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Abstract. Characterization of errors and sensitivity in re-
motely sensed observations of greenhouse gases is necessary
for their use in estimating regional-scale fluxes. We analyze
15 orbits of the simulated Orbiting Carbon Observatory-2
(OCO-2) with the Atmospheric Carbon Observations from
Space (ACOS) retrieval, which utilizes an optimal estimation
approach, to compare predicted versus actual errors in the
retrieved CO2 state. We find that the nonlinearity in the re-
trieval system results in XCO2 errors of ∼ 0.9 ppm. The pre-
dicted measurement error (resulting from radiance measure-
ment error), about 0.2 ppm, is accurate, and an upper bound
on the smoothing error (resulting from imperfect sensitivity)
is not more than 0.3 ppm greater than predicted. However,
the predicted XCO2 interferent error (resulting from jointly
retrieved parameters) is a factor of 4 larger than predicted.
This results from some interferent parameter errors that are
larger than predicted, as well as some interferent parame-
ter errors that are more strongly correlated with XCO2 er-
ror than predicted by linear error estimation. Variations in
the magnitude of CO2 Jacobians at different retrieved states,
which vary similarly for the upper and lower partial columns,
could explain the higher interferent errors. A related finding
is that the error correlation within the CO2 profiles is less
negative than predicted and that reducing the magnitude of
the negative correlation between the upper and lower partial
columns from−0.9 to−0.5 results in agreement between the
predicted and actual XCO2 error. We additionally study how
the postprocessing bias correction affects errors. The bias-
corrected results found in the operational OCO-2 Lite prod-
uct consist of linear modification of XCO2 based on specific
retrieved values, such as the CO2 grad del (δ∇CO2 ), (“grad
del” is a measure of the change in the profile shape versus

the prior) and dP (the retrieved surface pressure minus the
prior). We find similar linear relationships between XCO2 er-
ror and dP or δ∇CO2 but see a very complex pattern of errors
throughout the entire state vector. Possibilities for mitigating
biases are proposed, though additional study is needed.

1 Introduction

The Orbiting Carbon Observatory-2 (OCO-2) was launched
in July 2014 and began providing science data in Septem-
ber 2014, with the goal of estimating CO2 with the “preci-
sion, resolution, and coverage needed to characterize sources
and sinks of this important green-house gas.” (Crisp et
al., 2004). Validation of the ACOS/OCO-2 build 7 (re-
ferred to hereafter as v7) dataset (Eldering et al., 2017)
versus measurements from the Total Carbon Column Net-
work (TCCON) (Wunch et al., 2011) shows regional bi-
ases of about 0.5 ppm and standard deviations of 1.5 ppm
(Wunch et al., 2017), though these errors are not entirely
due to OCO-2 (TCCON and colocation errors also con-
tribute). Biases are particularly concerning due to propaga-
tion of CO2 biases into flux biases (Basu et al., 2013; Cheval-
lier et al., 2014; Feng et al., 2016). OCO-2 error analysis
uses Rodgers (2000), which gives a statistical estimate of er-
rors using first-order analysis that assumes that the forward
model is linear and estimates errors due to smoothing, ra-
diance measurement error, and interferent species. The pre-
dicted XCO2 errors for v7 OCO-2 are typically 0.4 ppm for
ocean glint and 0.5 ppm for nadir land, which underestimate
the actual errors by at least a factor of 2 (Wunch et al., 2017).
The cause of regional biases is thought to be underestimated
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interferent error or missing components of error analysis but
is not well understood. Connor et al. (2016) found that miss-
ing physics in the forward model (e.g., more aerosol types,
spectroscopy error, instrument error) leads to significantly
larger posterior uncertainties than predicted by the current
Atmospheric Carbon Observations from Space (ACOS) error
analysis, using a purely linear error estimation framework.
However, this study finds that nonlinear retrievals using this
relatively simple simulation system (e.g., no spectroscopic
errors, no instrument noise, consistent aerosol types between
the true and retrieved states) also show a similar relation-
ship between predicted and actual errors, with the actual er-
ror about twice the predicted one.

Cressie et al. (2016) estimates the size of second-order
terms of the error analysis. The second-order terms contain
derivatives of the averaging kernel, gain matrix, and Jaco-
bians with respect to state parameters. Cressie et al. (2016)
estimates that the errors resulting from second-order error
analysis are on the order of 0.2 ppm, but this analysis was
dependent on the states and sizes of deviations used to calcu-
late the second-order derivatives. Cressie et al. (2016) found
that second-order terms can cause both larger errors and bi-
ased results.

This paper explores the errors in the full physics retrieval
system using a simulated system with no mismatches in the
retrieval versus true state vector and no spectroscopy or in-
strument errors. The actual error covariance of (retrieved mi-
nus true) for this retrieval system is about twice the predicted
errors. The linear analysis of Connor et al. (2016) does not
explain the higher errors in this work, because the simula-
tions in this work do not include unaccounted errors sources.
Cressie et al. (2016) also does not explain the higher actual
errors, because Cressie et al. (2016) estimates the second-
order error as about 0.2 ppm, whereas the unaccounted error
is about 0.8 ppm in this paper. In order to identify the source
of the unaccounted error, actual errors are compared to the
predicted linear errors for a series of setups.

The ACOS Level 2 (L2) full physics retrieval algorithm
used to estimate XCO2 from OCO-2 employs optimal es-
timation using three near-infrared bands: (1) 0.76 µm con-
taining significant O2 absorption (O2 A band), (2) around
1.6 µm containing weak CO2 absorption (weak CO2 band),
and (3) near 2.1 µm containing strong CO2 absorption (strong
CO2 band). Prior to the main retrieval, a series of fast prepro-
cessing steps are performed for quality analysis (primarily to
screen out clouds) and to provide estimates of chlorophyll
fluorescence (Frankenberg et al., 2016). Only soundings that
are deemed sufficiently clear are selected to be processed
by the computationally expensive L2 retrieval. In the opti-
mal estimation L2 retrieval used in this simulation, 45–46
retrieval parameters are simultaneously estimated, including
CO2 volume mixing ratios (VMRs) at 20 pressures, albe-
dos in three bands, four types of aerosols, meteorological
parameters (temperature, water vapor, surface pressure), dis-

persion (frequency offset), wind speed (ocean only), and flu-
orescence (land only).

The retrieved CO2 profile is then collapsed into a col-
umn, XCO2. Recent work has alternatively partitioned the
information into two partial columns (Kulawik et al., 2017).
Postprocessing quality screening and linear bias corrections
based on various L2 retrieved parameters are then performed
on XCO2. The corrections are based on the slope of XCO2
error versus different retrieved values, where the XCO2 er-
ror is estimated from retrieved XCO2 minus either (a) a con-
stant value in the Southern Hemisphere, the Southern Hemi-
sphere approximation; (b) values from surface-based obser-
vations from TCCON stations; (c) the mean of small areas
(less than 1◦); or (d) a multimodel mean (Mandrake et al.,
2017). We study the effects of the postprocess bias correction
in Sect. 4.3. The simulations in this paper differ from the op-
erational retrieval in that the fluorescence true state is set to
zero, although fluorescence is still retrieved; and amplitudes
of spectral residual patterns are not retrieved; except for these
minor differences, these simulated retrievals are identical to
the operational v7 retrievals. We refer the interested reader to
O’Dell et al. (2018) for a full description of the operational
retrieval, including retrieved variables and bias correction.

Simulation studies can be used to understand and probe re-
trieval results. There are many different ways to assess errors,
listed here in order of increasing complexity and nonlinear-
ity.

1. Linear estimates of errors, which assume moderate lin-
earity of the retrieval system (Connor et al., 2008,
2016), useful for surveying impacts of different errors
with linear assumptions.

2. Error estimates from nonlinear retrievals of simulated
radiances using a fast, simplified radiative transfer,
called the “surrogate model” (Hobbs et al., 2017). This
system does not result in the discrepancy of larger actual
versus predicted error.

3. Error estimates from nonlinear retrievals of simulated
radiances generated using the operational L2 forward
model, called the “simplified true state”, which has the
advantage that the true state is within the span of the
retrieval vector and the linear estimate should be valid.

4. Error estimates from nonlinear retrievals of simulated
radiances using a more complex and accurate radiative
transfer model to generate the observed radiances (e.g.,
Raman scattering, polarization handling, surface albedo
changes effects) and discrepancies between the true and
retrieved state vectors (e.g., aerosol type mismatches
between the true and retrieval state vector, albedo shape
variations) (e.g., O’Dell et al., 2012).

This paper uses system (3), which makes it easier to inter-
pret the actual versus expected performance of the retrieval
system. System (3) was used because preliminary studies
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Table 1. Retrieved parameters in this simulation study.

Index Parameter

1–20 20 CO2 volume mixing ratios (VMRs)
at 20 pressure levels from the surface to
top of the atmosphere (20).

21 Water vapor scaling factor.
22 Surface pressure.
23 Temperature profile offset.
24, 27, 30, 33 Aerosol optical depth for four types.
25, 28, 31, 34 Aerosol pressure height for four types.

26, 29, 32, 35 Aerosol width for four types (prior un-
certainty is very tight).

36, 38, 40 Albedo mean for three bands.
37, 39, 41 Albedo slope for three bands.

42, 43, 44 Dispersion offset for three bands
(frequency offset).

45 Wind speed (ocean). In the original files
this is index 36, but it was moved to
index 45 so that the albedo indices are
consistent between land and ocean.

45, 46 Fluorescence (land). The true fluores-
cence is set to zero for these simula-
tions.

seemed to find that the performance of systems (3) and (4)
was comparable (results not shown). Note that the observed
radiance is generated with slightly different code than the re-
trieval system, but they are matched as closely as possible.

2 Retrieval system

2.1 Description of the OCO-2 L2 retrieval algorithm
and error diagnostics

The ACOS optimal estimation approach is described in
O’Dell et al. (2012, 2018) and Crisp et al. (2012). In this
section we review the parameters in the retrieval vector and
the equations for error estimates. The retrieved parameters
for this simulation study are shown in Table 1.

All non-CO2 parameters are called “interferents”, and the
propagation of errors from these parameters into CO2 is
called “interferent error”.

The a priori covariance matrix for CO2 has the dimensions
20× 20 and has strong correlations as shown in Fig. 2 of
O’Dell et al. (2012). The CO2 a priori error is 48 ppm at the
surface, 12 ppm in the midtroposphere, and 1.4 ppm in the
stratosphere. The larger variability near the surface allows
more variability in the retrieved CO2 profile near the sur-
face. However, in the ACOS retrieval, about 8 % of the true
midtropospheric CO2 variations are incorrectly attributed to

surface variations based on the bias correction of δ∇CO2 (Ku-
lawik et al., 2017). The a priori errors for other parameters
are all uncorrelated in the a priori covariance and can be
found in the L2 product file.

The predicted errors, found in the OCO-2 L2 product
as “XCO2_error_components”, are based on the assumption
that the nonlinear, iterative retrievals can be represented as
a linear estimate (Connor et al., 2008; Rodgers, 2000), and
shown in Eq. (1).

v̂ = va+Avv (vtrue− va)+Ave (etrue− ea)+Gvε, (1)

where

– v̂ is the retrieved CO2 profile, size nCO2 (20 for OCO-
2) – this variable is called “u” in Connor et al. (2008),
called “v” here so as not to be confused with a different
U variable introduced later;

– va is the a priori CO2 profile, size nCO2;

– vtrue is the true CO2 profile, size nCO2;

– Avv is the nCO2× nCO2 CO2 profile averaging kernel;

– Ave (etrue− ea) is the cross-state error representing the
propagation of error from non-CO2 retrieved parame-
ters, e (aerosols, albedo, etc.), into retrieved CO2;

– ea is the a priori interferent value, size ninterf – for this
work, ninterf is 26 (27) for ocean (land);

– etrue is the true interferent value, size ninterf;

– Ave is size nCO2× ninterf;

– Gv is the gain matrix for CO2, size nCO2× nf , where
nf is the number of spectral points; and

– ε is the spectral error, also called “measurement error”,
size nf .

The full gain matrix, G, maps from spectral signals to re-
trieval parameter changes and is

G= (KT Sε−1K+Sa
−1)−1KT Sε−1, (2)

where K is the Jacobian (or Kernel) matrix, and Sε is the
error covariance of the spectral error, ε. Note that G is size
n× nf , where n= nCO2+ ninterf is the total number of re-
trieved parameters. K is a matrix of derivatives giving the
sensitivity of the radiance at each frequency to each retrieved
parameter; e.g., for the CO2 parameter at 800 hPa,

K=
dRadiance

d(CO2 @ 800hPa)
. (3)

An assumption of the ACOS retrieval system is that the Jaco-
bians are fairly invariant during the retrieval process, as is the
assumption for nearly all optimal estimation retrievals (see,
e.g., Rodgers, 2000).
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The averaging kernel, A, is one of the most fundamen-
tal and useful quantities in Bayesian inversion theory. It de-
scribes the predicted linear dependence of the retrieved state
on the true state and prior. The diagonal of the averaging ker-
nel gives the degrees of freedom for signal for each retrieval
parameter. The averaging kernel is calculated as

A=GK. (4)

As will be shown in Sect. 3.1, we find that KCO2 varies
depending on the retrieved state (indicating nonlinearity),
which would result in an error in retrieved CO2 that is not
captured in the predicted errors.

The linear estimate describes the response of the retrieval
system to instrument errors and incorrect a priori inputs,
based on the strengths of the Jacobians (representing sensi-
tivity of the radiances to the retrieval state) and constraints
(how much pressure is applied to parameters to stay near the
a priori inputs). The linear estimate in Eq. (1) is used to esti-
mate the errors, and for simulations, where we know all the
inputs, it is useful to test each component of Eq. (1).

After an inversion is complete, the pressure weighting
function h (size nCO2) is used to convert the retrieved CO2
profile to XCO2 by tracking the contribution from each level
to the column quantity:

XCO2 = hTXCO2
v̂. (5)

The predicted errors on the estimated XCO2 arise from three
separate terms in Eq. (1):

1. Gxε results from the errors on the measured radiances
(measurement error),

2. Avv (vtrue− va) results from both imperfect sensitivity
and constraint choices (smoothing error), and

3. Ave (vtrue− va) results from jointly retrieved species
propagated into CO2 (interferent error).

The CO2 profile can also be partitioned into a lower and up-
per partial column (Kulawik et al., 2017). These can be cal-
culated using equations similar to Eq. (5), with h set for the
lower partial column air mass (LMT) by zeroing out the up-
per 15 levels, and h set for the upper partial column (U ) by
zeroing out the lower 5 levels. In this work, the lower and
upper partial columns are explored to try to understand the
reasons behind the underpredicted XCO2 errors and the ef-
fect of the δ∇CO2 component of the bias correction.

One useful diagnostic is an estimate of how well the mod-
eled radiances match the observed radiances for each of the
three OCO-2 spectral bands:

χrad
2 [band]=

1
nf

∑
f

((
rfit f − robs f

)
/εf

)2
, (6)

where rfit is the fit radiance, robs is the observed radiance,
and ε is the radiance error.

In reality, Eq. (1) would contain many additional error
terms that are not considered in these simulations, e.g., spec-
troscopy, instrument characteristics, aerosol mismatch errors
(i.e., picking the wrong aerosol type to retrieve). These are
discussed in detail in Connor et al. (2016) as linear error es-
timates. The results reported here only address errors in the
full nonlinear retrieval system for the actual retrieved vari-
ables; they do not include errors from unincluded physics or
other error sources (such as spectroscopy error). In the anal-
ysis presented in Sect. 3, each of the diagnostics given in
Eqs. (1) through (5) will be used to examine the error esti-
mates on the simulations and compared to previously pub-
lished results on real OCO-2 data.

2.2 Description of the simulated dataset

The simulated dataset analyzed in this study is comprised of a
set of realistic retrievals using the ACOS b3.4 version of the
retrieval algorithm. It is a slightly modified version of that
described in detail in O’Dell et al. (2012) (which discussed
b2.9) and described more fully in O’Dell et al. (2018). Ta-
ble 2 shows the most important changes to the L2 retrieval
algorithm between b2.9 and b3.4.

Although newer versions of the OCO-2 L2 algorithm ex-
ist (currently b8 as of time of writing), the work presented
here was initially begun prior to the launch of OCO-2 in
July 2014. In addition, certain tests, where the L2 true state
is directly related to the retrieval vector, were simplified
by using the older version of the retrieval algorithm which
contains a less complicated aerosol scheme. In the older
L2 algorithm versions (pre-B3.5), also used in this work,
the state vector for all soundings always included the same
four aerosol types: cloud water, cloud ice, Kahn 1 (a mix-
ture of coarse- and fine-mode dust aerosols), and Kahn 2
(carbonaceous-mode aerosols) (described more in Nelson et
al., 2016). Both Kahn 1 and 2 types contain some sulfate and
sea salt aerosols as well. Newer versions of the OCO-2 L2
retrieval include a more complicated scheme in which each
sounding includes water and ice, and they pick the two most
likely aerosol types based on a MERRA monthly climatol-
ogy for the particular sounding location. The aerosol fits use
a Gaussian-shaped vertical profile for each of the four types,
as described in O’Dell et al. (2018).

Inputs to the b3.4 L2 retrieval algorithm include simulated
L1b radiances and meteorology (taken from ECMWF) that
were generated using the CSU/CIRA simulator (O’Brien et
al., 2009). The simulator is driven by satellite two-line ele-
ments which are used to provide the satellite time and po-
sition. The code calculates relevant solar and viewing ge-
ometry and polarization and takes surface properties from
MODIS. Only a single day’s worth of orbits (15 orbits on
17 June 2012) at reduced temporal sampling (1Hz instead of
the operational 3 Hz) and with only one footprint per frame
(instead of the operational eight) is presented in this work.
This yields approximately 2700 soundings per orbit, totaling
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Table 2. Updates in the simulated retrieval system since O’Dell et al. (2012).

B2.10 changes B3.3 changes B3.4 changes

1) Gaussian aerosol profiles 1) Residual fitting 1) Ocean surface parameterization
2) Sigma pressure levels 2) Reduced p_surf prior uncertainty 2) Update weak CO2 spectral range
3) Update to prior CO2 profile 3) Prior AOD= 0.05 3) Spectroscopy update
4) Spectroscopy updates 4) Spectroscopy update
5) Correction to XCO2 AK 5) Fluorescence fit land gain H (GOSAT)

about 40 000 soundings. Unlike real OCO-2 viewing modes
(see Crisp et al., 2017), the simulations were generated with
nadir viewing over land and glint viewing over water. Our
simulations do not include nadir-water, glint-land, or target
mode simulations, which are additional observation modes
used in real OCO-2 data (Crisp et al., 2017). The spectral
error for these simulations assumes Gaussian random noise,
following the OCO-2 noise parameterization as described in
Rosenberg et al. (2017).

Although the simulations do include realistic clouds and
aerosols from a CALIPSO/CALIOP (Winker et al., 2010)
monthly climatology, the radiative transfer portion of the
simulator code allows clouds and aerosols to be switched off,
making it easy to generate clear-sky radiances used in this re-
search. The OCO-2 instrument model, described in detail in
O’Brien et al. (2009), was used to add realistic instrument
noise to the radiances prior to running the L2 retrieval for the
noiseless simulations. The operational OCO-2 dispersion, in-
strument line shape (ILS), and polarization sensitivity were
used to sample the top-of-atmosphere radiances. The same
solar model as used in the operational retrieval was used in
the L1b simulations. In addition, the A-band preprocessor
code described in Taylor et al. (2016) was run on the cloudy-
sky L1b simulations to provide realistic cloud screening prior
to running the L2 retrieval. It is important to test the system
from end to end with radiances containing a variety of cloud
conditions, because the cloud screening is never 100 % ac-
curate, sometimes letting through cloudy cases, and because
quality flags can sometimes flag cloudy cases being as good
quality without clouds.

This error analysis ideally would use the exact same for-
ward model in both the L1b simulations and the L2 retrieval
algorithm, as our analysis assumes that Eq. (1) should be
valid, without errors from forward model differences. How-
ever, in reality these two code bases are very similar but not
identical. For example, the number of vertical levels within
the two code bases differs. Reasonable attempts were made
to put the L1b simulations on the same footing with the L2
forward model, but minor model mismatches may remain.
We do not believe these minor differences affect our primary
results.

Our goal in this work is to compare linearly predicted vs.
actual errors in XCO2, specifically in terms of three primary
contributions to the retrieval error discussed above: measure-

Table 3. Configurations used in this work.

Case Measurement Clouds+ Comment
error aerosols

(a) No No Smoothing only
(b) No Yes Smoothing+ interferent

(c) Yes Yes Smoothing+ interferent+
measurement error

(d) No Yes Different water prior/initial

ment, smoothing, and interferent error. Several different con-
figurations were used to allow the estimation of the true error
for each of these error components, as shown in Table 3. The
clear results have no clouds or aerosols in the true state; how-
ever, the retrieval is free to insert clouds into the retrieved
state (and given that aerosols are retrieved as ln(AOD), the
retrieved states is never fully aerosol-free).

Results from different configurations are intercompared
to validate the individual measurement, smoothing, and re-
trieval errors. These predicted errors are compared to the true
errors resulting from nonlinear retrievals, which are the re-
trieved minus true values.

2.3 Postprocessing quality screening

Similar to retrievals from real observations, the simulated re-
trieval results need screening to remove cloudy scenes (e.g.,
see O’Brien et al., 2016; Polonsky et al., 2014). Because
prescreening is not perfect, the XCO2 estimates from some
soundings are of low quality, even if they converge. Postpro-
cessing screening is handled through calculation of quality
flags, taken from Table 5 of Polonsky et al. (2014). These
flags are (a) χrad

2 (defined in Eq. 6) < 2 for cases with mea-
surement error or χrad

2 < 1 for cases with no measurement er-
ror, (b) retrieved aerosol optical depth < 0.2, and (c) degrees
of freedom > 1.6 (degrees of freedom are defined near Eq. 4).
The three bands are averaged to calculate the χrad

2 for the
scene.

Table 4 shows the effects of applying postprocessing qual-
ity screening for the different configurations from Table 3.
The results are separated into land and ocean scenes; ap-
proximately one-third pass postprocessing quality screen-
ing for cloudy cases; about 80 % pass postprocessing qual-
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Table 4. Number of cases for each configuration. The clouds in
true= yes cases contain many fewer soundings than no clouds be-
cause of prescreening. The no. good is from postprocessing screen-
ing.

Clouds No. No. good Configuration
in true (postscreening) (from Table 3)

Land (nadir) No 12 097 10 229 a
Ocean (glint) No 14 265 11 468 a
Land (nadir) Yes 3445 868/869/768 c/b/d
Ocean (glint) Yes 1560 679/674/620 c/b/d

ity screening for cloud-free cases. For configuration (c) in
Table 3 (simulations that include clouds), 11 % and 28 %
of cases passing prescreening for ocean and land, respec-
tively. Post-processing screening identifies 25 % and 43 % of
cases for ocean and land, respectively. These are low com-
pared to OCO-3 simulation studies (Eldering et al., 2019),
where 25 %–30 % of cases passed prescreening and 50 %–
70 % of cases passed postscreening. Some of the quality flags
used for the OCO-3 studies (particularly the preprocessing
flags) are not available in our study, so it is hard to directly
compare throughput. The lower throughput suggests that the
cloud cases or other aspects of this study were harder than
the OCO-3 simulation studies.

2.4 Comparisons of retrieved values to true

Table 5 shows XCO2 biases and errors for the different con-
figurations from Table 3. The quantities calculated for Ta-
ble 5 are the bias (the mean retrieved minus true values) and
standard deviation (the square root of the second moment of
the retrieved minus true difference). These quantities indi-
cate the overall quality of the results for each configuration.
The results in Table 5 are sorted by standard deviation. The
worst result by far is the cloudy case with no postprocess-
ing screening. This has ∼ 10 ppb error for land and ∼ 3 ppm
error for ocean. Ocean generally does better than land, post-
processing screening generally does better than no screening,
and clear cases do better than cloudy cases. The addition of
measurement error has a negligible effect on standard devia-
tion for this testing. The bold entry in Table 5 represents the
most realistic real-life case (+measurement error, + clouds,
+ postprocessing screening). This has 0.8 ppm standard de-
viation for land and 0.7 ppm standard deviation for ocean.

In the screened data, the main concern is the −0.5 ppm
bias in the clear land retrieval. We have seen this in other sets
of simulations and it is an unresolved issue at this time. Re-
cently we did find a minor bug in the simulator code that
caused a small mismatch between the water vapor profile
used to calculate the L1b radiances and that written to the
meteorology file that is then used in the L2 retrieval. It is
possible that other minor bugs of this nature are driving the
clear-sky bias, with errors mitigated by clouds in the cloudy
cases.

Figure 1 shows a scatter plot of the retrieved versus true
XCO2 (both with the a priori subtracted). The lower pan-
els in Fig. 1 show the histogram of differences, which range
from about−1.25 to+1.5 ppm for land and−1.5 to+2 ppm
for water soundings. Bias correction, discussed in Sect. 4.3,
further improves the land results by 0.1 ppm in the bias and
standard deviation as seen in Table 5 but does not improve
ocean results. The standard deviations of (retrieved – true)
(green dashed line) and (retrieved – linear estimate) (blue
dashed line) are very similar; the linear estimate does not
estimate the results any better than 0.7 to 0.9 ppm and gives
an estimate of the nonlinearity.

For real OCO-2 v8 data, comparisons to TCCON for
single-observation land nadir and ocean glint have errors of
1.0 and 0.8 ppm, respectively (Kulawik et al., 2019a), mean-
ing that the real errors are comparable to these simulated
data. Real OCO-2 data have a systematic error on the order
of 0.5–0.6 ppm (Wunch et al., 2017; Kulawik et al., 2019a).
Correlated biased errors are seen in real OCO-2 data, with
correlations in time, e.g., ∼ 60 d (Kulawik et al., 2019a), at
small spatial scales, e.g., < 1◦ (Worden et al., 2017), and at
medium spatial scales, e.g., 5–10◦ (Kulawik et al., 2019a).
Although this dataset cannot probe a seasonally dependent
bias, as it covers only 1 d of observations, it can be used
to probe spatial patterns of the biases. However, note that
probing very small spatial patterns will be difficult to see
because of the small number of data processed in compar-
ison to real OCO-2. A plot showing the spatial pattern of
retrieved minus true is shown in Fig. 2a, which shows a high
bias near the Equator and a low bias near the poles. Figure 2b
shows the difference between true XCO2 and XCO2 with
the OCO-2 averaging kernel. The overall spatial pattern in
panel (a) is not affected by the application of the averaging
kernel, which makes sense because the averaging kernel ef-
fect is ∼ 0.2 ppm, whereas the differences are on the order
of 0.9 ppm. An analysis of the correlation scale length of (re-
trieved minus true) XCO2 finds a correlated error of 0.3 ppm
and the full width at half maximum in the bias of∼ 3◦, which
is similar to the correlated error of 0.4 ppm and scale length
of ∼ 5–10◦ found in Kulawik et al. (2019a). The simulated
data have an accurate meteorology (temperature, winds, etc.)
that drives the simulated true states, but the cloud and aerosol
spatial structures are not very accurate, so that the spatial
scales are not expected to be identical between this simulated
dataset and real OCO-2 data. This analysis shows that corre-
lated biases exist in simulated data and that simulated data
are useful for exploring the characteristics and, even more
importantly, the cause of regional biases.

3 Validation of errors and nonlinearity

In this section the different error components that were intro-
duced in Sect. 2.1 are isolated as much as possible to evaluate
each one separately. The averaging kernel and Jacobians, in-
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Table 5. Mean bias and standard deviation between retrieved and true, sorted by standard deviation. The bold entries are the nominal cases
most closely simulating actual OCO-2 retrievals.

Case from Land/ Clouds Postprocessing Meas. Mean Standard
Table 3 ocean in true screening error bias deviation

(a) Ocean No Yes No −0.1 0.4
(a) Land No Yes No −0.5 0.4
(a) Ocean No No No −0.3 0.6
(a) Land No No No −0.5 0.7
(b) Ocean Yes Yes No 0.1 0.7
(c) Ocean Yes Yes Yes 0.1 0.7
(b) Land Yes Yes No 0.2 0.8
(c) Land Yes Yes Yes 0.2 0.8
(b) Ocean Yes No No −0.6 2.7
(b) Land Yes No No −2.3 10.3

Figure 1. Scatter plots of XCO2 difference from the prior for retrieved versus true on the simulated data. This corresponds to dataset (c) with
clouds and measurement error; postprocessing screening applied for land (a, c) and ocean (b, d), with 1 : 1 plots shown in panels (a) and (b);
and histogram of the differences in (c) and (d).

troduced in Sect.2.1, are used as diagnostics. In addition, the
linearity, or lack thereof, of the system is explored.

3.1 System linearity

To test the system linearity the linear estimate, using Eq. (1)
and discussed in Sect. 2.1 is compared to the nonlinear re-
trieval result. The inputs to Eq. (1) include the instrument
noise (if on), a priori covariance, and Jacobians at the final
retrieved state. Table 6 shows the results for cases passing
postprocessing quality screening, clouds, and no measure-
ment error (Table 3, case d) using (1) the first two terms on

the right side of Eq. (1) (i.e., only the CO2 part of the averag-
ing kernel) or (2) all of Eq. (1) (i.e., utilizing the interferent
terms). The last term of Eq. (1) is not used for the noise-free
case. The bottom entry in Table 6, shows the retrieved vs. true
XCO2 (without averaging kernel applied). The comparisons
of retrieved XCO2 versus the linear estimate have biases be-
tween 0.2 and 0.9 ppm and standard deviation between 0.6
and 0.9 ppm. The bias is worse if the full averaging kernel is
used. Looking through parameter by parameter, the band 3
albedo average causes most of the large bias for the full av-
eraging kernel for ocean. The difference between the linear
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Figure 2. (a) Spatial pattern of XCO2 retrieved minus true for case (b) from Table 3 (cloudy but no measurement error), with quality
screening. Panel (b) shows the difference between true XCO2 with the OCO-2 averaging kernel applied minus true XCO2.

Table 6. Difference of linear estimate versus nonlinear retrieval,
noise-free, cloud, quality-screened cases. SD denotes standard de-
viation.

Land Land Ocean Ocean
bias SD bias SD

Predicted 0 0.3 0 0.2
Retrieved vs. CO2 AK −0.2 0.8 −0.2 0.6
Retrieved vs. full AK −0.4 0.8 −0.9 0.8
Retrieved vs true 0.2 0.9 0.1 0.7

estimate and the nonlinear retrieval is an estimate of the non-
linear error in the retrieval system.

Another test of the system linearity is the consistency of
the sensitivity of the system to changes in XCO2; i.e., how
constant are the XCO2 Jacobians (defined in Eq. 3)? For ex-
ample, consider if the XCO2 Jacobian weakens when an in-
terferent, e.g., call it interferent no. 1, increases. If interferent
no. 1 is larger than its true value, the XCO2 Jacobian will be
weaker than the true XCO2 Jacobian. If the XCO2 Jacobian
is weaker than the true Jacobian, then more XCO2 is needed
to account for the radiance differences observed, resulting in
a positive bias in XCO2. This would result in a positive corre-
lation in the errors of interferent no. 1 and XCO2. This error
correlation would not be predicted by the linear error analysis
because the linear error analysis assumes that the Jacobians
do not vary. This could explain the stronger error correlations
seen.

To calculate an error resulting from varying Ja-
cobians requires calculating second-order terms, like
dJacobian[XCO2]/d[H2O scaling]. Cressie et al. (2016) cal-
culated nonlinear errors, using second-order error analysis,
and found errors on the order of 0.2 ppm, which would not
fully explain the discrepancy between the predicted and true
errors either in the simulation studies or real data.

Figure 3 shows the Jacobian magnitude (the XCO2 Ja-
cobian averaged over all frequencies) for XCO2 versus re-

trieved band 2 albedo slope. The Jacobians for the lower
(LMT) and upper (U ) partial columns (described in Kulawik
et al., 2017, and Sect. 2.1) are also plotted, and both partial
columns vary the same way, e.g., same slope signs; i.e., the
nonlinear interferent error would be positively correlated be-
tween the two partial columns.

The right panel of Fig. 3 compares the Jacobian mag-
nitude between matched results from configuration (c) and
(d) in Table 3 for land cases with postprocessing screen-
ing. The CO2 Jacobian magnitude difference is up to −4 %
for case (c) minus (d) and is correlated with the difference
in retrieved H2O scaling with correlation −0.75. Other pa-
rameters that had strong correlations (> 0.4) are aerosol wa-
ter pressure (0.55), aerosol ice pressure (0.43), surface pres-
sure (0.41). Mapping this correlation to an error in retrieved
XCO2 would require the calculation of second-order Jaco-
bians as in Cressie et al. (2016) and then mapping this into
an error in XCO2. A crude way to estimate the XCO2 error
resulting from these Jacobian differences is to consider the
completely linear case, where radiance is equal to K multi-
plied by XCO2. In this case, a +1 % error in the Jacobian
would result in a−1 % error in XCO2, to fit the radiance. So,
the variations in the XCO2 Jacobians that are seen could ex-
plain the 0.8 ppm XCO2 differences from the linear estimate.

3.2 Measurement error

To validate the measurement error, results from runs with and
without noise (cases (c) and (b) from Table 3) are analyzed.
The standard deviation of the XCO2 difference between the
runs (true error) was compared to the predicted measurement
error. The two runs, which both have clouds and other inter-
ferents, as well as smoothing errors, are assumed to be identi-
cal other than one having measurement error added. The runs
are compared after quality screening, which was described in
Sect. 2.4.

Figure 4 shows the baseline and predicted measurement
error. For land nadir, the average error is 0.35 ppm and the
average predicted is 0.29 ppm. For ocean glint, the average
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Figure 3. XCO2 (black), lower CO2 partial column (red), and upper CO2 partial column (blue) Jacobian band-averaged magnitude versus
interferent parameters. (a) shows CO2 magnitude versus retrieved band 2 albedo slope, using the configuration (b) from Table 3; (b) shows
the CO2 Jacobian magnitude difference (in percent) for matched cases from run (b) and (d) versus differences in retrieved H2O scaling.

Figure 4. Histogram of difference between XCO2 with noise on and noise off for ocean (a) and land (b), cases (b) and (c) from Table 3.

Table 7. Error versus averaging for measurement error.

n Error land Error ocean
(number averaged) (ppm) (ppm)

1 0.35 0.14
2 0.25 0.10
3 0.20 0.08
9 0.12 0.05

error is 0.14 ppm and the average predicted error is 0.21 ppm.
The bias difference between the runs with and without noise
was 0.01 ppm for ocean and 0.03 ppm for land nadir.

The predicted error ranged from 0.14 to 0.70 ppm for land
and 0.12 to 0.35 ppm for ocean. The correlation between the
predicted error and the absolute value of the error is 0.27 for
land and 0.08 for ocean, so the scene-to-scene variations in
the predicted error are not very useful.

Adjacent observations are averaged, and then the error of
this averaged quantity is calculated. If the error reduces with
the square root of the number of observations averaged, then
the error is a random, not correlated, error. A random error
is highly desirable for assimilation and other uses. For land
nadir the error is shown in Table 7.

If the error is random, then the n= 9 result should be one-
third of the error for the n= 1 result, and this is what is

found. Similarly for ocean, the error for n= 9 is 1/3 of the
n= 1 error. The simulated data do not have the data density
of actual OCO-2 data, so while averaging in close proximity
would likely behave similarly, there is some uncertainty.

In summary, for these simulated cases, the measurement
error is overpredicted for land by 0.06 ppm and overpredicted
for ocean by 0.07 ppm, but the measurement error appears to
average randomly and does not introduce a bias.

3.3 Smoothing error

Smoothing error occurs when the averaging kernel deviates
from the identity matrix, and it is calculated using the averag-
ing kernel, the true state, and the prior state. The smoothing
error terms from Eq. (1) are

vtrue_ak = va+Axx (vtrue− va) . (7)

Here, v represents the CO2 profile, which is converted to
XCO2 using Eq. (5). To validate the smoothing error, the
nonlinear retrieved XCO2 is compared to the linear esti-
mate, (XCO2)true_ak = hXCO2

T vtrue_ak, from Eq. (7), and to
(XCO2)true = hXCO2

T vtrue. The linear estimate should com-
pare better to the nonlinear retrieval. Run (a) from Table 3
is used, which does not contain clouds in the true state (i.e.,
limited interferent error) and does not have a measurement
error in the observed radiances.
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The predicted smoothing error is 0.12 ppm for ocean glint
and 0.16 ppm for land nadir. Comparison between retrieved
XCO2 and true has a mean bias of 0.0 ppm for ocean and a
mean bias of 0.46 bias for land (retrieved XCO2 is 0.46 ppm
lower than true). The standard deviation is 0.33 ppm for land
and 0.35 ppm for ocean.

Comparison of the retrieved XCO2 versus (XCO2)true_ak
or (XCO2)true yielded the same biases and standard devi-
ations (within 0.02 ppm). Therefore, the use of the OCO-2
averaging kernel and prior for comparisons, using Eq. (7),
does not improve the comparison quality versus OCO-2. This
analysis suggests modelers would get similar quality results
whether or not the OCO-2 averaging kernel is applied dur-
ing assimilation. However, a previous study by Wunch et
al. (2011) found that for comparisons to TCCON, if the av-
eraging kernel is not applied, it leads to 0.2 ppm seasonal bi-
ases. The current analysis shows that it does not do harm to
apply Eq. (7) but that it does not help either, with the caveat
that the simulated data do not cover different seasons.

3.4 Interferent error

Previous studies by Merrelli et al. (2015) and O’Brien et
al. (2016) have found that clouds and aerosols can contribute
errors larger than predicted. We look at the relationship be-
tween errors in retrieved interferents versus errors in XCO2
and the prediction of the relationship as characterized by the
averaging kernel.

The error in XCO2 from the interferent term of Eq. (1),
multiplied by the pressure weighting function, h, estimates
the propagation of interferent error into XCO2, shown in
Eq. (8).

XCO2 interferent error= hTXCO2
Axv (va− vtrue) (8)

This equation predicts that the interferent will only have an
impact if the prior state is different than the true state and
that the impact will be proportional to the prior state minus
the true state difference, with the constant of proportionality
provided by the off-diagonal averaging kernel, Axv . Many
of the interferents, e.g., H2O Scaling, start at their true val-
ues for this simulation and therefore are predicted to have
no impact on XCO2 errors. Yet, large correlations in errors
are seen when comparing XCO2 errors and interferent er-
rors, e.g., H2O Scaling error. Taking the expected standard
deviation of the XCO2 interferent error from Eq. (8) gives
the predicted interferent error, which averages 0.2 ppm for
case (b) from Table 3.

We look at (retrieved minus true XCO2) versus (prior
minus true interferent) or (retrieved minus true interfer-
ent) in Fig. 5, using run (b) from Table 3, which has
clouds but no measurement error. The red line shows
hTXCO2

Axv (va− vtrue), the predicted relationship between the
XCO2 error and the prior minus true difference. For both
band 2 albedo slope, left, and H2O scaling, right, there is no
predicted relationship, but a strong correlation is seen. This

could be explained by the results from Sect. 3.1, showing that
the XCO2 Jacobian strength varies with the retrieved albedo
or retrieved water, whereas the error analysis assumes that
the Jacobian strength does not vary.

Figure 6 shows the predicted versus true errors, in-
cluding correlations. The true error is calculated from
Errorij =mean

(
(retrieved− true)i(retrieved− true)j

)
for all cases with good quality. The true errors are
much larger and show more correlations than pre-
dicted. Both matrices are normalized using the equation
Errorij = Errorij/

√
Error0ii ·Error0jj , where Error is the

error covariance of interest and Error0 is the predicted
error covariance. To further analyze the interferent error,
we looked at the diagonal terms of the error covariance and
the correlations to XCO2 in Table 8. In order for the error
correlations between XCO2 and interferents to be assessed,
the CO2 profile is mapped to XCO2 using Eq. (5). Table 8
shows the predicted and true errors for all interferents, for all
good-quality land cases. The error factor (EF) is calculated
as

EF=
√(
σ 2

true+ bias2
true
)
/σ 2

predicted, (9)

where the predicted standard deviations come from the pre-
dicted errors and the true standard deviation and bias come
from the true errors. The error factor is found to be greater
than 1 for almost all parameters.

Another useful diagnostic of interferent error is the pre-
dicted error correlation between each interferent and XCO2,
calculated by

Correlationij = Errorij/
√

Errorii ·Errorjj , (10)

which can be compared to the actual error correlation. Ta-
ble 8 shows that for most interferents both the errors and the
correlations are underpredicted. The parameters that are both
underpredicted and significantly correlated (> 0.25) to XCO2
errors are shown in bold.

The true effect of interferent error on XCO2 can be crudely
estimated by the actual slope of XCO2 error (not shown in
Table 8s, but the actual slope is shown in Fig. 5) multiplied
by the interferent error. This estimate cannot distinguish be-
tween correlation and causation. The standard deviation of
this estimate is shown as the last column of Table 8 (“Im-
pact on XCO2”). The interferent error estimated with a more
simplified surrogate model was much smaller in Hobbs et
al. (2017).

4 Postprocessing bias corrections

Postprocessing analysis of real ACOS OCO-2 retrieval re-
sults has uncovered linear relationships between XCO2 error
and various parameters such as the retrieved surface pres-
sure, liquid water optical depth, and δ∇CO2 (an estimate of
the profile curvature) (Wunch et al., 2011). Similar correla-
tions have been found between the above parameters and the
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Figure 5. Predicted (red line) and true error (red dots) for two interferents: band 2 albedo slope (a) and H2O scaling (b).

Table 8. Predicted and actual errors for interferents and correlations between interferents and XCO2 for simulated land retrievals for case
(b) from Table 3. Bold values are those parameters with interferent errors larger than predicted and large actual correlations to XCO2 error
(absolute value larger than 0.25).

Pred. Actual Error Pred. Actual Impact on
error error factor corr. corr. XCO2 (ppm)

Met H2O scaling 0.003 0.005± 0.004 5 0.35 0.93 1.2
Met Surface pressure 0.5 −0.67± 1.02 3 −0.38 −0.02 0.0
Met Temperature offset 0.04 0.25± 0.22 9 0.17 0.44 0.6
Aerosol Aerosol ice OD 0.002 −0.02± 0.21 101 0.03 0.81 1.1
Aerosol Aerosol ice pressure 0.09 0.03± 0.28 3 −0.01 0.22 0.3
Aerosol Aerosol ice width 0.01 0.01± 0.01 2 −0.00 0.13 0.2
Aerosol Aerosol Kahn 1 OD 0.01 −5.0± 0.8 4 −0.36 −0.39 0.5
Aerosol Aerosol Kahn 1 pressure 0.3 0.3± 0.4 1 0.08 −0.10 0.1
Aerosol Aerosol Kahn 1 width 0.01 0.04± 0.08 9 −0.00 −0.19 0.3
Aerosol Aerosol Kahn 2 OD 0.01 −5.0± 0.8 2 0.32 −0.02 0.0
Aerosol Aerosol Kahn 2 pressure 0.4 0.7± 0.5 2 −0.02 0.26 0.3
Aerosol Aerosol Kahn 2 width 0.01 0.1± 0.09 17 0.00 0.18 0.2
Aerosol Aerosol water OD 0.008 −5.9± 1.0 7 −0.06 −0.15 0.2
Aerosol Aerosol water pressure 0.4 0.7± 0.5 3 −0.01 −0.06 0.1
Aerosol Aerosol water width 0.01 0.09± 0.03 9 0.00 −0.13 0.2
Albedo Band 1 albedo ave. 0.0008 −0.0002± 0.003 3 0.19 −0.50 0.7
Albedo Band 1 albedo slope 1× 10−6 1× 10−6

± 1× 10−6 3 −0.26 −0.10 0.1
Albedo Band 2 albedo ave. 0.0006 −0.002± 0.004 7 0.19 −0.54 0.7
Albedo Band 2 albedo slope 1× 10−7 2× 10−6

± 2× 10−6 8 0.10 0.20 0.3
Albedo Band 3 albedo ave. 0.0007 −0.001± 0.005 7 0.04 −0.22 0.3
Albedo Band 3 albedo slope 1× 10−6 0e− 6± 2× 10−6 3 0.14 −0.36 0.5

lower partial column (Kulawik et al., 2017). The standard op-
erational procedure that has been adopted by the ACOS al-
gorithm team for both OCO-2 and GOSAT data is to perform
a bias correction of the estimated XCO2 based on the linear
correlations of the difference in XCO2 compared to various
truth metrics with certain retrieved parameters. In this sec-
tion, we look specifically at the behavior of δ∇CO2 (defined
in Sect. 4.1) and dP (defined in Sect. 4.2) bias correction in
the simulated system. The purpose of the analysis of this sec-
tion is to answer the following questions.

1. Do the bias correction for dP and δ∇CO2 behave sim-
ilarly in the simulation system to the real OCO-2 re-
trievals?

2. What is the effect of bias correction on CO2 errors?

The bias correction is determined using this simulated dataset
and then applied to the same dataset, which is somewhat cir-
cular, since the true is both used to determine the bias cor-
rection and to check the bias correction, but it is important
to know whether the relationships exist. For example, what
causes the spatial patterns seen in the bias in Fig. 2.

4.1 The retrieved profile gradient

δ∇CO2 is defined as delta[20]–delta[13] , where delta is the
retrieved CO2 profile minus the prior CO2 profile, [20] is the
surface level, and [13] is seven levels above the surface, i.e.,
0.63*(surface pressure). δ∇CO2 represents the gradient of the
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Figure 6. Predicted and true errors. (a) shows the predicted error co-
variance matrix, for the retrieval parameters listed in Table 1, with
the CO2 profile collapsed into two parameters (LMT and U par-
tial columns). The blue, orange, green, and purple boxes contain
CO2, metrological, aerosol, and albedo parameters, respectively.
Both matrices are normalized by the diagonal of the predicted er-
rors.

retrieved CO2 profile that differs from the prior. It has been
found that the slope of XCO2 error versus δ∇CO2 varies de-
pending on the a priori covariance that is used in the retrieval
system, with a more evenly varying covariance having less
dependency of XCO2 error versus δ∇CO2 (O’Dell, unpub-
lished data). The standard OCO-2 constraint is very loose at
the surface (e.g., with 50 ppm a priori variability) and tighter
in the midtroposphere (with ∼ 10 ppm a priori variability).
Most CO2 variability does occur near the surface near the
primary sources and sinks, but the a priori constraint used in
the retrieval algorithm would favor variations at the surface
even in cases when the variations occur at a higher level due
to the weighting due to the prior covariance.

Figure 7 shows errors in XCO2, LMT (the lower tro-
pospheric column, approximately up through 2.5 km), and
U (the upper partial column, approximately from 2.5 km
through the top of the atmosphere) (LMT and U are de-
scribed in Kulawik et al., 2017, and Sect. 2.1) versus δ∇CO2

for configuration (b). In the simulated retrievals, the values
of the slope of delta XCO2 versus δ∇CO2 are −0.001 and
−0.008 for land and ocean, respectively. It is clear that there
are significant errors in the partitioning between the lower
(LMT) and upper (U ) partial columns that are correlated to
δ∇CO2 . The slope of LMT versus δ∇CO2 is 0.23 and 0.22 for
land and ocean, respectively, and −0.07 and −0.08 for U
land and ocean, respectively. For real ACOS-GOSAT (B3.5)
data, Kulawik et al. (2017) found a slope of 0.39 for land and
0.31 for ocean for LMT and−0.11 and−0.09 forU land and
ocean, respectively, which are similar values as seen in this
simulated dataset.

These results naturally lead to the following question:
what is the effect of placing CO2 at the wrong pressure level?
The mean Jacobian for the U partial column (upper 15 lay-
ers) is only about 60 % (0.62) of the mean value for the low-
ermost four layers. Therefore, a molecule in the LMT partial
column is equivalent to about 1.6 molecules in the upper par-

tial column. Therefore, a molecule mistakenly placed in the
lower four layers and moved to the upper layers in the post-
processing step needs to be exchanged for 1.6 molecules in
the upper partial column to have the same impact on the ra-
diances at the new level. At δ∇CO2 of 35, for land, LMT is
high by ∼ 8.4 ppm. For an even exchange, moving 8.4 ppm
from the LMT partial column to the U partial column results
in +2.5 ppm in the U partial column only from the effects of
air mass (because the U partial column has more air mass;
= 8.4 ppm *.23 LMT air mass/0.77U air mass). Consider-
ing the difference in sensitivity, and multiplying by 1.6, this
corresponds to+4.0 ppm in theU partial column. The net ef-
fect on XCO2 of this bias correction is the sum of the partial
columns times the air mass,−8.4∗ .23+4.0∗ .77= 1.1 ppm.
This is at δ∇CO2 of 35, so that would mean that the slope
for XCO2 error versus δ∇CO2 is 0.031. For real OCO-2 v7
data, the slope of XCO2 error versus δ∇CO2 is +0.0280 and
−0.077 for land and ocean, respectively (Mandrake et al.,
2017). This analysis explains a positive slope in XCO2 ver-
sus δ∇CO2 but would not explain a negative slope. The nega-
tive slope would result from additional correlations or errors
acting in addition to this effect.

4.2 The retrieved surface pressure

The quantity dP is the difference between retrieved and prior
surface pressure and is used as a postprocessing bias correc-
tion for OCO-2. In this section, we explore results from dP in
the simulated dataset to try to understand why bias correction
based on this parameter is useful.

Although it is typically assumed that the surface pressure
is determined solely from the O2 A band, the strong and
weak CO2 bands also contribute information. For land nadir,
averaged over cases passing postprocessing quality screen-
ing, the band-averaged Jacobian strengths in the weak and
strong CO2 bands relative to the O2 A band are 0.2 and 0.4,
respectively. Based on the surface pressure Jacobian and the
spectral error, a value of−2 hPa will create a spectral bias 0.2
times the size of the spectral error in the O2 A band, which,
because it is a correlated error, will be an additive error over
the band.

Figure 8 shows the actual error covariances and biases for
three different subsets of run (d): dP <−2 hPa, −1< dP<
1 hPa (nominal cases), and dP > 1.5 hPa. The errors shown
are normalized by the predicted error, using the equation
Eij = Eij/

√
(E0ii ·E0jj), where E is the error covariance

of interest and E0 is the predicted error covariance. A diag-
onal value of 1 means that the actual error is the same as
predicted, and a diagonal value of 4 represents an actual er-
ror that is twice (

√
(4)) as large as predicted. The errors and

error correlations are much larger than predicted for many
parameters. In addition, the CO2 parameters show less corre-
lation with other parameters for the nominal case. Also note
that the nominal case has less saturation, meaning less errors
and correlations.
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Figure 7. Error in retrieved CO2 for XCO2 (black), upper partial column, U (blue), and lower partial column LMT (red) versus δ∇CO2 for
ocean (a) and land (b).

Figure 8. Normalized actual error covariances and biases of retrieved parameters for dP <−2 hPa (a, d), −1 < dP < 1 hPa (b, e), and
dP > 1.5 hPa (c, f) using the configuration from Table 3 (d) for land/cloudy. The purple box surrounds the albedo parameters, the green
box surrounds aerosol parameters, the red box surrounds metrological parameters, and the blue box surrounds the CO2 fields, which have
been collapsed into lower and upper partial columns. The errors are normalized by the predicted errors (which are shown in Fig. 5). The
arrow in panel (a) shows correlation between LMT and surface Pressure, which is negative (also see Fig. 9b below).

Next we looked at the possibility of screening incorrect
surface pressure results using χrad

2 (defined in Eq. 6). To
do this, we used land cases for configuration (c) in Table 3
(simulations that include clouds), and looked at χrad

2 for two
groups: (group 1) dP <−2 and (group 2) −1 < dP < 0. The
cases with dP <−2 had 0.04, 0.01, and 0.06 higher reduced
χrad

2 in the three bands, respectively. Although the dP <−2
case fit the spectra worse there was too much overlap to dis-
tinguish between these cases solely from χrad

2.
The albedo errors and correlations (purple box) particu-

larly stand out, with correlations with many retrieved param-
eters. The albedo terms are, in order, O2 A-band mean, O2 A-
band slope, weak mean, weak slope, strong mean, and strong
slope. Based on the O2 A-band mean albedo and the surface
pressure Jacobians, a change in retrieved surface pressure of
−2 hPa can be compensated for by a change in the albedo
on the order of −0.001, with this analysis based on band
averages, and not necessarily implying a good fit. However,
this analysis indicates that very minute changes in the surface
albedo (on the order of 0.1 %) can compensate for moderate
sized errors in the retrieved surface pressure. The exact re-
lationship can be better studied by examining the radiative
transfer and looking at how the final transmission of sunlight

relates to both the total amount of atmospheric absorption
and the surface albedo.

Errors in the retrieved XCO2, lower partial column (LMT),
and upper partial columns (U ) are plotted versus the error in
surface pressure in Fig. 9, which all show moderate (R =
0.63) to strong (R =−0.98) correlations. The bias found in
this work for this simulated dataset for the XCO2 bias versus
dP is −0.23 for land and 0.15 for ocean. We can compare
these to the OCO-2 v7 biases of −0.3 for land and −0.08
for ocean. Note that for the simulated data, the prior surface
pressure is set to the true, so (surface pressure – prior) is the
same as (surface pressure – true). The bias correction factors
are found in Table 4 of the v7 bias correction documentation.

The retrieval system must match the mean photon path
length for the O2 A-band channel using retrieved parame-
ters like surface pressure, albedo, water, temperature, aerosol
pressure heights, and aerosol optical depths. Also note that
the O2 volume mixing ratio (VMR) is fixed and not retrieved.
Mean photon path length increases with higher albedo and
aerosol optical depth (Palmer et al., 2001). Additionally,
moving aerosols lower in the atmosphere increases mean
photon path length, because light scattered by the aerosol
travels farther, and a larger surface pressure will increase
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Figure 9. Error in the lower partial column (LMT), upper partial column (U ) and total column (XCO2) versus error in surface pressure (with
0.2 hPa bins) for ocean (a) and land (b). The OCO-2 v7 XCO2 bias versus dP is −0.3 for land and −0.08 for ocean.

mean photon path length because the path length to the sur-
face is longer. The retrieval system varies these parameters to
match the observed radiances. Ideally, the three bands would
have the same albedo and aerosol properties, so that getting
the O2 A-band mean photon path length right will also get
the mean photon path length in the CO2 bands. Real aerosol
optical depths tend to be higher in the O2 A band than in the
CO2 bands. However, the aerosol optical depth versus fre-
quency is fixed for OCO-2. Therefore, as an example, using
a too-thick aerosol in the O2 A band to compensate for a
too-small surface pressure will not balance in the CO2 bands
because the same too-small surface pressure will be offset
by less aerosol. The relative strengths of the Jacobians for
the four aerosol optical depths in the O2 A band versus CO2
bands are 1.5×, 3.3×, 7.2×, and 2.1×, respectively, indi-
cating the dominance of the O2 A band concerning aerosol
information.

As seen in Fig. 8b, for dP <−2 hPa, there is a negative bias
in surface pressure (because we selected for this), negative
biases in three of the four aerosol optical depths (green box,
parameters 1, 4, and 10), positive bias in retrieved aerosol
pressure (green box, parameters 2, 5, 8), and negative bi-
ases in the retrieved albedo (purple box, parameters 1, 3, 5).
The error covariances show that (within this subset of ob-
servations) there are strong negative correlations between re-
trieved surface pressure error and errors in albedo and aerosol
optical depth. There are also positive correlations between
errors in aerosol optical depth and errors in albedo.

To trace the interferent errors to an error for XCO2, the
effect of each bias on mean photon path length for the O2 A
band and for weak and strong bands needs to be calculated,
and then the mean photon path length error of the CO2 bands
versus the O2 A band will give the error for XCO2. For ex-
ample if the O2 A-band mean photon path length is perfect
and the CO2 mean photon path length is 0.5 % too large rel-
ative to true, then the CO2 retrieved VMR will be 0.5 % too
small. Since aerosols are compensating for errors in surface
pressure, it is not ideal to fix their relationship versus fre-
quency.

Figure 8d–f shows the bias patterns for these different
groups. Comparing Fig. 7d, e, and f reveals patterns that
could be used for screening: e.g., a low bias in Kahn 1 aerosol
optical depth and low biases in all albedo means as well as
high biases in all albedo slope indicate a negative surface
pressure error, whereas a high bias in Kahn 1 aerosol pres-
sure and width and a high bias in the strong band albedo slope
indicate a positive surface pressure error. In real retrievals, a
high albedo bias could not be distinguished from high true
albedo; however, the pattern of biases observed in Fig. 8
could be used to identify low-quality retrievals (e.g., albedo
higher than expected, aerosol OD larger than expected, and
surface pressure lower than expected) and implies a bad re-
sult.

It is interesting to note that the system appears to be able
to compensate for and pass postprocessing quality screening,
using albedo and aerosols, for low surface pressure biases
down to −4 hPa but high surface pressure biases only up to
+2 hPa.

4.3 Error correlation and effect of bias correction on
errors

Another important question is the following: how does bias
correction within the CO2 column affect errors, particularly
the error correlations in XCO2 and the partial columns? Ku-
lawik et al. (2017) found that the predicted error correlation
between the LMT and U partial columns was −0.7 for land
and −0.8 for ocean, whereas the actual error correlation ver-
sus aircraft was found to be +0.6 (with uncertainty in the
correlation due to the fact that aircraft do not cover the full
U partial column and effects of colocation error). Addition-
ally, Kulawik et al. (2017) found that whereas the XCO2 pre-
dicted errors were underestimated by about a factor of 2, the
LMT and U errors were overestimated by about a factor of
2. Weakening the LMT and U correlations would result in
higher and more accurate error estimates for XCO2.

The errors for XCO2, LMT, and U for land and ocean for
configuration (b) are summarized in Table 9. The bias correc-
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Table 9. Predicted and actual errors and biases in raw and bias-corrected simulated data run with configuration (b) from Table 3. Similar to
operational retrievals, bias-corrected XCO2 error is underestimated, whereas the CO2 partial column errors are overestimated. The XCO2
error underprediction results from overestimated error correlations of the partial columns.

Ocean pred. Ocean actual Ocean actual Land pred. Land actual Land actual
(ppm) (ppm) corrected (ppm) (ppm) (ppm) corrected (ppm)

LMT 2.6 2.6± 2.9 0.1± 2.3 3.3 2.9± 4.2 −0.6± 2.6
U 0.9 −0.6± 1.1 0.2± 1.0 1.2 −0.6± 1.4 0.3± 0.9
XCO2 0.3 0.1± 0.7 0.1± 0.7 0.4 0.2± 0.8 0.1± 0.7
LMT and U correlation −0.91 −0.67 −0.57 −0.90 −0.68 −0.46

tion for XCO2 (using only δ∇CO2 and dP) lowers the XCO2
bias from 0.2 to 0.1 ppm and the error from 0.8 to 0.7 ppm for
land but has no impact on the ocean error or bias. The XCO2
error is underestimated by a factor of 2 for these simulation
results, similarly to what was found with real data.

Similar to findings with real data, the XCO2 error in these
simulations is underestimated, whereas the LMT and U er-
rors are overestimated. However, the overestimate of the par-
tial column errors are not as large as seen with real GOSAT
data. The predicted error correlation is −0.91 for the LMT
and U errors, whereas the actual error correlation is −0.5.
Using Eq. (10c) from Kulawik et al. (2017), and the LMT
and U errors in Table 9, we note two key results. First, the
XCO2 predicted error is 0.37 ppm when the error correla-
tion is −0.91. Second, the predicted XCO2 error is 0.64
(0.71) ppm for ocean (land) when the actual correlation is
−0.57 (−0.46) for ocean (land). The second result is close to
the actual error of 0.7 ppm. The estimate of +0.6 correlation
from Kulawik et al. (2017) is probably wrong and could be
due to unaccounted effects of colocation error on correlation
estimates.

As seen in Sect. 3.1, nonlinearities from interferents affect
both partial columns similarly. This would result in a positive
error correlation (since the correlation is strongly negative
and results in a less negative correlation than predicted) and
explain the larger actual versus predicted XCO2 error. A high
negative correlation is desirable for XCO2 because it asserts
that, although there is uncertainty in the partitioning of LMT
and U , the sum of the two has a smaller uncertainty.

5 Discussion and conclusions

The 15 orbits of simulated retrievals result in ∼ 10000 land
and ocean scenes for cloud-free runs, and 870 and 680 land
and ocean cases for runs with clouds, after postprocessing
quality screening. Prior to application of quality flags, de-
scribed in Sect. 2.3, the errors are ∼ 10 ppm for land and
∼ 2 ppm for ocean. After quality flags and bias correction
are applied, the errors are 0.7 ppm, with mean bias errors of
0.1 ppm for both land and ocean. There is a spatial pattern to
the bias, which has similar characteristics to the spatial pat-
tern of real OCO-2 biases, with a correlation length of ∼ 3◦,

similar to the correlation length of 5–10◦ for OCO-2 (Ku-
lawik et al., 2019a).

Comparing runs with and without measurement noise
added to the radiances showed that the predicted measure-
ment error is accurate. Comparing the retrieved results to
the linear estimate using only the CO2 parameters (smooth-
ing error) shows that the smoothing error is not greater than
0.5 ppm, but due to interferent error and nonlinearity this
could not be validated more accurately with the tests used. A
more accurate way to validate this would be to run tests with
different priors (e.g., Kulawik et al., 2008), which was previ-
ously done (unpublished), finding that the smoothing errors
are smaller than 0.2 ppm.

The linear estimate does not predict the nonlinear re-
trievals to better than 0.9 ppm (much worse when quality
flags are not used), indicating this level of nonlinearity in
the retrieval system. The interferent error is underpredicted
by a factor of 4, based on the relationship of XCO2 error ver-
sus error for each retrieved interferent. The retrieved interfer-
ent error is twice as large as predicted for some parameters,
and the correlation between the retrieved interferent error and
XCO2 error is twice as large as predicted for some parame-
ters. The larger correlation is likely due to the fact that CO2
Jacobian strength is correlated with many retrieved interfer-
ent values; a wrong interferent value will result in the wrong
CO2 Jacobian strength, resulting in an error in CO2.

Two bias correction terms are explored: δ∇CO2 , the gra-
dient of the retrieved CO2 profile relative to the prior state;
and dP, the retrieved surface pressure minus the prior state.
The δ∇CO2 bias correction could be explained by the fol-
lowing. (1) A loose CO2 constraint near the surface prefers
changes near the surface versus changes elsewhere. (2) Since
the CO2 Jacobian strength near the surface is stronger ver-
sus the Jacobian elsewhere in the profile, molecules incor-
rectly placed near surface are underestimated, because each
molecule has too much of an effect on the observed radiance.
(3) This results in an XCO2 column that is too low. This ex-
planation would explain the positive bias correction factor
seen in OCO-2 v7 land and v8 land and ocean but would not
explain the negative correction factor seen in v7 ocean.

The theoretical basis for dP is complicated because so
many other retrieval parameter errors are correlated to er-
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rors in dP. This makes sense from a fundamental radiative
transfer perspective which ties together the surface and scat-
tering properties with the amount of atmospheric column for
any particular sounding. The retrieval system appears to use
albedo and aerosols to compensate for errors in dP. In these
simulated results the dP bias correction has a similar slope as
seen in real OCO-2 data for land but not for ocean. The re-
sults with dP errors had marginally higher radiance residuals
but not high enough to easily screen.

Similar to the findings in Kulawik et al. (2017), the XCO2
column error is much higher than predicted, whereas the
lower and upper partial CO2 column errors, LMT and U ,
respectively, have errors lower than predicted. The underpre-
diction of XCO2 error results because the retrieval system
thinks the LMT and U partial column error correlation is
−0.91. The actual correlation is −0.5 to −0.6 after bias cor-
rection, with the uncorrected results having both higher error
and higher correlations in the partial columns. When the ac-
tual correlation is used to estimate XCO2 error, the predicted
XCO2 error matches the actual error within 0.1 ppm. The rea-
son why this correlation is off may be due to the fact that
both partial column Jacobian strengths vary similarly with
interferent errors, which are underpredicted in the linear esti-
mates of errors, and would result in less negative correlation
between the partial columns.

These results suggest a few possible strategies (a) isolat-
ing the primary interferent parameters via preretrievals of
aerosols with surface pressure, CO2, and albedo fixed, fol-
lowed by a full joint retrieval. This would allow clouds and
aerosols to be approximately set without throwing the other
retrieved parameters off. A similar technique was employed
in the thermal infrared to mitigate cloud contamination (e.g.,
Eldering et al., 2008). A second tactic would be to perform
retrievals beginning at many different initial states, select-
ing the result with the lowest radiance residual. This solution
however is computationally expensive.

In summary, the simulated retrievals have many of the
same attributes of real data, with the advantage of knowledge
of the true state and ability to see what is going on under the
hood. These simulation studies suggest attention should be
given to nonlinearity, because the ability to estimate errors
and make incremental improvements depends on the accu-
racy of the linear estimate, which has an accuracy of only
about 0.9 ppm in these simulation studies.
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