. The differ-
ence between the default and No ET runs in Fig. 9 suggests
that evapotranspiration contributes about 15 %–25 % of the
TCWV in the Midwestern US during the corn sweat event.
A detailed study incorporating TCWV data with the WRF
model will be carried out in future work.

4.3 Atmospheric river (AR)

4.3.1 An intense AR in OMI data

ARs are narrow elongated bands with high TCWV in the at-
mosphere. With flow rates similar to those of large rivers,
ARs are highly important in the global hydrological cycle
(Zhu and Newell, 1998). Landfalling ARs can lead to heavy
orographic precipitation that affects areas such as the west
coast of North America and Europe (Gimeno et al., 2014;
Neiman et al., 2008b).
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Figure 11. (a) WRF model domain configuration for the Novem-
ber 2006 AR event. (b) TCWV observed by SSM/I on 6 Novem-
ber 2006. (c, d) TCWV simulated by WRF on the same day (c) with-
out and (d) with OMI TCWV data assimilation. Gray indicates area
with no SSM/I data.

The extreme AR of 6–7 November 2006 brought devas-
tating flood to the Pacific Northwest – the region in western
North America bounded by the Pacific to the west and the
Cascade Range to the east. This AR is described in detail in
Neiman et al. (2008a). The signature of this AR is captured
in the version 4.0 OMI TCWV data. Figure 10a–c show the
Level 3 OMI TCWV and its anomaly on 6 November 2006.
The Level 3 data are generated following the same procedure
as that used for Fig. 8. Although many pixels are missing
because of the cloud filtering (cloud-top pressure> 750 mb,
cloud fraction< 0.15) and other criteria, the leading edge of
the AR is noticeable as an elongated band of high TCWV
(15+mm above the climatology) extending from Hawaii to
northern California (indicated by arrows in Fig. 7b and c).
The position of the AR in OMI TCWV agrees well with that
in Special Sensor Microwave/Imager (SSM/I) microwave ob-
servations (Neiman et al., 2008a).

Figure 10d–f show the Level 3 OMI ozone mixing ratio
interpolated to 200 mb and its anomaly. The OMI ozone data
are retrieved using the SAO ozone profile algorithm (Liu
et al., 2010; Huang et al., 2017, 2018). The climatology is
derived by averaging all monthly Level 3 data for Novem-
ber from 2004 to 2017. The global distribution of ozone at
200 mb shows a low mixing ratio in the low latitudes and high
mixing ratio in the high latitudes, opposite to the global dis-
tribution of TCWV. The anomaly shows a curvilinear band
of high ozone that is parallel to the AR in Fig. 10b, c but
located further to the west. This feature indicates the intru-
sion of ozone-rich stratospheric air along the polar front and
is associated with the same extratropical cyclone as the AR.

4.3.2 OMI TCWV assimilation for the AR

To evaluate the potential of OMI water vapor data to im-
prove numerical weather forecasts, we conducted a data as-
similation experiment from 2 to 8 November 2006 using
WRF v3.9.1 and version 4.0 OMI TCWV. The model was
configured with 27 km (290× 270 surface grid points with
51 vertical levels), 9 km (586× 586× 51 points) and 3 km
(541× 526× 51) nested domains in a Lambert projection
over the relevant portion of the Pacific and North America
(Fig. 11 top left). The domains are designed for the 6 Novem-
ber AR event and its associated precipitation at landfall. The
model has the same physics parameterizations as those used
in Sect. 4.2 except that a more sophisticated double-moment
microphysics scheme is used for quantifying precipitation.
The initial and boundary conditions for the 27 km domain
were from the 1◦× 1◦ NCEP final (FNL) reanalysis. One-
way nesting is used for the inner domains. To evaluate the
model’s skill at simulating the AR and the contribution of
OMI TCWV to the quality of the simulation, we did not
nudge the run towards the reanalysis or assimilate the ob-
served sea surface temperature within the computational do-
mains.

The OMI TCWV is assimilated into the model us-
ing analytical optimal estimation (Rodgers, 2000).
This method minimizes the cost function J (x)=

(y−Hx)TE−1 (y−Hx)+
(
x− xb

)TB−1 (
x− xb

)
, where

x is the true TCWV, xb is the a priori TCWV (from the
model), y is the observed TCWV, H represents the model
Jacobian, and B and E are the error covariance matrices
of the a priori and observation. B is estimated with 12 and
24 h forecasts using the National Meteorological Center
method (Parrish and Derber, 1992). E is based on the fitting
uncertainties of OMI data.

The a posteriori analysis (x̂) can be obtained from x̂ =

xb+K(y−Hx), where K= BHT
(
HBHT

+W−1E
)−1

is the

Kalman gain, W = (R2
−r2)

(R2+r2)
is the Cressman function to

weigh the observations based on their Euclidian distance r
to the model grids and R is the influence radius of the obser-
vations. We simply assume R to be 1, 0.5 and 0.25◦ for the
27, 9 and 3 km domain to get a quick look at the results in this
paper and leave a more vigorous quantification of R to future
work. The a posteriori TCWV is solved hourly when OMI
data are available and is used to initialize the next simulation
window.

During the assimilation, we adjust the OMI data using
the AMF calculated with the modeled water vapor pro-
file (OMIadjusted

satellite =
OMIsatellite×AMFsatellite

AMFmodel
) and the scattering

weights provided with the Level 2 OMI data. This can reduce
the observational error associated with using the monthly
mean water vapor profile in the operational OMI product.
The standard deviation of the difference between AMFsatellite
and AMFmodel is about 20 %.
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Figure 12. The simulated rainfall accumulated from 00:00 to 23:00 UTC (mm) on 6 November 2006 for the model (a) without and (b) with
OMI TCWV assimilation. (c) The accumulated rainfall observed by TRMM for the same time period. Note that the 3 km model result is
coarsened to match the resolution of the TRMM product. Box A highlights the erroneously simulated precipitation in the run without OMI
TCWV data assimilation.

Figure 11 shows zoomed-in views of the AR on 6 Novem-
ber 2006. The TCWV independently observed by SSM/I is
shown in Fig. 11b. Figure 11c and d show the model results
without and with OMI TCWV assimilation. The model with-
out assimilation shows an AR that is split into two parallel
filaments making landfall at separate locations on the west
coast of North America, where the TCWV is too high com-
pared to the SSM/I observation, especially for the southern
filament. As discussed later, this has a significant impact on
precipitation (Fig. 12). After assimilating OMI TCWV, the
modeled TCWV agrees much better with the SSM/I obser-
vation. The spurious southern filament disappeared, and the
overall shape and amplitude of the AR are significantly im-
proved.

The location and intensity of precipitation over land are
crucial for local flood control and water resource manage-
ment and are closely related to the shape and strength of AR
at landfall. The 24 h accumulated precipitation on 6 Novem-
ber in the 3 km domain is examined in Fig. 12. The model
output is coarsened to 0.25◦× 0.25◦ to match the resolution
of the Tropical Rainfall Measuring Mission (TRMM) obser-
vation product. The model without OMI data assimilation
produces spurious rainfall over the Oregon–California bor-
der (box A) as a result of the erroneously strong southern
filament of the simulated AR (Fig. 11c). This artifact was
removed after OMI data assimilation, showing better agree-
ment with the corresponding TRMM rainfall observation.
The difference in rainfall between the assimilation and ob-
servation in the Oregon–Washington area is probably related
to both the model error and the data error, as well as the data
density and distribution. A detailed error attribution for pre-
cipitation is beyond the scope of this paper.

5 Summary and conclusion

The version 4.0 retrieval algorithm for OMI total column wa-
ter vapor (TCWV) is presented in this paper. The algorithm
follows the usual two-step approach in which slant column

density (SCD) is derived from spectral fitting and vertical
column density (VCD) is obtained through the ratio of SCD
and air mass factor (AMF). In version 4.0, the spectral fit-
ting no longer considers a common mode. The retrieval win-
dow (432.0–466.5 nm) results from a systematic optimiza-
tion that reflects trade-offs among several factors, including
a small fitting RMS, small fitting uncertainty, large fraction
of successful retrievals and long retrieval window length. The
AMF calculation uses the latest OMI O2–O2 cloud product
(Veefkind et al., 2016) and monthly variable vertical profiles
from the MERRA-2 reanalysis (Gelaro et al., 2017).

The version 4.0 OMI TCWV product is compared against
the GPS network data over land and the SSMIS microwave
observations over the oceans for 2006. Version 4.0 OMI
TCWV has a much smaller bias than version 3.0 and has re-
placed previous versions on the Aura Validation Data Cen-
ter website. Version 4.0 OMI TCWV is characterized un-
der different cloud conditions. Under clear-sky conditions
(cloud fraction< 5 % and cloud-top pressure > 750 mb), the
overall mean of OMI–GPS over land is 0.32 mm with a
standard deviation of 5.2 mm, and the smallest bias occurs
when TCWV is between 10 and 20 mm; the overall mean
of OMI–SSMIS over the oceans is 0.4–1.1 mm with a stan-
dard deviation of 6.5–6.8 mm, and the smallest bias occurs
for TCWV between 20 and 30 mm. The correlation coeffi-
cient between OMI TCWV and the reference datasets real-
izes the largest gain when the cloud fraction threshold is in-
creased from 5 % to 15 %. The regression line appears the
best when f = 0.25 is used over land and when f = 0.15
is used over the oceans. But, a larger cloud fraction leads
to larger bias and scatter. Thus, for most applications, we
recommend considering only OMI data with cloud fraction
< 5 % to 25 % and cloud-top pressure > 750 mb, in addi-
tion to main data quality flag= 0, no row anomaly, fitting
RMS< 0.001 and 0<TCWV< 75 mm. Relaxing the cloud-
top pressure threshold has a similar effect as relaxing the
cloud fraction threshold. TCWV corresponding to low cloud-
top pressure (high altitude) should be used with caution due
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to the degraded accuracy for these clouds in the OMCLDO2
product.

As example applications of the version 4.0 OMI TCWV
data across a variety of temporal and spatial scales, this pa-
per examines the climate pattern associated with El Niño–
La Niña, the enhanced humidity during a week-long corn
sweat event in the Midwest US and the elongated band of
high TCWV associated with an intense atmospheric river that
made landfall on the west coast of North America. Strong
signals are found in OMI TCWV for all three examples. A
data assimilation experiment shows that the OMI TCWV
data can help improve WRF’s skill in simulating the shape
and intensity of the AR, as well as the accumulated rainfall
near the coast.

Further improvement of the product can proceed from both
spectral fitting and AMF calculation, such as water vapor ref-
erence spectrum, instrument slit function and solar irradiance
for spectral fitting, aerosol correction and surface bidirec-
tional reflectance for AMF calculation.
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